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Abstract. We investigate the properties of the operator ∆(σ∆·) : H2
0(Ω) → H−2(Ω), where σ is a

given parameter whose sign can change on the bounded domain Ω. Here, H2
0(Ω) denotes the subspace

of H2(Ω) made of the functions v such that v = ν · ∇v = 0 on ∂Ω. The study of this problem arises
when one is interested in some configurations of the Interior Transmission Eigenvalue Problem. We
prove that ∆(σ∆·) : H2

0(Ω)→ H−2(Ω) is a Fredholm operator of index zero as soon as σ ∈ L∞(Ω), with
σ−1 ∈ L∞(Ω), is such that σ remains uniformly positive (or uniformly negative) in a neighbourhood of
∂Ω. We also study configurations where σ changes sign on ∂Ω and we prove that Fredholm property
can be lost for such situations. In the process, we examine in details the features of a simpler problem
where the boundary condition ν · ∇v = 0 is replaced by σ∆v = 0 on ∂Ω.

Key words. Sign-changing coefficient, bilaplacian, interior transmission problem, non smooth bound-
ary, singularities.

1 Introduction

1.1 The Interior Transmission Eigenvalue Problem

The motivation for considering bilaplacian operators with a sign-changing coefficient finds its origin in
the study of some configurations of the Interior Transmission Eigenvalue Problem (ITEP), a spectral
problem introduced in [24, 14] and which appears in inverse scattering theory. In particular, the ITEP
arises when one is interested in the reconstruction of the support of a penetrable inclusion embedded
in a reference medium from far fields measurements at a given frequency. In this context, it is impor-
tant to know if for a given frequency, we can find an incident wave for which the field scattered by
the inclusion is null. Frequencies for which the answer to this question is positive have an important
role: we need to avoid them to implement the Linear Sampling Method, a well-known reconstruction
method, and we can also use them to characterize the properties of the inclusion [9, 20]. In the fol-
lowing, we formulate the ITEP. The reader who wants to skip this introductory part may proceed to
§1.2.

The reference medium is chosen equal to Rd, d ≥ 1. The inclusion is a domain Ω ⊂ Rd, i.e. a
bounded and connected open subset of Rd with Lipschitz boundary ∂Ω. We assume that the propa-
gation of waves in Rd is governed by the equation ∆w + k2w = 0, where k ∈ R is the wave number.
On the other hand, we model the inclusion by some physical parameter n so that the total field u (the
sum of the incident and scattered fields) satisfies ∆u + k2n2u = 0. We impose that n 6= 1 in Ω and
n = 1 in Rd \ Ω. If we denote [·]|∂Ω the jump on ∂Ω (here, the sign is not important) and ν the unit
outward normal vector to ∂Ω oriented to the exterior of Ω, the total field u satisfies the equations
of continuity [u]|∂Ω = [ν · ∇u]|∂Ω = 0. Now, if w is an incident field which does not scatter, then
there holds u = w outside Ω. As a consequence, we must have u = w and ν · ∇u = ν · ∇w on ∂Ω.
To summarize, if w is such that the scattered field is null outside the inclusion, then the pair (u,w)
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verifies the problem
∆u+ k2n2u = 0 in Ω
∆w + k2w = 0 in Ω
u− w = 0 on ∂Ω
ν · ∇u− ν · ∇w = 0 on ∂Ω.

(1)

Let us introduce some basic notations to equip Problem (1) with a functional framework. The space
L2(Ω) is endowed with the classical inner product

(ϕ,ϕ′)Ω =
∫

Ω
ϕϕ′, ∀(ϕ,ϕ′) ∈ L2(Ω)× L2(Ω).

For all ϕ ∈ L2(Ω), we define ‖ϕ‖Ω := (ϕ,ϕ)1/2. We denote H1
0(Ω) (resp. H2

0(Ω)) the closure of C∞0 (Ω)
for the H1-norm (resp. H2-norm). We endow these spaces with the inner products

(ϕ,ϕ′)H1
0(Ω) = (∇ϕ,∇ϕ′)Ω, ∀(ϕ,ϕ′) ∈ H1

0(Ω)×H1
0(Ω);

(ϕ,ϕ′)H2
0(Ω) = (∆ϕ,∆ϕ′)Ω, ∀(ϕ,ϕ′) ∈ H2

0(Ω)×H2
0(Ω).

The topological dual space of H1
0(Ω) (resp. H2

0(Ω)) is denoted H−1(Ω) (resp. H−2(Ω)).

Definition 1.1. The elements k ∈ C for which there exists a non trivial solution to the problem

Find (u,w) ∈ L2(Ω)× L2(Ω), with u− w ∈ H2
0(Ω), such that:

∆u+ k2n2u = 0 in Ω
∆w + k2w = 0 in Ω

(2)

are called interior transmission eigenvalues.

Following [39], to avoid having to work with a system of PDEs, we rewrite (2) as a fourth order
equation. Consider (u,w) a pair satisfying (2). Define v := u− w. It verifies the relation

∆v + k2n2v = −k2(n2 − 1)w in Ω. (3)

Assume that the parameter n : Ω → R is an element of L∞(Ω) such that n > 0 and n 6= 1 in Ω.
Assume also that (n2 − 1)−1 belongs to L∞(Ω). Dividing on each side of (3) by n2 − 1 and using the
equation ∆w + k2w = 0, we obtain, in the sense of distributions,

(∆ + k2)
(

1
n2 − 1 (∆v + k2n2v)

)
= 0.

We deduce that if the pair (u,w) satisfies Problem (2) then v = u− w verifies the problem

Find v ∈ H2
0(Ω) such that∫

Ω

1
n2 − 1 (∆v + k2n2v)(∆v′ + k2v′) = 0, ∀v′ ∈ H2

0(Ω).
(4)

Conversely, one shows (see [39, lemma 3.1] for the details) that if v is a solution of (4) then the pair
(u,w) := ((n2 − 1)−1 (∆v + k2n2v)− k2v, (n2 − 1)−1 (∆v + k2n2v)) satisfies Problem (2). For k ∈ C,
we define the sesquilinear form ak such that

ak(v, v′) = ((n2 − 1)−1(∆v + k2n2v), (∆v′ + k2v′))Ω, ∀(v, v′) ∈ H2
0(Ω)×H2

0(Ω).

With the Riesz representation theorem, let us introduce the bounded operator Ak : H2
0(Ω) → H2

0(Ω)
associated with ak such that

(Akv, v′)H2
0(Ω) = ak(v, v′), ∀(v, v′) ∈ H2

0(Ω)×H2
0(Ω). (5)

For all k ∈ C, observe that Ak − Ak0 is a compact operator on H2
0(Ω). Therefore, according to the

analytic Fredholm theorem, we deduce that if there exists k0 ∈ C such that Ak0 is an isomorphism
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of H2
0(Ω), then Ak is an isomorphism of H2

0(Ω) for all k ∈ C\S , where S is a discrete or empty set
of C. This is a simple approach to prove that the set of interior transmission eigenvalues is discrete,
one of the basic objectives in the theory (another important issue (see [36, 10, 11]) is to establish that
interior transmission eigenvalues exist).

When there is a constant C > 0 such that n − 1 ≥ C in Ω (resp. −(n − 1) ≥ C in Ω), the form a0
(resp. −a0) is coercive on H2

0(Ω)× H2
0(Ω). This allows to prove that A0 is an isomorphism of H2

0(Ω),
and as a consequence, that the set of interior transmission eigenvalues is discrete or empty. This
result is known since [39] (see also the review paper [15]). When n − 1 changes sign in Ω, the form
ak is no longer coercive nor “coercive+compact” on H2

0(Ω)×H2
0(Ω). The question of the discreteness

of the set of interior transmission eigenvalues in this case has remained completely open for a long
time. An important step forward has been made by J. Sylvester in [40]. In this paper, he proves,
using an equivalent formulation of (2), that discreteness holds as soon as n − 1 is uniformly positive
or uniformly negative in a neighbourhood of the boundary ∂Ω. The same assumption is needed in the
recent papers [29, 38] where the authors obtain additional results of existence of interior transmission
eigenvalues in the case of a smooth coefficient n. However, for the moment, it seems that there is no
result when n − 1 changes sign on ∂Ω. One of the outcomes of the present article is to prove that
Fredholm property (see Definition 1.2 hereafter) can be lost for the operators Ak when n− 1 changes
sign on ∂Ω. In these situations, the functional framework needs to be modified to apply the analytic
Fredholm theorem and to prove that the set of interior transmission eigenvalues is discrete.

