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Abstract—We consider some second-order variational model
for solving image inpainting problems. The aim is to obtain as
far as possible fine features of the initial image, e.g. corners,
edges, . . . in the inpainted region. The approach consists of
constructing a family of regularized functionals and to select
locally and adaptively the regularization parameters with a
posteriori error indicators. The parameters selection is performed
at the discrete level in the framework of the finite element method.
We present several numerical simulations to test the efficiency
of the proposed approach.

INTRODUCTION

Image inpainting or disocclusion refers to restoring a dam-
aged image with missing information. This type of image
processing treatment is very important and it has many
applications in various fields (painted canvas and movies
restoration, augmented reality, . . . ). In fact, many images are
often scratched and damaged, the goal of image inpainting is
to restore the deteriorated parts, in such a manner, that a viewer
can not detect these parts. Different techniques are applied to
solve this problem, in particular, Partial Differential Equations
(PDEs) are widely used and are proven to be efficient ([1],
[2], [3], [4]). A number of PDE based approaches inpainting
were introduced in the literature. They can be classified into
linear or nonlinear, isotropic or anisotropic equation. The
major drawback of the linear ones is that they have a strong
smoothing effect. They fail to inpaint images with edges
(discontinuities). Therefore, nonlinear models were used in
order to overcome this strong regularization effect and to
preserve the contours (edges) across the region to be inpainted.
Without being exhaustive, we refer to [1], [2], [3] for the image
inpainting problem.

We consider in this work a novel approach which consists
of an adaptive method for PDE models in image inpainting.
This approach is well suited to obtain fine features of the
initial (damaged) image , e.g. edges, corners, . . . although the
used continuous model is formally linear. Loosely speaking,
we start with a simple model (e.g. linear diffusion with a
variable coefficient), the method consists of choosing locally
and adaptively the values of diffusion coefficient with the help
of some informations on the gradient magnitude. The infor-
mations are available at the discrete level from the computed
solution, thus the process is completely a posteriori-based
parameter selection. This approach was introduced by Hecht
and Belhachmi in [5] and [6] for optic flow estimation, where

it was demonstrated to have several attractive features such as:
the efficiency (e.g. cost of computation, best representation of
the solution,. . . ) as well as a good edge-preserving ability.
Moreover, it was proven in [6] that this approach allows to
approximate, in the Γ-convergence sense [7], the well known
Mumford-Shah functional (see [8], [9]) although formally the
continuous model is linear.

I. WEIGHTED HARMONIC INPAINTING

We consider a planar image u defined in a domain Ω ⊂ R2,
usually a rectangular domain with piecewise smooth boundary
∂Ω. D ⊂ Ω is a sub-domain in Ω, as shown in Fig. 1. We

Fig. 1. Image domain

assume that u is contaminated by a Gaussian white noise n in
Ω\D and that its restriction in D was distorted. The goal of
the Harmonic inpainting [1] is to find a function u ∈ H1(Ω)
that minimizes the following energy functional:

F (u) =
1

2

∫
Ω

|∇u|2dx+

∫
Ω

λ(x)

2
(u− f)2dx, (1)

where λ = λ0 in Ω\D (Full attachment outside inpainting
area) and 0 in D ( No attachment to the input image f within
inpainting area). The first part of (1) encodes the image model
(diffusion term) and the second is called the fidelity part. The
Euler-Lagrange equation for the energy functional F is{

−∆u+ λ(u− f) = 0, in Ω,
∂nu = 0, on ∂Ω,

(2)

It is an isotropic linear diffusion PDE and it is unable to
restore narrow broken edges due to its strong regularization
effects. While, edges are crucial for object recognition in
image processing problems. We then introduce an adaptive
strategy which can restore edges whilethe continos model
belonging (formally) to the linear diffusion class of methods.
We consider the following minimization problem:

min
uα∈H1(Ω)

Fα(uα), (3)



Fig. 2. Example of Harmonic inpainting (T. Chan and J. Shen [1])

where

Fα(u) =
1

2

∫
Ω

α(x)|∇u|2dx+

∫
Ω

λ(x)

2
(u− f)2dx.

