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INTRODUCTION

Image inpainting or disocclusion refers to restoring a damaged image with missing information. This type of image processing treatment is very important and it has many applications in various fields (painted canvas and movies restoration, augmented reality, . . . ). In fact, many images are often scratched and damaged, the goal of image inpainting is to restore the deteriorated parts, in such a manner, that a viewer can not detect these parts. Different techniques are applied to solve this problem, in particular, Partial Differential Equations (PDEs) are widely used and are proven to be efficient ( [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF], [START_REF] Esedoglu | Digital image inpainting by Mumford-Shah-Euler model[END_REF], [START_REF] Chan | Non-texture inpainting by curvature-driven diffusions[END_REF], [START_REF] Kallel | The cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting[END_REF]). A number of PDE based approaches inpainting were introduced in the literature. They can be classified into linear or nonlinear, isotropic or anisotropic equation. The major drawback of the linear ones is that they have a strong smoothing effect. They fail to inpaint images with edges (discontinuities). Therefore, nonlinear models were used in order to overcome this strong regularization effect and to preserve the contours (edges) across the region to be inpainted. Without being exhaustive, we refer to [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF], [START_REF] Esedoglu | Digital image inpainting by Mumford-Shah-Euler model[END_REF], [START_REF] Chan | Non-texture inpainting by curvature-driven diffusions[END_REF] for the image inpainting problem.

We consider in this work a novel approach which consists of an adaptive method for PDE models in image inpainting. This approach is well suited to obtain fine features of the initial (damaged) image , e.g. edges, corners, . . . although the used continuous model is formally linear. Loosely speaking, we start with a simple model (e.g. linear diffusion with a variable coefficient), the method consists of choosing locally and adaptively the values of diffusion coefficient with the help of some informations on the gradient magnitude. The informations are available at the discrete level from the computed solution, thus the process is completely a posteriori-based parameter selection. This approach was introduced by Hecht and Belhachmi in [START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF] and [START_REF] Belhachmi | An adaptive approach for segmentation and Tv edge-enhacement in the optic flow estimation[END_REF] for optic flow estimation, where it was demonstrated to have several attractive features such as: the efficiency (e.g. cost of computation, best representation of the solution,. . . ) as well as a good edge-preserving ability. Moreover, it was proven in [START_REF] Belhachmi | An adaptive approach for segmentation and Tv edge-enhacement in the optic flow estimation[END_REF] that this approach allows to approximate, in the Γ-convergence sense [START_REF] Braides | Gamma-Convergence for Beginners[END_REF], the well known Mumford-Shah functional (see [START_REF] Chambolle | Implementation of an adaptive fniteelement approximation of the mumford-shah functional[END_REF], [START_REF] Chambolle | Discrete approximation of the mumford-shah functional in dimension two[END_REF]) although formally the continuous model is linear.

I. WEIGHTED HARMONIC INPAINTING

We consider a planar image u defined in a domain Ω ⊂ R 2 , usually a rectangular domain with piecewise smooth boundary ∂Ω. D ⊂ Ω is a sub-domain in Ω, as shown in Fig. 1. We Fig. 1. Image domain assume that u is contaminated by a Gaussian white noise n in Ω\D and that its restriction in D was distorted. The goal of the Harmonic inpainting [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF] is to find a function u ∈ H 1 (Ω) that minimizes the following energy functional:

F (u) = 1 2 Ω |∇u| 2 dx + Ω λ(x) 2 (u -f ) 2 dx, (1) 
where λ = λ 0 in Ω\D (Full attachment outside inpainting area) and 0 in D ( No attachment to the input image f within inpainting area). The first part of (1) encodes the image model (diffusion term) and the second is called the fidelity part. The Euler-Lagrange equation for the energy functional F is

-∆u + λ(u -f ) = 0, in Ω, ∂ n u = 0, on ∂Ω, (2) 
It is an isotropic linear diffusion PDE and it is unable to restore narrow broken edges due to its strong regularization effects. While, edges are crucial for object recognition in image processing problems. We then introduce an adaptive strategy which can restore edges whilethe continos model belonging (formally) to the linear diffusion class of methods. We consider the following minimization problem: where

min uα∈H 1 (Ω) F α (u α ), (3) 
F α (u) = 1 2 Ω α(x)|∇u| 2 dx + Ω λ(x) 2 (u -f ) 2 dx.
We assume that the lifting parameter α is given, scalar, piecewise constant function on Ω. The domain Ω is partitioned into a "n" disjoint finite number of sub-domains Ω l such that