1.2 Problem considered in the present paper

To simplify the notations, let us define σ := (n2−1)−1 ∈ L∞(Ω). All along the paper, we shall assume
that σ is real valued. Our goal is to investigate the features of the following source term problem

(P)
Find v ∈ H2

0(Ω) such that:
(σ∆v,∆v′)Ω = 〈f, v′〉Ω , ∀v′ ∈ H2

0(Ω)
(6)

corresponding to the principal part (the part which contains the derivatives of higher degree) of the
operator Ak. In Problem (P), f is an element of H−2(Ω) whereas 〈·, ·〉Ω refers to the duality pairing
H−2(Ω)×H2

0(Ω). Let us introduce the sesquilinear form b such that

b(v, v′) = (σ∆v,∆v′)Ω, ∀(v, v′) ∈ H2
0(Ω)×H2

0(Ω)

and the continuous operator B : H2
0(Ω)→ H2

0(Ω) defined by

(Bv, v′)H2
0(Ω) = b(v, v′), ∀(v, v′) ∈ H2

0(Ω)×H2
0(Ω). (7)

In recent years, much work (see [16, 6, 2, 4, 35]) has been devoted to the study of the operator
div(σ∇·) : H1

0(Ω)→ H−1(Ω) when σ is a parameter whose sign changes on the domain Ω. This opera-
tor arises in the modelling of electromagnetic phenomena in time harmonic regime in media involving
usual positive material and metals at optical frequencies or negative metamaterials. In this context,
the medium is divided into two regions: one corresponding to the positive material (σ = σ+ > 0),
another corresponding to the negative material (σ = σ− < 0). Let us present the main results, as-
suming to simplify that σ+ and σ− are some constants. If the interface between the two materials is
smooth, the operator div(σ∇·) : H1

0(Ω) → H−1(Ω) is Fredholm of index zero if and only the contrast
σ+/σ− satisfies σ+/σ− 6= −1 [16, 2]. When the interface between the two materials has corners, strong
singularities can appear. In such configurations, the operator div(σ∇·) : H1

0(Ω) → H−1(Ω) is Fred-
holm of index zero if and only σ+/σ− lies outside some interval I ⊂ (−∞; 0) [17, 7, 5, 13]. The latter
interval always contains the value −1 and depends only on the smallest aperture of the corners of the
interface. The goal of the present article is also to compare the features of div(σ∇·) : H1

0(Ω)→ H−1(Ω)
and ∆(σ∆·) : H2

0(Ω)→ H−2(Ω). Has the change of sign of σ the same consequences for both operators?

The outline of the paper is the following. In Section 2, we examine the properties of the opera-
tor B̃ : H1

0(Ω) ∩ H2(Ω) → H1
0(Ω) ∩ H2(Ω) such that (B̃v, v′)H2

0(Ω) = (σ∆v,∆v′)Ω, for all v, v′ in
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H1
0(Ω) ∩ H2(Ω). The latter functional framework corresponds to mixed boundary conditions. We

prove that when the domain Ω is smooth or convex, B̃ is an isomorphism without assumption on the
sign of σ. The investigation of this simpler problem provides us the way to study the original operator
B (with Dirichlet boundary conditions). This is the subject of the first part of Section 3 where we
show that B is Fredholm of index zero as soon as σ remains uniformly positive or uniformly negative
in a neighbourhood of the boundary ∂Ω. In the second part of Section 3, we are interested in what
happens when the sign of σ changes on ∂Ω. In particular, we exhibit situations where Fredholmness
in H2

0(Ω) is lost. Then, in Section 4, we complement the analysis of the features of the operator B̃.
Adapting a technique used to consider the case σ = 1 (see [33] and the monograph [18]), we establish
that for polygons with reentrant corners (which are non convex and non smooth domains), a kernel
and a cokernel can appear for B̃ when σ changes sign. Finally, in Section 5, we introduce the op-
erator B] : H1

0(∆) → H1
0(∆), such that (B]v, v′)H2

0(Ω) = (σ∆v,∆v′)Ω, for all v, v′ ∈ H1
0(∆), where

H1
0(∆) := {ϕ ∈ H1

0(Ω) |∆ϕ ∈ L2(Ω)}. We demonstrate that B] is always an isomorphism and we
compare the characteristics of the inverses of B] and B̃ (when B̃ is invertible). Generally speaking,
in this article, we must say that the Interior Transmission Eigenvalue Problem serves as a pretext to
make a review of the properties of several bilaplacian operators with a sign-changing coefficient.

In the sequel, on several occasions, we shall rely on Fredholm theory using the following definition.

Definition 1.2. Let X and Y be two Banach spaces, and let L : X→ Y be a continuous linear map.
The operator L is said to be a Fredholm operator if and only if the following two conditions are fulfilled

i) dim(kerL) <∞ and rangeL is closed;

ii) dim(cokerL) <∞ where cokerL :=
(
Y/rangeL

)
.

Besides, the index of a Fredholm operator L is defined by indL = dim(kerL)− dim(cokerL).

2 Bilaplacian with mixed boundary conditions: smooth and convex
domains

Before investigating the properties of the operator B, let us study the problem obtained replacing in
(P) the boundary condition “ν · ∇v = 0 on ∂Ω” by the condition “σ∆v = 0 on ∂Ω”. We will see
that in this case the analysis is quite simple. For f ∈ (H1

0(Ω) ∩H2(Ω))∗, the topological dual space of
H1

0(Ω) ∩H2(Ω), let us consider the problem

Find v ∈ H1
0(Ω) ∩H2(Ω) such that:

∆(σ∆v) = f in Ω
σ∆v = 0 on ∂Ω.

(8)

Here, we impose mixed boundary conditions: the condition v = 0 on ∂Ω is said to be essential, its
appears in the functional space, whereas the condition σ∆v = 0 on ∂Ω is said to be natural. The
trace σ∆v = 0 is defined in a weak sense. We shall say that the function ϕ ∈ L2(Ω) such that
∆ϕ ∈ (H1

0(Ω) ∩H2(Ω))∗ satisfies ϕ = 0 on ∂Ω if and only if there holds〈
∆ϕ,ϕ′

〉
Ω = (ϕ,∆ϕ′)Ω, ∀ϕ′ ∈ H1

0(Ω) ∩H2(Ω), (9)

where 〈·, ·〉Ω denotes the duality pairing (H1
0(Ω) ∩ H2(Ω))∗ × H1

0(Ω) ∩ H2(Ω). Therefore, Problem (8)
is equivalent to the following problem

(P̃)
Find v ∈ H1

0(Ω) ∩H2(Ω) such that:
(σ∆v,∆v′)Ω = 〈f, v′〉Ω , ∀v′ ∈ H1

0(Ω) ∩H2(Ω).
(10)

With these mixed boundary conditions, one can solve (P̃) in two steps. Let f be a source term of
H−1(Ω) ⊂ (H1

0(Ω) ∩ H2(Ω))∗. There exists a unique p ∈ H1
0(Ω) verifying −(∇p,∇p′)Ω = 〈f, p′〉Ω for

all p′ ∈ H1
0(Ω). Let us denote v the unique function satisfying v ∈ H1

0(Ω) and ∆v = σ−1p ∈ L2(Ω).
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If the domain Ω is of class C 2 ([19, theorem 8.12]) or convex ([21, theorem 3.2.1.2]), we know that v
belongs to H2(Ω). Moreover, there holds, for all v′ ∈ H1

0(Ω) ∩H2(Ω),

(σ∆v,∆v′)Ω = (p,∆v′)Ω = −(∇p,∇v′)Ω =
〈
f, v′

〉
Ω .

We deduce that v is a solution of (P̃). Notice that, to obtain this result, the only assumptions for σ
are σ ∈ L∞(Ω) and σ−1 ∈ L∞(Ω). Thus, σ can change sign. Let us complement this first study of
Problem (P̃).

With the Lax-Milgram theorem, we can show that the sesquilinear form (v, v′) 7→ (v, v)H2
0(Ω) =

(∆v,∆v′)Ω is an inner product on H1
0(Ω) ∩ H2(Ω). Moreover, if Ω is of class C 2 or convex, on

H1
0(Ω) ∩ H2(Ω), the map v 7→ ‖∆v‖Ω defines a norm which is equivalent to the H2-norm. There-

fore, H1
0(Ω) ∩ H2(Ω) endowed with the inner product (·, ·)H2

0(Ω) is a Hilbert space. We introduce the
sesquilinear form b̃ such that

b̃(v, v′) = (σ∆v,∆v′)Ω, ∀(v, v′) ∈ H1
0(Ω) ∩H2(Ω)×H1

0(Ω) ∩H2(Ω), (11)

and the continuous operator B̃ : H1
0(Ω) ∩H2(Ω)→ H1

0(Ω) ∩H2(Ω), defined by

(B̃v, v′)H2
0(Ω) = b̃(v, v′), ∀(v, v′) ∈ H1

0(Ω) ∩H2(Ω)×H1
0(Ω) ∩H2(Ω). (12)

Theorem 2.1. Assume that the domain Ω ⊂ Rd, d ≥ 1, is of class C 2 or convex. For all σ ∈ L∞(Ω)
such that σ−1 ∈ L∞(Ω), the operator B̃ : H1

0(Ω) ∩ H2(Ω) → H1
0(Ω) ∩ H2(Ω) defined in (12) is an

isomorphism.

Proof. Let us introduce the operator T : H1
0(Ω) ∩ H2(Ω) → H1

0(Ω) ∩ H2(Ω) such that, for all v ∈
H1

0(Ω) ∩ H2(Ω), Tv is defined as the unique solution of the problem “find Tv ∈ H1
0(Ω) satisfying

∆(Tv) = σ−1∆v”. Notice that since Ω is assumed to be of class C 2 ([19, theorem 8.12]) or convex
([21, theorem 3.2.1.2]), Tv is indeed an element of H2(Ω). For all v, v′ ∈ H1

0(Ω) ∩H2(Ω), we can write

(B̃(Tv), v′)H2
0(Ω) = (σ∆(Tv),∆v′)Ω = (∆v,∆v′)Ω.

Therefore, the operator B̃ ◦ T is equal to the identity of H1
0(Ω) ∩ H2(Ω). Since B̃ is selfadjoint, we

deduce that B̃ is an isomorphism with B̃−1 = T.

Let us give another proof of this result, slightly different, using the resolution of (P̃) in two steps.
The resolution of (P̃) in two steps is interesting for numerical considerations because it is easier to
solve two second order problems than a fourth order one. Moreover, it will give us an idea of how to
proceed to study configurations where Ω does not satisfy the assumptions of Theorem 2.1 (see Section
4). When Ω is smooth or convex, ∆ : H1

0(Ω) ∩ H2(Ω) → L2(Ω) is an isomorphism. Since the adjoint
operator of an isomorphism is also an isomorphism, one has the following classical result.