We assume that the lifting parameter α is given, scalar,
piecewise constant function on Ω. The domain Ω is partitioned
into a ”n” disjoint finite number of sub-domains Ωl such that

α = αl in Ωl 1 ≤ l ≤ n

We denote αm = min
1≤l≤n

αl, respectively αM = max
1≤l≤n

αl, and

we assume that αm > 0.
Proposition 1: Let f ∈ L2(Ω) be given such that |f(x)| ≤

1 a.e. in Ω. The minimization problem (3) admits a unique
minimizer uα in H1(Ω) with |uα(x)| ≤ 1 a.e. in Ω.
The minimizer uα of (3) verifies the following Euler-Lagrange
equation:{

−∇.(α(x)∇uα) + λ(uα − f) = 0, in Ω,
∂nuα = 0, on ∂Ω, (4)

The parameters selection strategy is performed at the discrete
level in the framework of the finite element method (i. e.,
weak solution). Therefore, we define the following variational
formulation:

 find uα ∈ H1(Ω), such that∫
Ω
α(x)∇u · ∇vdx+

∫
Ω
λuvdx =

∫
Ω
λfvdx, ∀v ∈ H1(Ω),

(5)

The equivalence of the problems (5) and (3) follows by
standard arguments. Noting that for |u(x)| ≤ 1 in Ω and for
αm > 0, the ellipticity of the bilinear form aα(, ., ) in the
space H1(Ω) is immediate.

A. Discrete problem and adaptivity

We assume that the domain Ω is polygonal. We consider a
regular family of triangulations Th made of elements which are
triangles (or quadrilaterals) with a maximum size h, satisfying
the usual admissibility assumptions, i.e., the intersection of
two different elements is either empty, a vertex, or a whole
edge. For h > 0, we introduce the following discrete space:

Xh =
{
vh ∈ C(Ω)|∀K ∈ Th, vh|K ∈ P1(K)

}
,

The discrete problem leads to: find uα,h ∈ H1(Ω), such that∫
Ω
αh∇uh · ∇vhdx+

∫
Ω
λuhvhdx =

∫
Ω
λfhvhdx, ∀vh ∈ H1(Ω),

(6)

where fh is a finite element approximation of f associated
with Th. Applying the Lax-Milgram Lemma, we can prove that
there exists a unique solution uα,h in H1(Ω) of the discrete
problem (6) with |uα,h(x)| ≤ 1 a.e. in Ω.

II. ADAPTIVE LOCAL CHOICE OF α

For an element K ∈ Th, we denote by EK the set of its
edges not contained in the boundary ∂Ω. The union of all
EK , K ∈ Th is denoted by Eh. With each edge e ∈ Eh,
we associate a unit vector ne normal to e and we denote by
[φ]e the jump of the piecewise continuous function φ across
e in the direction ne. For each K ∈ Th, we denote by hK the
diameter of K and we denote by he the length of e, e ∈ EK
and fh a finite element approximation of f . We define the
residual error indicator as follows: for each element K ∈ Th,
we set:

η1
K = α

− 1
2

K hK ||λ(uα,h − fh) + αh∆uα,h||L2(K)

+ 1
2

∑
e∈EK

α
− t2
e h

1
2
e ||[α∇uα,h · ne]||L2(e)

where αe = max(αK1, αK2), K1 and K2 being the two
elements adjacent to e.
On the triangulation Th, we compute the solution uα,h of
problem (6) and the corresponding error indicator which is
well known to be equivalent to the H1-norm of the finite
element error (see [10] for details) and allows mostly mesh
adaptation. Although η1

K is standard information on the error
distribution of the computations of uα,h, it encodes some
priory information about edges in the following term

1
2

∑
e∈EK

α
− 1

2
e h

1
2
e ||[α∇uα,h · ne]||L2(e). (7)

In fact, the edges in the image are characterized by regions
when the brightness changes sharply (large gradients) or, more
formally, has discontinuities. Therefore, the quantity (7) acts
as a measure locating regions of edges and will be used next
to control and to select the parameter α.

Remark 1: Since all error indicators are mainly equivalent
[10], we can change the error indicator η1

K by the following
local energy

η2
K = α

1
2

K ||∇uα,h||L2(K) (8)

which might be well suited in the adaptation steps and behaves
more or less like the residual error indicator when we use P1

Lagrange finite elements.
1) Adaptive strategy: We control the diffusion process

by the following adaptive algorithm: Given the grid T 0
h

corresponding to the image, we:
1) Compute uα0,h solution of the problem (4) on T 0

h with
a large constant α = α0.