α = α l in Ω l 1 ≤ l ≤ n
We denote α m = min The minimizer u α of (3) verifies the following Euler-Lagrange equation:

-∇.(α(x)∇u α ) + λ(u α -f ) = 0, in Ω, ∂ n u α = 0, on ∂Ω, (4) 
The parameters selection strategy is performed at the discrete level in the framework of the finite element method (i. e., weak solution). Therefore, we define the following variational formulation:

   find uα ∈ H 1 (Ω), such that Ω α(x)∇u • ∇vdx + Ω λuvdx = Ω λf vdx, ∀v ∈ H 1 (Ω), (5) 
The equivalence of the problems (5) and (3) follows by standard arguments. Noting that for |u(x)| ≤ 1 in Ω and for α m > 0, the ellipticity of the bilinear form a α (, ., ) in the space H 1 (Ω) is immediate.

A. Discrete problem and adaptivity

We assume that the domain Ω is polygonal. We consider a regular family of triangulations T h made of elements which are triangles (or quadrilaterals) with a maximum size h, satisfying the usual admissibility assumptions, i.e., the intersection of two different elements is either empty, a vertex, or a whole edge. For h > 0, we introduce the following discrete space:

X h = v h ∈ C(Ω)|∀K ∈ T h , v h | K ∈ P 1 (K) ,
The discrete problem leads to:

   find u α,h ∈ H 1 (Ω), such that Ω α h ∇u h • ∇v h dx + Ω λu h v h dx = Ω λf h v h dx, ∀v h ∈ H 1 (Ω), (6) 
where f h is a finite element approximation of f associated with T h . Applying the Lax-Milgram Lemma, we can prove that there exists a unique solution u α,h in H 1 (Ω) of the discrete problem [START_REF] Belhachmi | An adaptive approach for segmentation and Tv edge-enhacement in the optic flow estimation[END_REF] with |u α,h (x)| ≤ 1 a.e. in Ω.

II. ADAPTIVE LOCAL CHOICE OF α

For an element K ∈ T h , we denote by E K the set of its edges not contained in the boundary ∂Ω. The union of all E K , K ∈ T h is denoted by E h . With each edge e ∈ E h , we associate a unit vector n e normal to e and we denote by [φ] e the jump of the piecewise continuous function φ across e in the direction n e . For each K ∈ T h , we denote by h K the diameter of K and we denote by h e the length of e, e ∈ E K and f h a finite element approximation of f . We define the residual error indicator as follows: for each element K ∈ T h , we set:

η 1 K = α -1 2 K h K ||λ(u α,h -f h ) + α h ∆u α,h || L 2 (K) + 1 2 e∈E K α -t 2 e h 1 2 e ||[α∇u α,h • n e ]|| L 2 (e)
where α e = max(α K 1 , α K 2 ), K 1 and K 2 being the two elements adjacent to e.

On the triangulation T h , we compute the solution u α,h of problem ( 6) and the corresponding error indicator which is well known to be equivalent to the H 1 -norm of the finite element error (see [START_REF] Verfurth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refnement Techniques[END_REF] for details) and allows mostly mesh adaptation. Although η 1 K is standard information on the error distribution of the computations of u α,h , it encodes some priory information about edges in the following term

1 2 e∈E K α -1 2 e h 1 2 e ||[α∇u α,h • n e ]|| L 2 (e) . (7) 
In fact, the edges in the image are characterized by regions when the brightness changes sharply (large gradients) or, more formally, has discontinuities. Therefore, the quantity (7) acts as a measure locating regions of edges and will be used next to control and to select the parameter α. Remark 1: Since all error indicators are mainly equivalent [START_REF] Verfurth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refnement Techniques[END_REF], we can change the error indicator η 1 K by the following local energy

η 2 K = α 1 2 K ||∇u α,h || L 2 (K) (8) 
which might be well suited in the adaptation steps and behaves more or less like the residual error indicator when we use P 1 Lagrange finite elements. 1) Adaptive strategy: We control the diffusion process by the following adaptive algorithm: Given the grid T 0 h corresponding to the image, we:

1) Compute u α 0 ,h solution of the problem (4) on T 0 h with a large constant α = α 0 . 2) We build an adapted isotropic mesh T 1 h with the error indicator η i K i = 1, 2). 3) We perform an automatic local choice of α(x) on T 1 h to obtain a new function α 1 (x) in D. 4) Go to steps (2) and (3) and compute u α1,h on T 1 h .