Proposition 2.1. Assume that the domain Ω ⊂ Rd, d ≥ 1, is of class C 2 or convex. Then for all
f ∈ (H1

0(Ω) ∩H2(Ω))∗, there exists a unique solution to the problem

Find p ∈ L2(Ω) such that:
(p,∆v′)Ω = 〈f, v′〉Ω , ∀v′ ∈ H1

0(Ω) ∩H2(Ω). (13)

Proof of Theorem 2.1 (bis): Let v ∈ H1
0(Ω) ∩H2(Ω) such that

(σ∆v,∆v′)Ω = 0, ∀v′ ∈ H1
0(Ω) ∩H2(Ω).

According to Proposition 2.1, we have necessarily σ∆v = 0, hence ∆v = 0. This implies v = 0 since
v ∈ H1

0(Ω) ∩ H2(Ω) and proves that (P̃) admits at most one solution. Then, we consider a source
term f in (H1

0(Ω) ∩H2(Ω))∗. By virtue of Proposition 2.1, there exists a unique p ∈ L2(Ω) such that

(p,∆v′)Ω =
〈
f, v′

〉
Ω , ∀v′ ∈ H1

0(Ω) ∩H2(Ω).

Denote v the unique solution to the problem “find v ∈ H1
0(Ω) ∩ H2(Ω) such that ∆v = σ−1p”. This

function v is a solution to (P̃).
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The operator B̃ defined in (12) is an isomorphism of H1
0(Ω) ∩ H2(Ω) when σ ∈ L∞(Ω) verifies σ−1 ∈

L∞(Ω) and when Ω is such that ∆ : H1
0(Ω)∩H2(Ω)→ L2(Ω) constitutes an isomorphism. But what if

this last assumption on Ω is not met? What happens for example if Ω is a 2D domain with reentrant
corners? The hungry reader who is eager to know the answer to this question can directly jump to
Section 4 where we prove that in this case, B̃ is not always an isomorphism. According to the values
of the parameter σ, a kernel and a cokernel, both of finite dimension, can appear.

3 Bilaplacian with Dirichlet boundary condition

In this section, we come back to the study of the operator B : H2
0(Ω) → H2

0(Ω) introduced in (7).
First, we provide a sufficient criterion to ensure that B is Fredholm of index zero. Then, we exhibit
situations where B is not of Fredholm type.

3.1 Configurations where σ has a constant sign on the boundary

Fredholm property. In this paragraph, Ω is a domain of Rd, with d ≥ 1. We prove that B is
Fredholm of index zero when σ satisfies the following condition.

(Hσ)
We assume that σ ∈ L∞(Ω) is such that σ−1 ∈ L∞(Ω). Moreover, we assume that
σ(x) ≥ C1 > 0 a.e. in Ω\O or σ(x) ≤ C2 < 0 a.e. in Ω\O, where C1, C2 are two
constants and where O is an open set such that O ⊂ Ω.

∂ΩΩ\O

O

Figure 1: The parameter σ is assumed to be uniformly positive or uniformly negative in the region
Ω\O.

In other words, we assume that there exists a neighbourhood of ∂Ω where σ ≥ C1 > 0 or σ ≤ C2 < 0.
However, outside this neighbourhood, σ can change sign. To prove that B is a Fredholm operator
of index zero, we build a right parametrix for B, i.e. we build a bounded operator T such that
B ◦ T = I + K where I : H2

0(Ω) → H2
0(Ω) is an isomorphism and K : H2

0(Ω) → H2
0(Ω) is a compact

operator.

Theorem 3.1. Assume that σ satisfies condition (Hσ). Then the operator B : H2
0(Ω) → H2

0(Ω)
verifying (Bv, v′)H2

0(Ω) = (σ∆v,∆v′)Ω, for all (v, v′) ∈ H2
0(Ω)×H2

0(Ω), is Fredholm of index zero.

Remark 3.1. Using the approach presented here, we can prove that for all m ∈ N∗ := {1, 2, 3, . . . }
the operator ∆m(σ∆m·) : H2m

0 (Ω) → H−2m(Ω) is Fredholm of index zero when σ satisfies condition
(Hσ). Here, H2m

0 (Ω) denotes the closure of C∞0 (Ω) for the H2m-norm.

Proof. Let us give the proof in the case where σ ≥ C1 > 0 in a neighbourhood of the boundary ∂Ω.
The configuration where σ ≤ C2 < 0 in a neighbourhood of ∂Ω can be deduced working with the
operator −B. Let us introduce ζ ∈ C∞0 (Ω, [0; 1]) a cut-off function equal to 1 in O. Notice that 1− ζ
is an element of C∞(Ω, [0; 1]) which is equal to 1 in a neighbourhood of ∂Ω. Now, let us consider
v an element of H2

0(Ω). The function (1 − ζ)v belongs to H2
0(Ω) and, by definition, we have, for all

v′ ∈ H2
0(Ω),

(σ∆((1− ζ)v),∆v′)Ω = b((1− ζ)v, v′) = (B((1− ζ)v), v′)H2
0(Ω).
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This allows to write, expanding ∆((1− ζ)v),

((1− ζ)σ∆v,∆v′)Ω = (B((1− ζ)v), v′)H2
0(Ω) + (σ(2∇v · ∇ζ + v∆ζ),∆v′)Ω. (14)

On the support of ζ, we must proceed slightly differently because we allow σ to change sign. Let us
denote ψ the unique element of H1

0(Ω) such that ∆ψ = σ−1∆v ∈ L2(Ω). The classical results of interior
regularity (see for example [22, theorem 2.1.3]) indicate that, for all χ ∈ C∞0 (Ω), χψ ∈ H2

0(Ω) with the
estimate ‖χψ‖H2

0(Ω) ≤ C‖σ−1∆v‖Ω ≤ C‖v‖H2
0(Ω). In particular, the function ζψ belongs to H2

0(Ω) and
depends continuously on v. Since (σ∆(ζψ),∆v′)Ω = (B(ζψ), v′)H2

0(Ω), we obtain, expanding ∆(ζψ),

(ζ∆v,∆v′)Ω = (σζ∆ψ,∆v′)Ω = (B(ζψ), v′)H2
0(Ω) − (σ(2∇ψ · ∇ζ + ψ∆ζ),∆v′)Ω. (15)

Let us define the operator T : H2
0(Ω)→ H2

0(Ω) such that Tv = ζψ+(1−ζ)v for all v ∈ H2
0(Ω). With the

Riesz representation theorem, we introduce the operators I : H2
0(Ω)→ H2

0(Ω) and K : H2
0(Ω)→ H2

0(Ω)
such that, for all (v, v′) ∈ H2

0(Ω)×H2
0(Ω),

(Iv, v′)H2
0(Ω) = ((ζ + (1− ζ)σ)∆v,∆v′)Ω

(Kv, v′)H2
0(Ω) = (σ(2∇(ψ − v) · ∇ζ + (ψ − v)∆ζ),∆v′)Ω. (16)

With these definitions, we have the relation B ◦ T = I + K. From the Lax-Milgram theorem, we
infer that I : H2

0(Ω) → H2
0(Ω) is an isomorphism because the sesquilinear form (v, v′) 7→ ((ζ + (1 −

ζ)σ)∆v,∆v′)Ω on H2
0(Ω)×H2

0(Ω) is coercive. Lemma 3.1 hereafter indicates that K : H2
0(Ω)→ H2

0(Ω)
is compact. Therefore, the operator T constitutes a right parametrix for B. Since B is selfadjoint, we
deduce that it is a Fredholm operator of index zero.

Lemma 3.1. The operator K : H2
0(Ω)→ H2

0(Ω) defined in (16) is compact.

Proof. Let us consider (v′m)m a bounded sequence of elements of H2
0(Ω). Let us prove that we can

extract a subsequence of (v′m)m, still denoted (v′m)m, such that (Kv′m)m converges in H2
0(Ω). According

to the definition (16) of K, we can write

‖Kv′m‖2H2
0(Ω) ≤ C ‖v′m‖H2

0(Ω)

(
‖v′m‖H1(Ω) + ‖ψm‖H1(supp ζ)

)
.

In the above equation, “supp ζ” designates the support of ζ. Let us remind that by virtue of the result
of interior regularity, there holds the estimate ‖ψm‖H2(supp ζ) ≤ C ‖v′m‖H2

0(Ω). Since the embedding
of H2(Ω) (resp. H2(supp ζ)) in H1(Ω) (resp. H1(supp ζ)) is compact, we can extract a subsequence
of (v′m)m, still denoted (v′m)m, such that (v′m)m and (ψm)m converge respectively in H1(Ω) and in
H1(supp ζ) strongly. Let us define v′mp := v′m − v′p, ψmp := ψm − ψp for all m, p ∈ N. Using the
estimate

‖Kv′mp‖2H2
0(Ω) ≤ C ‖v′mp‖H2

0(Ω)

(
‖v′mp‖H1(Ω) + ‖ψmp‖H1(supp ζ)

)
,

we deduce that (Kv′m)m is a Cauchy sequence of H2
0(Ω). As a consequence, (Kv′m)m converges.

Recall that we denoted Ak the operator associated with the original interior transmission problem (see
the definition in (5)). For all k ∈ C, Ak −B is a compact operator. Since the index of an operator is
stable under compact perturbations (see for example [41, theorem 12.8]), we have the

Corollary 3.1. Assume that σ satisfies condition (Hσ). Then, for all k ∈ C, the operator Ak defined
in (5) is Fredholm of index zero.