2) We build an adapted isotropic mesh T 1
h with the error

indicator ηiK i = 1, 2).
3) We perform an automatic local choice of α(x) on T 1

h

to obtain a new function α1(x) in D.
4) Go to steps (2) and (3) and compute uα1,h on T 1

h .



During the adaptation, we use following formula for each
triangle K;

αk+1
K = max


αkK

1 + κ ∗
((

ηiK
||ηi||∞

)
− 0.1

)+
, αtrh

 , i = 1, 2

where αtrh is a threshold parameter and κ is a coefficient cho-
sen to control the rate of decreasing in α, (u+) = max(u, 0).
Let us give more details on the implementation of this adaptive
algorithm which consists of two steps. First, we build an
adapted isotropic mesh T 1

h (in the sense of the finite element
method, i.e., with respect to the parameter h) with the error
indicator ηiK (i = 1, 2). The adapted mesh is obtained by
formally coarsening the initial one in the homogeneous regions
and refining it ’close’ to the jump set of u in order to ’follow’
the edges. Second, we control the function α locally on any
element K of Th. Whenever ηiK , (i = 1, 2) is calculated and
it is more or less large, we have a priory information about
the edges. Thus, we may keep the value of α very small in
order to approximate correctly the edges in such non-smooth
regions. In the complementary regions, where the variations
of the intensity are weak, the gradient is low (ηiK (i = 1, 2)
is small). Therefore, we keep α large in order to encourage
smoothing.

III. Γ-CONVERGENCE ANALYSIS OF THE ADAPTIVE
ALGORITHM

A Γ-convergence study of the adaptive strategy was down
in [6] for the optical flow estimation. It was shown that
this strategy is equivalent to the adaptive method presented
and detailed in [9], [8]. This method approximates, in the
Γ-convergence [7] sense, the Mumford-Shah functional. We
recall now the results presented in [9]. For a fixed angle
θ0 > 0(θ0 ≤ 60), a constant c ≥ 6, and for ε > 0, we
set Tε(Ω) = Tε(Ω; θ0; c) be the set of all triangulations of Ω
whose triangles K have the following characteristics:
• The length of all three edges of K is between ε and εc.
• The three angles of K are greater than or equal to θ0.

Let Vε(Ω) the set of all continuous functions u : Ω −→ R
such that u is affine on any triangle K of a triangulation T ∈
Tε(Ω) and for a given u, Tε(u) ⊂ Tε(Ω) is the set of all
triangulations adapted to u,i. e, such that u is piecewise affine
on T . They introduce a non-decreasing continuous function
f : [0,+∞) −→ [0,+∞) such that:

lim
t→0

f(t)

t
= 1, lim f(t) = f∞

In [9], for any u ∈ Lp(Ω), (p ≥ 1) and T ∈ Tε(Ω), the authors
introduced the following minimization problem:

Gε(u) = min
T∈Tε(Ω)

Gε(u, T ) (9)

where

Gε(u, T ) =


∑
K∈T |K ∩ Ω|

1

hK
f(hK |∇u|2), u ∈ Vε(Ω), T ∈ Tε(Ω)

+∞, Otherwise.

They proved, as ε goes to zero and provided θ0 is less than
some Θ > 0, Gε Γ-converges to the Mumford-Shah functional:

G(u) =


∫

Ω
|∇u(x)|2 dx+ f∞H1(Su), u ∈ L2(Ω) ∩GSBV (Ω)

+∞, u ∈ L2(Ω)\GSBV (Ω).

where GSBV (Ω) is the generalized special function
of bounded variation (see [11]). It follows from the Γ-
convergence to Gε [[9], Theorem 2]:

Theorem 3.1: Let (uε)ε>0 be a family of functions such that
uε ∈ Vε(Ω) for all ε and

sup
ε>0

Gε(u
ε) + ||uε||L2(Ω) < +∞ (10)

Then, there exists u ∈ GSBV (Ω) and a subsequence uεj

converging to u a.e. in Ω, such that:

G(u) ≤ lim inf Gεj (u
εj ),

and, if for each ε, uε is a solution of:

min
v
Gε(v) +

∫
Ω

λ(x)|v − f |2dx, (11)

then the limit u solves

min
v
G(v) +

∫
Ω

λ(x)|v − f |2dx, (12)

and uεj converges strongly to u.
From convex analysis, we can write:

f(t) = min
v∈[0,1]

tv + ψ(v)

where ψ is the Legendre-Fenchel transform of f . The min-
imum is achieved for v = f ′(t) and therefore, for a given
triangulation Tε, the minimization of Gε is then equivalent to
minimize the following functional:

G′ε(u, v, Tε) =
∑
K∈Tε

|K ∩ Ω| 1

hK
(vK |∇u|2 +

ψ(vK)

hK
),

over all u ∈ Vε(Ω) and v = (vK)K∈Tε , piecewise constant
on each K ∈ Tε. For a fixed u, the minimizer over each v is
explicitly given by:

vK = f ′(hK |∇u|2) (13)

and the optimal u for fixed v solves an elliptic equation. The
algorithm of the iterative method used in [9] is then similar
of the adaptive strategy presented in this paper and the local
choice of α using the error indicator η2

K is similar of the choice
of vK in (13) with v = α.

IV. JOINT IMAGE RESTORATION AND INPAINTING

There is typically a trade-off between noise removal and
edges preservation because, in some cases, the known portions
of the image in Ω\D are corrupted by noise. The latter
will affect the domain D via the available information in
∂D. To overcome this problem, the most practical idea is to
simultaneously denoise the available part of the image and
fill-in the missing ones.



Starting with a large value of α in the adaptation steps
will certainly smooth the input image f in Ω\D at the
first iterations which causes the loss the edges. However, in
these known portions, we want to eliminate noise and not
edges. Thus, the two parameters α and λ might be controlled
adaptively in order to join inpainting and restoration. We
assume in this case that the parameter λ is not constant and it
depends on the postion of x ∈ Ω\D. Then, for each element
K ⊂ Ω\D, we have:

η1
K = α

− 1
2

K hK ||λh(uα,h − fh) + αh∆uα,h||L2(K)

+
1

2

∑
e∈EK

α
− 1

2
e h

1
2
e ||[αe∇uα,h · ne]||L2(e)

(14)

For K ⊂ D, we have:

η1
K = α

− 1
2

K hK ||αK∆uα,h||L2(K)

+
1

2

∑
e∈EK

α
− 1

2
e h

1
2
e ||[αe∇uα,h · ne]||L2(e)

(15)

where αe = max(αK1, αK2), K1 and K2 being the two
elements adjacent to e. In the first residual error indicator,
the following quantity

EK = α
− 1

2

K hK ||λh(uα,h − fh) + αh∆uα,h||L2(K) (16)

acts as a confidence measure locating regions of large errors
in the computed solution relatively to to the input noisy image
f in Ω\D.
To inapint, we control the diffusion coefficient α(x) in the
sub domain D and in the same way as the algorithm II-1.
To restore the complementary region Ω\D, we keep α(x)
constant and we control the regularization parameter λ by
increasing it near the edges to privilege the fidelity part
||λ(u− f)||L2(Ω\D). The update of λ is automatic and locally
depending on the position of x ⊂ Ω\D by the use of the
following formula: For K ∈ Ω\D;

λ
(k+1)
K = min{λkK∗

(
1 + κ ∗

((
EK
||E||∞

)
− 0.1

)+
)
, λthr},

where λthr is a threshold parameter.

V. ADAPTIVE STRATEGY FOR THE COMPLEX
GINZBURG-LANDAU EQUATION

This equation was originally developed by Ginzburg & Lan-
dau in [12] to phenomenologically describe phase separation
and it is given by:

−∆u+
W ′(u)

ε2
= 0 (17)

where u : Ω −→ [−1, 1], ε is a small positive parameter
and W (u) = (1 − |u|2)2. It is the Euler Lagrange equation
associated to the minimizing of the following energy

1

2

∫
Ω

|∇u|2dx+

∫
Ω

W (u)

2ε2
dx, (18)