Remark 3.2. In a quite surprising way, this result indicates that Fredholmness for the operator
∆(σ∆·) : H2

0(Ω)→ H−2(Ω) does not depend on the changes of sign of σ which occur inside the domain
Ω. This property is not true for the operator div(σ∇·) : H1

0(Ω)→ H−1(Ω) (see [17, 7, 2]).
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Study of the injectivity in 1D. In this paragraph, we wish to know whether the result we just
obtained is optimal or not. More precisely, we proved that the operator B is Fredholm of index zero
when σ remains positive or negative in a neighbourhood of ∂Ω. As for the operator B̃ in convex or
smooth domains, we may have a stronger property. Maybe B is an isomorphism of H2

0(Ω) as soon
as σ remains positive or negative in a neighbourhood of ∂Ω. We will see on 1D examples for which
we can carry explicit computations that this is not true: even for convex domains, B can have a non
trivial kernel.

� Example 1. Let us define the domains Ω = (a; b), Ω1 = (a; 0), Ω2 = (0; b), with a < 0 and
b > 0. We introduce the function σ such that σ = σ1 in Ω1, σ = σ2 in Ω2. Here, σ1 > 0 and σ2 < 0 are
some constants. Using the proof of Theorem 3.1, one shows that in this configuration, the operator B
is Fredholm of index zero. Therefore, to know whether or not B is an isomorphism, it is sufficient to
study kerB. In the sequel, if v is an element of H2

0(Ω), we denote vi := v|Ωi for i = 1, 2. Classically,
one proves that if v ∈ H2

0(Ω) satisfies (P) with f = 0, then (v1, v2) ∈ H2(Ω1) × H2(Ω2) verifies the
transmission problem

v
(4)
1 = 0 in Ω1

v
(4)
2 = 0 in Ω2

v1(a) = v2(b) = v
(1)
1 (a) = v

(1)
2 (b) = 0

v1(0)− v2(0) = v
(1)
1 (0)− v(1)

2 (0) = 0

σ1v
(2)
1 (0)− σ2v

(2)
2 (0) = σ1v

(3)
1 (0)− σ2v

(3)
2 (0) = 0.

(17)

In the above problem, v(k)(x) designates the kth derivative of v at point x. Of course, if (v1, v2) ∈
H2(Ω1) × H2(Ω2) satisfies (17), then the function v such that v|Ωi = vi, for i = 1, 2, is an element of
kerB. Using the first three lines of (17), we can write

v1(x) = A1(x− a)3 +B1(x− a)2 for x ∈ Ω1 and v2(x) = A2(x− b)3 +B2(x− b)2 for x ∈ Ω2.

The last two lines of (17) impose:

−a3A1 + a2B1 = −b3A2 + b2B2 ; 3a2A1 − 2aB1 = 3b2A2 − 2b2B2 ;
σ1(−6aA1 + 2B1) = σ2(−6bA2 + 2B2) ; 6σ1A1 = 6σ2A2.

We deduce that kerB is non trivial if and only if the contrast κσ := σ2/σ1 satisfies

κ2
σ +

(
−4(b/a) + 6(b/a)2 − 4(b/a)3

)
κσ + (b/a)4 = 0.

We can check that the discriminant of this polynomial remains positive for (b/a) ∈ R∗− := (−∞; 0).
Thus, for all (b/a) ∈ R∗−, there exist two values of the contrast

κσ =
(

2− 3(b/a) + 2(b/a)2 ± 2|(b/a)− 1|
√

((b/a)2 − (b/a) + 1)
)

(b/a)

for which there exists a non trivial solution to (17). By a straightforward computation, one proves
that these two roots are strictly negative for (b/a) ∈ R∗−. This is rather reassuring because (v, v′) 7→
(σ∆v,∆v′)Ω is coercive on H2

0(Ω)× H2
0(Ω) when κσ > 0. In the case where the domain is symmetric

with respect to x = 0, that is, in the case where b = −a, B is not injective for κσ = −4±
√

3. Thus,
these computations show that, according to the values of σ, the Fredholm operator B : H2

0(Ω)→ H2
0(Ω)

is not always injective.

� Example 2. Let us look at a configuration where σ has a constant sign in a neighbourhood of
∂Ω. Define the open sets Ω = (−1; 1), Ω1 = (−1;−δ) ∪ (δ; 1), Ω2 = (−δ; δ), with 0 < δ < 1. We
introduce the function σ such that σ = σ1 in Ω1, σ = σ2 in Ω2. Again, σ1 > 0 and σ2 < 0 are some
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constants. According to Theorem 3.1, for all contrast κσ ∈ R∗−, the operator B : H2
0(Ω) → H2

0(Ω) is
Fredholm of index zero. Proceeding as for Example 1, we find that it is an isomorphism if and only if

κσ /∈ {δ3/(δ3 − 1), δ/(δ − 1)}.

Again, this proves that the result of the previous paragraph is not under-optimal in the sense that B
is not always an isomorphism of H2

0(Ω).

To apply the analytic Fredholm theorem to prove that the set of transmission eigenvalues is dis-
crete, we need to find some k ∈ C such that the operator Ak : H2

0(Ω)→ H2
0(Ω) introduced in (5) is an

isomorphism (we recall that B = A0). The technique we proposed in this paragraph does not allow
to obtain this result. We refer the reader to [40] for a proof based on an equivalent formulation of (2).
Let us underline again that in this paper, the author also requires the assumption that σ is uniformly
positive or uniformly negative in a neighbourhood of the boundary ∂Ω.

3.2 Fredholm property can be lost when σ changes sign on the boundary

Now, our goal is to understand what happens if this assumption on σ is not satisfied. More precisely,
what are the properties of B when σ changes sign “on” the boundary ∂Ω? Working with techniques
which were developed to study elliptic partial differential equations in non smooth domains, we present
occurrences where B : H2

0(Ω)→ H2
0(Ω) is not of Fredholm type.

Let us first introduce the notations. The domain Ω ⊂ R2, is partitioned into two subdomains Ω1,
Ω2 such that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. We assume that σ = σ1 in Ω1 and σ = σ2 in Ω2, where
σ1 > 0 and σ2 < 0 are two constants. The interface Σ := Ω1 ∩ Ω2 meets the boundary at exactly two
point O, O′ like in Figure 2. At O, ∂Ω and Σ are locally straight lines. Therefore, at this point, the
domain Ω, Ω1 and Ω2 coincide locally with the unbounded sectors

Ξ := {(r cos θ, r sin θ) | 0 < r <∞; θ ∈ (0;π)}
Ξ1 := {(r cos θ, r sin θ) | 0 < r <∞; θ ∈ (0;α)}
Ξ2 := {(r cos θ, r sin θ) | 0 < r <∞; θ ∈ (α;π)},

for some α ∈ (0;π).

Ω2
σ2 < 0

Ω1
σ1 > 0

O

O′

Ξ1

Ξ2 Ξ = Ξ1 ∪ Ξ2

α

O

Figure 2: An example of configuration we are interested in.

When one is interested in studying the regularity of the solutions of problem (P), according to [26],
we know that a correct start is to compute the singularities, that is the non trivial functions of the
form

s(x) = rλϕ(θ) (18)

which satisfy the problem

∆(σ∆s) = 0 a.e. in Ξ and s = ∂νs = 0 a.e. on ∂Ξ.

If s satisfies the above equations, then λ ∈ C is called a singular exponent. We denote Λα, κσ the set
of singular exponents.
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Computation of the singularities. Actually, we will focus our attention only on the computation
of some particular singularities: the ones for which the singular exponent verifies λ = 1 + iη, for some
η ∈ R∗ := R \ {0}. The reason is that if such a singularity exists then, as we will prove in §3.2, the
operator B : H2

0(Ω) → H2
0(Ω) is not of Fredholm type. We denote s1 = s|Ξ1 , s2 = s|Ξ2 , ϕ1 := ϕ|(0;α)

and ϕ2 := ϕ|(α;π). If s is a singularity, then (s1, s2) satisfies the following transmission problem

∆∆s1 = 0 in Ξ1
∆∆s2 = 0 in Ξ2

s1 = ν · ∇s1 = 0 on ∂Ξ ∩ ∂Ξ1 \ {0}
s2 = ν · ∇s2 = 0 on ∂Ξ ∩ ∂Ξ2 \ {0}

s1 − s2 = νΣ · ∇(s1 − s2) = 0 on ∂Ξ1 ∩ ∂Ξ2 \ {0}
σ1∆s1 − σ2∆s2 = νΣ · ∇(σ1∆s1 − σ2∆s2) = 0 on ∂Ξ1 ∩ ∂Ξ2 \ {0}.

In these equations, ν (resp. νΣ) denotes the unit outward normal vector to ∂Ξ (resp. Σ) oriented to
the exterior of Ξ (resp. Ξ1). In polar coordinates, the bilaplacian operator takes the form

∆2 = r−4(∂2
θ + (r∂r − 2)2)(∂2

θ + (r∂r)2).

Imposing the boundary conditions on ∂Ξ ∩ ∂Ξ1 \ {0} and ∂Ξ ∩ ∂Ξ2 \ {0}, we prove (see [28, §7.1.2])
that for λ ∈ C \ {0, 1, 2}, the functions ϕ1 and ϕ2 admit the following expressions

ϕ1(θ) = A (cos(λθ)− cos((λ− 2)θ)) +B ((λ− 2) sin(λθ)− λ sin((λ− 2)θ)) ,
ϕ2(θ) = C (cos(λ(θ − π))− cos((λ− 2)(θ − π)))

+D ((λ− 2) sin(λ(θ − π))− λ sin((λ− 2)(θ − π))) ,

where A, B, C and D are some constants. Writing the transmission conditions at θ = α, we obtain a
system of four equations with four unknowns. Computing the determinant, we find that λ = 1 + iη,
with η ∈ R∗ is a singular exponent if and only there holds

0 = −1 + κσ − κ2
σ + η2(1− κσ)2(cos(2α)− 1)

+κσ cosh(2πη) + κσ(κσ − 1) cosh(2αη)− (κσ − 1) cosh(2η(π − α)). (19)

In the above equation, the angle α and the contrast κσ = σ2/σ1 are two parameters. The question we
wish to solve is the following: for a given problem, i.e. for given α ∈ (0;π) and κσ ∈ (−∞; 0), can we
find η ∈ R∗ such that (19) is verified. For α ∈ (0;π) and κσ ∈ (−∞; 0), we define the function hα, κσ
such that for all η ∈ R

hα, κσ(η) = −1 + κσ − κ2
σ + η2(1− κσ)2(cos(2α)− 1)

+κσ cosh(2πη) + κσ(κσ − 1) cosh(2αη)− (κσ − 1) cosh(2η(π − α)). (20)

First, we notice that hα, κσ is even: if 1 + iη, with η ∈ R∗ is a singular exponent, then 1 − iη is also
a singular exponent. Therefore, is it sufficient to study η 7→ hα, κσ(η) on (0; +∞). Then, we observe
that there holds hα, κσ(η) = 0 if and only there holds hπ−α, 1/κσ(η) = 0. This is reassuring since the
singularities for the problem with an angle of aperture π − α and a contrast equal to 1/κσ are the
same as the singularities for the problem with an angle of aperture α and a contrast equal to κσ.
For all (α, κσ) ∈ (0;π) × (−∞; 0), we have hα, κσ(η) → −∞ when η → +∞. Moreover, there holds
hα, κσ(0) = 0. A Taylor expansion of hα, κσ at η = 0 gives

hα, κσ(η) = gα(κσ) η2 +O(η4) (21)

with gα(κσ) = 2(α2− sin2(α))κ2
σ − 4(α2− sin2(α)−απ)κσ + 2(α2− sin2(α) + π2− 2απ). For a given

α ∈ (0;π), we find that gα(κσ) is strictly positive when

κσ ∈ I(α) := (−∞; `−(α)) ∪ (`+(α); 0) (22)

where `−(α) := −π − α+ sin(π − α)
α− sinα and `+(α) := −π − α− sin(π − α)

α+ sinα .

Let us define the region (see Figure 3)

R := {(α′, κ′σ) ∈ (0;π)× (−∞; 0) |κ′σ ∈ I(α′)}. (23)
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When (α, κσ) belongs to R, the continuous function hα, κσ satisfies hα, κσ(0) = 0, hα, κσ(η) = gα(κσ) η2+
O(η4) at η = 0, with gα(κσ) > 0, and limη→+∞ hα, κσ(η) = −∞. This allows to deduce that hα, κσ
vanishes at least once on (0; +∞). Thus, if (α, κσ) ∈ R, then there exist singularities of the form
s(r, θ) = r1+iηϕ(θ) with η ∈ R∗. In [12, proposition 5.1], it is proven that if (α, κσ) ∈ R, then the set
of singular exponents Λα, κσ is such that Λα, κσ ∩{λ ∈ C \ {1} |<e λ = 1} = {1± iη0}, for some η0 > 0.
On the other hand, [12, proposition 5.2] shows that if (α, κσ) is located in ((0;π)× (−∞; 0)) \R, then
Λα, κσ ∩ {λ ∈ C \ {1} |<e λ = 1} = ∅.

((0;π)× (−8; 0)) ∩R ((0;π)× (−8; 0)) \R

α

κσ

π/4 π/2 3π/4 π

R

R−1

−2

−3

−4

−5

−6

−7

−8

Figure 3: When (α, κσ) belongs to the orange shaded region R, there exist singularities of the form
s(r, θ) = r1+iηϕ(θ) with η ∈ R∗. Therefore, in these situations the operator B : H2

0(Ω) → H2
0(Ω)

defined in (7) is not of Fredholm type.

Ill-posedness. The following lemma, known as the Peetre’s lemma [37] (see also lemma 5.1 in [30,
Chap. 2], or lemma 3.4.1 in [27]), provides a necessary and sufficient condition to ensure that a
bounded selfadjoint operator is of Fredholm type.

Lemma 3.2. Let X, Y and Z be three Banach spaces such that X is compactly embedded into Z. Let
L : X→ Y be a continuous linear map. Then the assertions below are equivalent:

i) dim(kerL) <∞ and rangeL is closed in Y;
ii) there exists C > 0 such that ‖v‖X ≤ C

( ‖Lv‖Y + ‖v‖Z
)
, ∀v ∈ X.

Now, we state and prove the main result of §3.2.

Proposition 3.1. Assume that (σ, κσ) belongs to the region R defined in (23). Then, the operator
B : H2

0(Ω)→ H2
0(Ω) defined in (7) is not of Fredholm type.

Proof. When (σ, κσ) belongs to the region R, we know that there exists a singularity s(x) = r1+iηϕ(θ)
with η ∈ R∗ such that ∆(σ∆s) = 0 a.e. in Ξ and s = ∂νs = 0 a.e. on ∂Ξ. Let ζ ∈ C∞0 ([0; +∞), [0; 1])
be a cut-off function equal to 1 in a neighbourhood of O. For m ∈ N∗ = {1, 2, 3, . . . }, we define

sm(x) := r1+iη+1/mϕ(θ) and vm(x) := ζ(r)sm(x).
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We assume that the support of ζ is such that vm|∂Ω = 0. Since <e (1 + iη + 1/m) > 1, one can check
by a direct computation that the function vm belongs to H2

0(Ω) for all m ∈ N∗. Our goal is to establish
the following properties

lim
m→+∞

‖vm‖H2
0(Ω) = +∞ and ‖Bvm‖H−2(Ω) + ‖vm‖H1

0(Ω) ≤ C, ∀m ∈ N∗.

Together with Lemma 3.2, this will prove that B is not of Fredholm type when (σ, κσ) ∈ R.

? Behaviour of (‖vm‖H2
0(Ω))m. By definition, we have ‖vm‖H2

0(Ω) = ‖∆vm‖Ω ≥ ‖∆vm‖Ω̃, where
Ω̃ := {x ∈ Ω | ζ(r) = 1}. On Ω̃, we find

∆vm = r−1+iη+1/m((1 + iη + 1/m)2ϕ(θ) + ϕ′′(θ)).

Let us define the function ςm such that ςm(θ) = (1 + iη + 1/m)2ϕ(θ) + ϕ′′(θ). We have

‖∆vm‖2Ω̃ ≥
∫ δ

0

∫ π

0
r−2+2/m|ςm(θ)|2 rdθdr

≥ ‖ςm‖2(0;π)

∫ δ

0
r−1+2/mdr = ‖ςm‖2(0;π)

m

2 δ2/m.

(24)

Above δ > 0 is a fixed small number such that ζ(r) = 1 on [0; δ]. Since (1+ iη)2ϕ+ϕ′′ 6≡ 0 (otherwise,
we should have ∆s = 0, which is impossible due to the boundary conditions), there holds ‖ςm‖2(0;π) 6= 0
for m large enough. From (24), we deduce that ‖vm‖H2

0(Ω) →
m→+∞

+∞.

? Behaviour of (‖vm‖H1
0(Ω))m. By a direct computation, we can check that there exists a con-

stant C > 0 such that for all m ∈ N∗, we have ‖vm‖H1
0(Ω) ≤ C.

? Behaviour of (‖Bvm‖H−2(Ω))m. Now, let us prove that the sequence (‖∆(σ∆vm)‖H−2(Ω))m re-
mains bounded. By definition, we have

‖∆(σ∆vm)‖H−2(Ω) := sup
v∈H2

0(Ω) | ‖∆v‖Ω=1
|(σ∆vm,∆v)Ω| = sup

v∈C∞0 (Ω) | ‖∆v‖Ω=1
|(σ∆vm,∆v)Ω| .

We compute, for all v ∈ C∞0 (Ω), ∆vm = ∆(ζsm) = ζ∆sm + 2∇sm∇ζ + sm∆ζ and ∆(ζv) = ζ∆v +
2∇v∇ζ + v∆ζ. This allows to write

(σ∆vm,∆v)Ω = (σ(ζ∆sm + 2∇vm∇ζ + vm∆ζ),∆v)Ω
= (σ∆sm,∆(ζv)− 2∇v∇ζ − v∆ζ)Ω + (σ(2∇sm∇ζ + sm∆ζ),∆v)Ω.

We deduce

|(σ∆vm,∆v)Ω| ≤ |(σ∆sm,∆(ζv))Ω|
Ê

+ 2|(σ∆sm,∇v∇ζ)Ω|
Ë

+ |(σ∆sm, v∆ζ)Ω|
Ì

+2|(σ∇sm∇ζ,∆v)Ω|
Í

+ |(σsm∆ζ,∆v)Ω|
Î

.

Let us study the term Ê. Integrating by parts, we find (σ∆sm,∆(ζv))Ω = (∆(σ∆sm), ζv)Ω. A direct
computation allows to establish that ∆(σ∆sm)(x) = r−3+iη+1/mϕ̃m(θ) where ϕ̃m ∈ L2(0;π) is such
that ‖ϕ̃m‖(0;π) ≤ C/m for some constant C independent of m. Therefore, we can write

|(σ∆sm,∆(ζv))Ω| = |(r−3+iη+1/mϕ̃m, ζv)Ω|
= C |(r−1+iη+1/mϕ̃m, r−2(r∂r)2(ζv))Ω|
≤ C ‖r−1+iη+1/mϕ̃m‖Ω‖v‖H2

0(Ω) ≤ C2/m‖v‖H2
0(Ω).