This equation was used in several works in image processing
probelms [13], [14], [15]. For digital image inpainting pur-
poses, it was developed by H. Grossauer and O. Scherzer in
[14]. The key advantage of this model is that its solutions are
known to produce effects like vortices and shock-waves of the
phase when ε −→ 0 and the solution reveals high contrast in
the inpainting domain, which makes it particularly suited for
the inpainting task.
The real Ginzburg-Landau equation (17) is appropriate only
for two-scale images because the minima of the potential
function W are attained in the sphere |u| = 1. For gray-scale
images, we follow the same methodology of Grossauer and
Scherzer in [14]. We rescale the intensity of the input image
f(x) to the interval [−1, 1]. Then f is identified with the real
part of the complex valued function fre : Ω −→ C such that:

f = fre + ifim, where :
fre = the initial damaged image f0,

fim =
√

1− f2
0

(19)

By this choice, the complex valued solution u will also have
an absolute value equal to 1 but inpainted image (the real part
of u) may contain any value from the interval [−1, 1]. Thus,
for a gray-scale images, we seek to find a minimizer uα ∈
H1(Ω, C) of the following Ginzburg-Landau type energy:

Fε(u) =

∫
Ω

α(x)

2
|∇u|2dx+

∫
Ω

W (u)

2ε2
dx+

∫
Ω

λ

2
(u− f)2dx,

(20)
where H1(Ω, C) is the Hilbert space of complex functions.
A minimizer uα of Fε satisfies the following Euler-Lagrange
equation:{
−∇.[α(x)∇uα] +

1

ε2
uα(|u|2α − 1) + λ(uα − f) = 0, in Ω,

α(x)∂nuα = 0, on ∂Ω.
(21)

Proposition 2: Let f ∈ L2(Ω) be given with |f(x)| ≤ 1
a.e. in Ω. The functional (20) admits a unique minimizer uα
in H1(Ω, C) with |u(x)| ≤ 1 a.e. in Ω.

Evolution equation:: As it is often done, to solve problem
(21), we transform it into a dynamical scheme as follows:
∂uα
∂t
−∇.[α(x)∇uα] +

W ′(uα)

ε2
+ λ(uα − f) in Ω, (22)

with homogeneous Neumann boundary conditions and the
initial time condition uα(t = 0, x) = f .

Time discretization:: We use an explicit Euler scheme

with respect to the time variable t to approximate
∂uα
∂t

by
un+1
α − unα
δt

(where n stands for the iteration time and δt is
the time step). We discretize ∇ · [α(x)∇uα] with un+1

α and
the nonlinear term W ′(uα) with unα and un+1

α as follows

W ′(un+1
α ) ≈ (|unα |2 − 1)un+1

α

More precisely, the time discrete form leads to the following
semi-implicit problem: Having unα, find un+1

α ∈ H1(Ω) such
that:∫

Ω

un+1
α − unα
δt

φdx+

∫
Ω

αh∇un+1
α ∇φdx+

∫
Ω

W ′(un+1
α )

ε2
φdx



+

∫
Ω

λ(un+1
α − f)φdx = 0 ∀φ ∈ H1(Ω, C).

VI. NUMERICAL EXAMPLES

In this work, all the PDEs were numerically solved using
FreeFem++ [16], a finite element free software. In all exam-
ples, the damaged regions are marked with red.

In the first example, the task is to inpaint gaps in a white
stripe. We display in Fig. 3 the evolution of the meshes
at the iterations 0, 10 and 20. We can see that they are
progressively sparsified. The first is the initial mesh T0 which
is regular such that every node corresponds to a pixel in the
image. We give in Fig. 4 the damaged image and the results
obtained using Harmonic model (2) and our model (4) with
adaptation. Harmonic inpainting (middle-hand plots of Fig. 4)
is achieving no connection, producing a smooth solution u in
D. Contrariwise, We can see the efficiency of the proposed
adaptive method (right-hand plots of Fig. 4) and the edges of
the stripe were connected sharply.

Fig. 3. The mesh at the iterations 1, 10 and 20, respectively.

Fig. 4. From left to right: Damaged, Harmonic (2) and model (4) & adaptation
images, respectively.