In the above estimate, C is a constant independent of m which can change from one line to another.
The second line is obtained proceeding to an integration by part with respect to the r variable. This
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proves that Ê is bounded as m → +∞. To deal with the terms Ë and Ì, we use that ∇ζ and ∆ζ
vanish in a neighbourhood of O to obtain

|(σ∆sm,∇v∇ζ)Ω| = |(σ∆sm,∇v∇ζ)Ω\B(O,δ)| ≤ C ‖∆sm‖Ω\B(O,δ)‖v‖H2
0(Ω)

and |(σ∆sm, v∆ζ)Ω| = |(σ∆sm, v∆ζ)Ω\B(O,δ)| ≤ C ‖∆sm‖Ω\B(O,δ)‖v‖H2
0(Ω).

Since the sequence (‖∆vm‖Ω\B(O,δ))m is bounded, we deduce that the terms Ë and Ì remain bounded.
Finally, to deal with the terms Í and Î, we write

|(σ∇sm∇ζ,∆v)Ω|+ |(σsm∆ζ,∆v)Ω| ≤ C ‖sm‖H1
0(Ω)‖v‖H2

0(Ω).

Since the sequence (‖sm‖H1
0(Ω))m is bounded, we deduce that the terms Í and Î are bounded. All

these intermediate results allow to conclude that the sequence (‖∆(σ∆vm)‖H−2(Ω))m remains bounded
as m→ +∞.

Remark 3.3. For the the anisotropic version of the ITEP [8, 25, 11], set in H1, analogous strong
singularities can also appear as proven in [1]. In this article, it is shown how to take them into
account and how to modify the functional framework to recover a problem well-posed in the Fredholm
sense. One can probably adapt the approach to handle situations where B : H2

0(Ω)→ H2
0(Ω) is not of

Fredholm type. However, to be in position to apply the analytic Fredholm theorem to establish that the
set of interior transmission eigenvalues is discrete, it is necessary to demonstrate that there exists one
frequency such that the ITEP in this new framework is injective. This is still an open question.

4 Bilaplacian with mixed boundary conditions: polygonal domains
with reentrant corners

The operator B̃ : H1
0(Ω) ∩ H2(Ω) → H1

0(Ω) ∩ H2(Ω) defined in (12) is an isomorphism when Ω is
convex or smooth. In this section, we analyse the properties of B̃ when Ω ⊂ R2 is an open set with
a polygonal boundary ∂Ω presenting reentrant corners. For such domains, using an integration by
parts, one proves the a priori estimate (see [22, theorem 2.2.3] or [23, 31]):

‖v‖H2(Ω) ≤ C ‖∆v‖Ω, ∀v ∈ H1
0(Ω) ∩H2(Ω),

where C is a constant which depends only on Ω. This estimate provides lot of information. It
proves that the operator ∆ : H1

0(Ω) ∩ H2(Ω) → L2(Ω) is injective and that its range is closed (it
is a monomorphism). Then we can try to characterize the orthogonal complement of the range of
∆ : H1

0(Ω) ∩ H2(Ω) → L2(Ω). Theorem 2.3.7 of [22] indicates that this orthogonal complement is of
finite dimension N , where N is equal to the number of corners of ∂Ω whose aperture is strictly larger
than π. Thus, ∆ : H1

0(Ω)∩H2(Ω)→ L2(Ω) is an injective Fredholm operator of index −N . When there
is no reentrant corner in ∂Ω, i.e. when Ω is convex, we find back that ∆ : H1

0(Ω) ∩H2(Ω)→ L2(Ω) is
an isomorphism.

4.1 Saponjyan paradox in the case of a positive σ

We assume in this paragraph that there exists a constant C such that σ ≥ C > 0 a.e. in Ω. In this
case, the form b̃ defined in (11) is coercive on H1

0(Ω)∩H2(Ω)×H1
0(Ω)∩H2(Ω) whether the domain Ω is

convex or not. According to the Lax-Milgram theorem, (P̃) has a unique solution v ∈ H1
0(Ω)∩H2(Ω)

and B̃ is an isomorphism of H1
0(Ω) ∩H2(Ω).

Now, let us try to solve (P̃) in two steps. To simplify the explanation, we assume here that f
belongs to H−1(Ω). Let us denote p0 ∈ H1

0(Ω) the function such that −(∇p0,∇p′)Ω = 〈f, p′〉Ω for all
p′ ∈ H1

0(Ω). Then, let us introduce v0 the element of H1
0(Ω) satisfying ∆v0 = σ−1p0 ∈ L2(Ω). When Ω

is convex, the function v0 is an element of H1
0(Ω)∩H2(Ω). In this case, v0 verifies (P̃). Since this prob-

lem is well-posed, we deduce v0 = v. When ∂Ω has one or several reentrant corners, it can happen that
v0 /∈ H1

0(Ω)∩H2(Ω). In this situation, we have (σ∆v0,∆v′)Ω = 〈f, v′〉Ω for all v′ ∈ H1
0(Ω)∩H2(Ω) but
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v0 is not equal to the solution v of (P̃). This is what S.A. Nazarov and G.H. Sweers call, in the very
interesting papers [32, 33, 34], the Saponjyan’s paradox. Saponjyan was an Armenian scientist from
the XXth century. Thanks to conformal mapping techniques, he obtained a solution which was not
of finite mechanical energy. Since he had no explanation for that, he called this phenomenon a paradox.

O

α x

y

Ω

Figure 4: An example of a non convex polygonal bound-
ary with one reentrant corner.

Nevertheless, and this is the topic of arti-
cles [32, 33, 34], even when Ω has a reentrant
corner, there exists a mean of solving (P̃) in
two steps while obtaining the solution of fi-
nite energy, that is the one in H1

0(Ω)∩H2(Ω).
Let us describe the process. To simplify, we
assume that Ω has only one reentrant cor-
ner O of aperture equal to α ∈ (π; 2π) (cf.
Figure 4). The method consists in solving in
a clever way the two Laplace problems with
homogeneous Dirichlet boundary condition
which appears in (P̃). Before proceeding further, we need to recall some classical results (see for
example [21, 22]) of the theory of singularities for the Laplace operator in non convex polygons.

Let us introduce ζ such that
ζ(x) = r−π/α sin

(
πθ/α

)
+ ζ̃(x). (25)

where ζ̃ is the unique function of H1(Ω) satisfying ∆ζ̃ = 0 a.e. in Ω and ζ̃ = −r−π/α sin
(
πθ/α

)
a.e.

on ∂Ω. Here, (r, θ) are the polar coordinates centered at O, such that θ = 0 or θ = α on ∂Ω in
a neighbourhood of O. We assume that Ω is not convex at O. This imposes 0 < π/α < 1. By a
straightforward computation, one proves that x 7→ r−π/α sin

(
πθ/α

)
belongs to L2(Ω)\H1(Ω). Since

ζ̃ ∈ H1(Ω), we deduce that the function ζ defined in (25) satisfies ζ ∈ L2(Ω)\H1(Ω). By definition
of ζ̃, there hold ∆ζ = 0 a.e. in Ω and ζ = 0 a.e. on ∂Ω. According to (9), this is equivalent to the
following integral identity: (ζ,∆v′)Ω = 0 for all v′ ∈ H1

0(Ω) ∩H2(Ω). Actually, {ζ} constitutes a basis
of the set of L2-functions satisfying such property (see [22, lemma 2.3.6]). Let us include this result
in the following proposition.

Proposition 4.1. Assume that the boundary ∂Ω is a polygon with one reentrant corner. Then for all
f ∈ (H1

0(Ω) ∩H2(Ω))∗, there exists a solution to the problem

Find p ∈ L2(Ω) such that:
(p,∆v′)Ω = 〈f, v′〉Ω , ∀v′ ∈ H1

0(Ω) ∩H2(Ω). (26)

Moreover, if p1, p2 are two solutions of Problem (26), then there exists a ∈ C such that p2 = p1 + aζ,
where ζ is introduced in (25).

Proof. The map ∆ : H1
0(Ω) ∩ H2(Ω) → L2(Ω) is a monomorphism. As a consequence, the adjoint

operator is onto and for all f ∈ (H1
0(Ω)∩H2(Ω))∗, Problem (26) has at least one solution. Now, if p1,

p2 are two solutions of Problem (26), then we have (p2 − p1,∆v′)Ω = 0 for all v′ ∈ H1
0(Ω) ∩ H2(Ω).

With [22, lemma 2.3.6], we deduce that there holds p2 − p1 = aζ, where a is a constant.

Now, we provide a result of decomposition (see for example [22, theorem 2.4.3] or [27, p. 263]) which
states that the elements of H1

0(Ω) whose Laplacian belongs to L2(Ω) split as the sum of an explicit
singular part and a regular part in H2(Ω).

Proposition 4.2. Consider ϕ ∈ H1
0(Ω) such that ∆ϕ = g ∈ L2(Ω). Then ϕ admits the decomposition

ϕ(x) = c rπ/α sin
(
πθ/α

)
+ ϕ̃(x), (27)

with ϕ̃ ∈ H2(Ω). Moreover, the coefficient c in (27) is given by the following expression

c = −(π)−1(g, ζ)Ω,
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where ζ is defined in (25).

Noticing that x 7→ rπ/α sin
(
πθ/α

)
belongs to H1(Ω)\H2(Ω) (since π/α < 1), we deduce the

Corollary 4.1. Let ϕ ∈ H1
0(Ω) be such that ∆ϕ = g ∈ L2(Ω). Then ϕ ∈ H2(Ω) if and only if

(g, ζ)Ω = 0.

Now, we have all the tools we need to solve (P̃) in two steps. For any source term f ∈ (H1
0(Ω)∩H2(Ω))∗,

let us introduce p0 an element of L2(Ω) such that (p0,∆v′)Ω = 〈f, v′〉Ω for all v′ ∈ H1
0(Ω)∩H2(Ω). The

existence of such a function p0 is guaranteed by Proposition 4.1. For a ∈ C, we define p = p0 + aζ,
where ζ is given by (25), and we denote v the unique function of H1

0(Ω) such that ∆v = σ−1p. We
want v to be in H2(Ω). According to Corollary 4.1, we must take a such that

0 = (σ−1p, ζ)Ω = (σ−1p0, ζ)Ω + a (σ−1ζ, ζ)Ω

⇔ a = −(σ−1p0, ζ)Ω/(σ−1ζ, ζ)Ω.
(28)

To conclude that v constitutes the solution of (P̃), it just remains to notice that, for all v′ ∈ H1
0(Ω)∩

H2(Ω), there holds
(σ∆v,∆v′)Ω = (p,∆v′)Ω = (p0,∆v′)Ω =

〈
f, v′

〉
Ω .

4.2 Study in the case where σ changes sign

When σ changes sign, the sesquilinear form b̃ associated with (P̃) is not coercive. When the domain
Ω is convex or of class C 2, constructing the inverse of B̃, we proved with Theorem 2.1 that (P̃) is
well-posed. Moreover, in the second proof of Theorem 2.1, we established that under one of these
two assumptions, (P̃) can also be solved in two steps. In the previous paragraph, for a positive σ,
we presented how to solve (P̃) in two steps when Ω has one reentrant corner. Our goal is to extend
this approach to deal with configurations where σ changes sign. The novelty is that, according to the
values of σ, a kernel and a cokernel, whose dimensions are less or equal to the number of reentrant
corners of the domain, can appear.

To clarify the presentation, we shall assume that ∂Ω has only one reentrant corner located at O,
of aperture α ∈ (π; 2π). The approach to consider domains with several reentrant corners is very
similar and requires only some simple additional arguments of linear algebra (we refer the reader to
[12, §2.2.2.2] for the details). Working as in §4.1, we see that the resolution in two steps can be used
to prove that the operator B̃ associated with (P̃) is onto as soon as σ satisfies (σ−1ζ, ζ)Ω 6= 0. This
leads us to consider two cases: either σ is such that (σ−1ζ, ζ)Ω 6= 0 or σ is such that (σ−1ζ, ζ)Ω = 0.

? ? ? ? ?

Case (σ−1ζ, ζ)Ω 6= 0
? ? ? ? ?

Proposition 4.3. Assume that the boundary ∂Ω is a polygon with one reentrant corner. Assume that
σ ∈ L∞(Ω) verifies σ−1 ∈ L∞(Ω) and (σ−1ζ, ζ)Ω 6= 0, where ζ is defined in (25). Then, the operator
B̃ : H1

0(Ω) ∩H2(Ω)→ H1
0(Ω) ∩H2(Ω) defined in (12) is an isomorphism.

Proof. Let us introduce the operator T such that, for v ∈ H1
0(Ω) ∩ H2(Ω), the function Tv ∈ H1

0(Ω)
satisfies ∆(Tv) = σ−1(∆v + aζ) with a = −(σ−1∆v, ζ)Ω/(σ−1ζ, ζ)Ω. Since (σ−1(∆v + aζ), ζ)Ω = 0,
we know that Tv belongs to H2(Ω) according to Corollary 4.1. Thus, T is a continuous operator from
H1

0(Ω) ∩H2(Ω) to H1
0(Ω) ∩H2(Ω). For all (v, v′) ∈ H1

0(Ω) ∩H2(Ω)×H1
0(Ω) ∩H2(Ω), we then compute

(B̃(Tv), v′)H2
0(Ω) = b̃(Tv, v′) = (σ∆(Tv),∆v′)Ω

= (∆v + aζ,∆v′)Ω
= (∆v,∆v′)Ω = (v, v′)H2

0(Ω).

The last line is obtained noticing that (ζ,∆v′)Ω = 0 because v′ ∈ H1
0(Ω)∩H2(Ω) (Corollary 4.1). Thus,

there holds B̃ ◦ T = Id. Since B̃ is selfadjoint, we deduce that B̃ is an isomorphism with B̃−1 = T.
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We stop here the study of the case (σ−1ζ, ζ)Ω 6= 0 and focus now our attention on the configuration
(σ−1ζ, ζ)Ω = 0.

? ? ? ? ?

Case (σ−1ζ, ζ)Ω = 0
? ? ? ? ?

In this case, we can no longer use the precious degree of freedom to construct a solution to (P̃) in
H1

0(Ω) ∩H2(Ω). Let us denote ψ the function of H1
0(Ω) satisfying

∆ψ = σ−1ζ. (29)

Since (σ−1ζ, ζ)Ω = 0, Corollary 4.1 indicates that ψ belongs to H2(Ω). Moreover, for all v′ ∈ H1
0(Ω) ∩

H2(Ω), there holds (σ∆ψ,∆v′)Ω = (ζ,∆v′)Ω = 0. Therefore, ψ constitutes an element of ker B̃.

Proposition 4.4. Assume that the boundary ∂Ω is a polygon with one reentrant corner. Assume that
σ ∈ L∞(Ω) verifies σ−1 ∈ L∞(Ω) and (σ−1ζ, ζ)Ω = 0. Then,

• dim(ker B̃) = 1 with ker B̃ = span(ψ);

• dim(coker B̃) = 1 and for all f ∈ (H1
0(Ω)∩H2(Ω))∗, (P̃) has a solution if and only if 〈f, ψ〉Ω = 0.

In this statement, the functions ζ and ψ are respectively defined in (25) and (29).

Proof. ? Kernel. If v belongs to ker B̃ then, according to Proposition 4.1, we have σ∆v = aζ where a
is a constant. Thus, ker B̃ ⊂ span(ψ). As indicated above, we have ψ ∈ ker B̃ and so ker B̃ = span(ψ).
? Cokernel. Let us consider f ∈ (H1

0(Ω) ∩ H2(Ω))∗ such that 〈f, ψ〉Ω = 0. Let us introduce p0
an element of L2(Ω) such that (p0,∆v′)Ω = 〈f, v′〉Ω for all v′ ∈ H1

0(Ω) ∩ H2(Ω). The existence of
such a function p0 is ensured by Proposition 4.1. The function p0 satisfies the compatibility condition
(σ−1p0, ζ)Ω = 0. Indeed, since ∆ψ = σ−1ζ, we can write (σ−1p0, ζ)Ω = (p0, σ−1ζ)Ω = (p0,∆ψ)Ω =
〈f, ψ〉Ω = 0. As a consequence, by virtue of Corollary 4.1, the function v ∈ H1

0(Ω) verifying ∆v = σ−1p0
is in H2(Ω). Moreover, for all v′ ∈ H1

0(Ω) ∩H2(Ω), there holds

(σ∆v,∆v′)Ω = (p0,∆v′)Ω =
〈
f, v′

〉
Ω .

Therefore, v constitutes a solution to (P̃). Now, let us consider f ∈ (H1
0(Ω) ∩ H2(Ω))∗ such that

〈f, ψ〉Ω 6= 0. Let us assume that there exists a solution v to (P̃). Then, by Proposition 4.1, we
have σ∆v = p0 + aζ, where p0 ∈ L2(Ω) satisfies (p0,∆v′)Ω = 〈f, v′〉Ω for all v′ ∈ H1

0(Ω) ∩ H2(Ω) and
where a is a constant. This imposes (σ−1p0, ζ)Ω = 0. But there holds (σ−1p0, ζ)Ω = (p0, σ−1ζ)Ω =
(p0,∆ψ)Ω = 〈f, ψ〉Ω. Thus, we obtain an absurdity. This ends to prove that there exists a solution to
(P̃) if and only if 〈f, ψ〉Ω = 0.

� Example. Consider the open set Ω of Figure 4 which presents the particularity to be symmetric
with respect to the axis (Oy). Notice also that the vertex of the reentrant corner is located on (Oy).
For this configuration, we can prove that the function ζ defined in (25) is symmetric with respect to
(Oy). Indeed, the function ζ̂ : (x, y) 7→ ζ(−x, y) verifies Problem (26) with f = 0. But Proposition
4.1 indicates that {ζ} is a basis of the set of functions satisfying Problem (26) with f = 0. Using the
behaviour of ζ̂ at O, this allows us to conclude that ζ̂ = ζ. Therefore, when σ is skewsymmetric with
respect to the axis (Oy), i.e. when σ(x, y) = −σ(−x, y) a.e. in Ω, there holds (σ−1ζ, ζ)Ω = 0. In this
situation, (P̃) has a kernel and a cokernel which are both of dimension one.