In the second example, we have chosen a gray-scale image
(220×220 Pixels) containing edges and jumps. We illustrate in
Fig. 5 the damaged image and the results obtained using total
variation (middle) and Harmonic model (2) (right). In Fig. 6,
we display the inpainted images using the proposed model
(4) where the adaptation was made using the error indicators
η1
K (left) and η2

k (middle). For both cases, we initialized the
algorithm by a large value of α = 50 and we performed 20
adaptive iterations for the error indicator η2

K and 40 iterations
for η1

K . The right-hand plots of Fig. 6 is the restored image
using the Ginzbrg-Landau equation where the adaptation was
made using the error indicator η2

k. We mention that in this
case, we took the solution of the Harmonic equation (α is a
constant) as an initial guess u0 in the time discretization.
Increasing the values of α by iteration in the same time with
the mesh adaptation allows to obtain sharp edges and less
regularization (smoothing) at these locations. We give in Fig. 7
a zoom caption in the damaged region 1 for the different

models. We remark that our model gives a comparable result
to the one obtained using the Ginzburg-Landau equation.
We present in Fig. 8 the evolution of the meshes for various
time iterations (1,5 and 20) where we used η2

k as an error
indicator. The curve in the right-hand plots of Fig. 9 represents
the degrees of freedom as a function of adaptation iterations.
It explains how the algorithm works: after some iteration, the
number of elements decreases very quickly, then more slowly
to improve the sparsification by updating α. We also give in
the left-hand plots of Fig. 9the L2-error between the restored
and the exact image as a function of adaptation iterations.
The experiment in Fig. 10 shows the efficiency of the proposed
method in a very promising application. The aim is to remove
the foreground text in the input image. The text have been
successfully removed and the image is well restored.

Fig. 5. From left to right: Damaged image, Total variation and Harmonic
model (2) results.

Fig. 6. From left to right: restored images using model (4) & adaptation
(error indicator η1), model (4) & adaptation (error indicator η2) and Complex
Ginzburg-Landau model (22) & adaptation.

Fig. 7. Zoom on region 1: From let to right: TV, Harmonic (2), Harmonic
(4) & adaptation (error indicator η2 ), Ginzburg-Landau (22) & adaptation
and Harmonic (4) & adaptation (error indicator η1), respectively.

Fig. 8. The mesh at the iterations 1, 2 and 20.

We present in Fig. 11 the result for simultaneous image
inpainting and restoration. The input image f is contaminated



Fig. 9. Left: L2-error ER = ||ukα − uexact||2 as function of adaptation
iterations. Right: Number of degrees of freedom as function of adaptation
iterations.

Fig. 10. The damaged, mask and restored images, respetively.

by a Gaussian noise in the region Ω\D. We performed 20
adaptive iterations and we display the evolution of the restored
image for iterations 5 and 20. In the 5th iteration (middle),
the image is smoothed in the know regions. The adaptation
processes of λ near the edges in this case allows us to recover
discontinuities in Ω\D ( see right-hand plot of Fig. 11).

Fig. 11. From left to right: Damaged and noisy - restored at iteration 5 -
restored at iteration 20.

In Fig 12, we tested the behavior of the different methods
when the damage region contains a corner. For the harmonic
model & adaptation (see the middle-hand plots of Fig 12), we
can approximate the corner (but not well achieved!) and the
edges are improper contrasted. In the left-hand plots of Fig 12,
we display the solution of the complex Ginzburg-Landau
equation. First, the complexification allows us to diffuse more
than two phases. Second, this model with adaptation allows us
to approximate the corner between the homogeneous regions
and reveals high contrast, which is the key advantage of this
model compared to others and so it makes it particularly suited
in this case.

CONCLUSION

We have investigated an adaptive approach for image in-
painting based on a local selection of the different parame-
ters in the models, and on mesh adaptation techniques. We

Fig. 12. From left to right: Damaged and the restored image using Harmonic
models (4) & adaptation, and complex Ginzburg-Landau (22) & adaptation,
respectively.

started with the formulation of a linear variational mod-
els, and detailed its numerical implementation based on the
adaptive discretization which approximate in the sense of
the Γ-convergence the Mumford-Shah functional. Numerical
experiments on different images were performed and showed
the efficiency of the proposed method. We can also say that
the linear continuous model presented in this work gives the
same final result that one might expect by solving a nonlinear
one.
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