4.3 Discussion

Analogies with the Maxwell’s problem. The method developed to prove well-posedness of Prob-
lem (P̃) in geometries with reentrant corners presents strong analogies with the one used in [3] to
establish well-posedness of Maxwell’s equations when the permittivity ε and/or the permeability µ
change sign on the domain. Let us clarify this point.
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Let D be a simply connected domain of R3 with a connected boundary ∂D. We denote ν the unit
outward normal vector to ∂D. In the study of the Maxwell’s problem, we are led to consider the
operator M̃ : VT (D)→ VT (D) such that

(M̃v,v′)curl = (σ curl v, curl v′)D, ∀(v,v′) ∈ VT (D)×VT (D), (30)

where VT (D) := {ϕ ∈ L2(D)3 | curl ϕ ∈ L2(D)3, div ϕ = 0 in D and ϕ · ν = 0 on ∂D} and where
(·, ·)curl = (curl ·, curl ·)D + (·, ·)D. In (30), σ corresponds to the inverse of ε. We recall that
when D is simply connected, the map (ϕ,ϕ′) 7→ (curl ϕ, curl ϕ′)D defines an inner product on
VT (D) and the associated norm is equivalent to the canonical norm ϕ 7→ (ϕ,ϕ)1/2

curl. This allows

to obtain the decomposition L2(D)3 = curl (VT (D))
⊥⊕ ∇(H1

0(D)) (which is the analog of L2(Ω) =
∆(H1

0(Ω)∩H2(Ω))
⊥⊕ span(ζ), where ζ is defined in (25), for the polygonal domain with one reentrant

corner). Assume now that the operator S : H1
0(D)→ H1

0(D) such that

(∇(Sϕ),∇ϕ′)Ω = (σ−1∇ϕ,∇ϕ′)Ω, ∀(ϕ,ϕ′) ∈ H1
0(D)×H1

0(D),

is an isomorphism (which is the analog of (σ−1ζ, ζ)Ω 6= 0). Then in this case, we can show that M̃ is
an isomorphism working as in the proof of Proposition 4.3. More precisely, for v ∈ VT (D), introduce
ψ the element of H1

0(D) such that (σ−1∇ψ,∇ψ′)Ω = (σ−1curl v,∇ψ′)Ω for all ψ′ ∈ H1
0(D). The

term σ−1(curl v −∇ψ) belongs to ∇(H1
0(D))⊥ and there is a unique function Tv ∈ VT (D) such that

curl (Tv) = σ−1(curl v −∇ψ). This defines a continuous operator T : VT (D) → VT (D). Moreover,
one finds

(M̃(Tv),v′)curl = (σ curl (Tv), curl v′)D
= (curl v, curl v′)D − (∇ψ, curl v′)D = (curl v, curl v′)D,

which demonstrates that T is the inverse of M̃ .

Higher dimensions. In dimension d ≥ 3, the properties of ∆ : H1
0(Ω) ∩ H2(Ω) → L2(Ω) are more

varied than in 2D. In [12], we consider in details the case of conical tips in R3. Some of these conical tips
provide simple examples of non smooth and non convex domains for which ∆ : H1

0(Ω)∩H2(Ω)→ L2(Ω)
is an isomorphism. As a consequence, for these geometries, B̃ : H1

0(Ω) ∩ H2(Ω) → H1
0(Ω) ∩ H2(Ω)

constitutes an isomorphism for all σ ∈ L∞(Ω) such that σ−1 ∈ L∞(Ω). Working with edges in 3D, one
can also find (non convex) domains for which ∆ : H1

0(Ω)∩H2(Ω)→ L2(Ω) and B̃ are not of Fredholm
type.

5 Bilaplacian in H1
0(∆)

In Sections 2 and 4, we have imposed the boundary condition σ∆v = 0 on ∂Ω in a weak way working
with the integral identity “Find v ∈ H1

0(Ω) ∩ H2(Ω) such that (σ∆v,∆v′)Ω = 〈f, v′〉Ω for all v′ ∈
H1

0(Ω) ∩ H2(Ω)”. Notice that this variational formulation has also a sense, for a source term smooth
enough, when the functions v, v′ are chosen in the space H1

0(∆) := {ϕ ∈ H1
0(Ω) |∆ϕ ∈ L2(Ω)}. Let Ω

be a domain (with a Lipschitz boundary) of Rd, d ≥ 1. In this section, we wish to study the problem,

(P])
Find v ∈ H1

0(∆) such that:

(σ∆v,∆v′)Ω = 〈f, v′〉Ω , ∀v′ ∈ H1
0(∆).

(31)

Here, f is a given source term of H1
0(∆)∗, the topological dual space of H1

0(∆). According to the Lax-
Milgram theorem, we have ‖ϕ‖H1

0(Ω) ≤ C ‖∆ϕ‖Ω for all ϕ ∈ H1
0(∆). Therefore, (v, v′) 7→ (v, v′)H2

0(Ω) =
(∆v,∆v′)Ω defines an inner product on H1

0(∆) and the associated norm is equivalent to the natural
norm v 7→ (‖v‖2H1

0(Ω) + ‖∆v‖2Ω)1/2. In order to study the properties of (P]), we introduce with the
Riesz representation theorem, the bounded operator B] : H1

0(∆)→ H1
0(∆) such that

(B]v, v′)H2
0(Ω) = (σ∆v,∆v′)Ω, ∀(v, v′) ∈ H1

0(∆)×H1
0(∆). (32)
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Proposition 5.1. Assume that σ ∈ L∞(Ω) is such that σ−1 ∈ L∞(Ω). Then the operator B] :
H1

0(∆)→ H1
0(∆) defined in (32) is an isomorphism.

Proof. Let us introduce the operator T such that, for v ∈ H1
0(∆), Tv ∈ H1

0(∆) is the function satisfying
∆(Tv) = σ−1∆v. It is clear that B] is a continuous operator. For all (v, v′) ∈ H1

0(∆)×H1
0(∆), we have

(B](Tv), v′)H2
0(Ω) = (σ∆(Tv),∆v′)Ω = (∆v,∆v′)Ω.

This proves that B] ◦T = Id. Since B] is selfadjoint, we deduce that B] is an isomorphism. Its inverse
is equal to T.

Let us study the smoothness of the solution v] of Problem (P]) defined in (31). More precisely, our
goal is to compare v] with ṽ, the solution of Problem (P̃) defined in (10), when the latter is well-posed.
Since (H1

0(Ω)∩H2(Ω)) ⊂ H1
0(∆), there holds H1

0(∆)∗ ⊂ (H1
0(Ω)∩H2(Ω))∗. Therefore, the source term

f can be chosen in H1
0(∆)∗.

As soon as the domain Ω is such that the operator ∆ : H1
0(Ω)∩H2(Ω)→ L2(Ω) is an isomorphism, we

have H1
0(∆) = H1

0(Ω) ∩ H2(Ω). In this case, for example when Ω ⊂ Rd is convex or of class C 2, there
holds v] = ṽ.

Now, let us study the situation where H1
0(∆) 6= H1

0(Ω) ∩ H2(Ω). Let us work in dimension 2, for
a domain Ω which has, to set ideas, one reentrant corner located at O. We reintroduce the function
ζ defined in (25) verifying ζ ∈ L2(Ω)\H1(Ω), ∆ζ = 0 a.e. in Ω and ζ = 0 a.e. on ∂Ω. As in (29), we
define ψ ∈ H1

0(Ω) the function such that ∆ψ = σ−1ζ. Since ζ ∈ L2(Ω), we have ψ ∈ H1
0(∆) and so

(σ∆v],∆ψ)Ω = 〈f, ψ〉Ω. This can also be written (∆v], ζ)Ω = 〈f, ψ〉Ω. Thus, by virtue of Corollary
4.1, we have v] ∈ H1

0(Ω) ∩H2(Ω) if and only if 〈f, ψ〉Ω = 0. Let us distinguish two cases.

• If (σ−1ζ, ζ)Ω 6= 0, according to Proposition 4.3, the operator B̃ defined in (12) is an isomorphism.
Therefore, the solution ṽ of (P̃) is defined uniquely.

– If 〈f, ψ〉Ω = 0, then v] verifies the same problem as ṽ. We deduce that v] = ṽ in this
configuration.

– If 〈f, ψ〉Ω 6= 0, then v] /∈ H2(Ω) and so v] 6= ṽ. More precisely, since (σ∆(v]− ṽ),∆v′)Ω = 0
for all v′ ∈ H1

0(Ω) ∩ H2(Ω), we deduce that ∆(v] − ṽ) = a σ−1ζ, where a is constant.
Multiplying by ζ, integrating by parts on Ω and using that ṽ ∈ H1

0(Ω) ∩H2(Ω), we deduce
that a = (∆v], ζ)Ω/(σ−1ζ, ζ)Ω = 〈f, ψ〉Ω /(σ−1ζ, ζ)Ω. Thus, in this configuration, we have

v] − ṽ = 〈f, ψ〉Ω
(σ−1ζ, ζ)Ω

ψ.

• If (σ−1ζ, ζ)Ω = 0, then, according to Proposition 4.4, (P̃) has a solution if and only if 〈f, ψ〉Ω = 0.
Let us assume that this holds true. In this case, according to the above discussion, the solution
v] ∈ H1

0(∆) of (P]) is actually in H1
0(Ω) ∩ H2(Ω). Now, let us explain why ψ belongs to

ker B̃ but not to kerB]. A function v ∈ H1
0(Ω) ∩ H2(Ω) belongs to ker B̃ if and only if it

satisfies (σ∆v,∆v′)Ω = 0 for all v′ ∈ H1
0(Ω) ∩ H2(Ω). Since (σ∆ψ,∆v′)Ω = (ζ,∆v′)Ω, we have

ψ ∈ ker B̃. On the other hand, ψ ∈ kerB] if and only if we have (σ∆ψ,∆v′)Ω = 0 for all
v′ ∈ H1

0(∆) ⊃ (H1
0(Ω) ∩ H2(Ω)). Testing against v′ such that ∆v′ = ζ, we see that ψ is not an

element of kerB]. Of course, such a v′ does not belong to H1
0(Ω) ∩H2(Ω) because (ζ, ζ)Ω 6= 0.
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