During the adaptation, we use following formula for each triangle K;

α k+1 K = max        α k K 1 + κ * η i K ||η i ||∞ -0.1 + , α trh        , i = 1, 2
where α trh is a threshold parameter and κ is a coefficient chosen to control the rate of decreasing in α, (u + ) = max(u, 0).

Let us give more details on the implementation of this adaptive algorithm which consists of two steps. First, we build an adapted isotropic mesh T 1 h (in the sense of the finite element method, i.e., with respect to the parameter h) with the error indicator η i K (i = 1, 2). The adapted mesh is obtained by formally coarsening the initial one in the homogeneous regions and refining it 'close' to the jump set of u in order to 'follow' the edges. Second, we control the function α locally on any element K of T h . Whenever η i K , (i = 1, 2) is calculated and it is more or less large, we have a priory information about the edges. Thus, we may keep the value of α very small in order to approximate correctly the edges in such non-smooth regions. In the complementary regions, where the variations of the intensity are weak, the gradient is low (η i K (i = 1, 2) is small). Therefore, we keep α large in order to encourage smoothing.

III. Γ-CONVERGENCE ANALYSIS OF THE ADAPTIVE ALGORITHM

A Γ-convergence study of the adaptive strategy was down in [START_REF] Belhachmi | An adaptive approach for segmentation and Tv edge-enhacement in the optic flow estimation[END_REF] for the optical flow estimation. It was shown that this strategy is equivalent to the adaptive method presented and detailed in [START_REF] Chambolle | Discrete approximation of the mumford-shah functional in dimension two[END_REF], [START_REF] Chambolle | Implementation of an adaptive fniteelement approximation of the mumford-shah functional[END_REF]. This method approximates, in the Γ-convergence [START_REF] Braides | Gamma-Convergence for Beginners[END_REF] sense, the Mumford-Shah functional. We recall now the results presented in [START_REF] Chambolle | Discrete approximation of the mumford-shah functional in dimension two[END_REF]. For a fixed angle θ 0 > 0(θ 0 ≤ 60), a constant c ≥ 6, and for > 0, we set T (Ω) = T (Ω; θ 0 ; c) be the set of all triangulations of Ω whose triangles K have the following characteristics:

• The length of all three edges of K is between and c.

• The three angles of K are greater than or equal to θ 0 . Let V (Ω) the set of all continuous functions u : Ω -→ R such that u is affine on any triangle K of a triangulation T ∈ T (Ω) and for a given u, T (u) ⊂ T (Ω) is the set of all triangulations adapted to u,i. e, such that u is piecewise affine on T . They introduce a non-decreasing continuous function f : [0, +∞) -→ [0, +∞) such that:

lim t→0 f (t) t = 1, lim f (t) = f ∞
In [START_REF] Chambolle | Discrete approximation of the mumford-shah functional in dimension two[END_REF], for any u ∈ L p (Ω), (p ≥ 1) and T ∈ T (Ω), the authors introduced the following minimization problem:

G (u) = min T ∈T (Ω) G (u, T ) (9) 
where

G (u, T ) =    K∈T |K ∩ Ω| 1 h K f (h K |∇u| 2 ), u ∈ V (Ω), T ∈ T (Ω) +∞, Otherwise.
They proved, as goes to zero and provided θ 0 is less than some Θ > 0, G Γ-converges to the Mumford-Shah functional:

G(u) =    Ω |∇u(x)| 2 dx + f∞H 1 (Su), u ∈ L 2 (Ω) ∩ GSBV (Ω) +∞, u ∈ L 2 (Ω)\GSBV (Ω).
where GSBV (Ω) is the generalized special function of bounded variation (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]). It follows from the Γconvergence to G [[9], Theorem 2]: Theorem 3.1: Let (u ) >0 be a family of functions such that u ∈ V (Ω) for all and

sup >0 G (u ) + ||u || L 2 (Ω) < +∞ (10) 
Then, there exists u ∈ GSBV (Ω) and a subsequence u j converging to u a.e. in Ω, such that:

G(u) ≤ lim inf G j (u j ),
and, if for each , u is a solution of:

min v G (v) + Ω λ(x)|v -f | 2 dx, (11) 
then the limit u solves

min v G(v) + Ω λ(x)|v -f | 2 dx, (12) 
and u j converges strongly to u.

From convex analysis, we can write:

f (t) = min v∈[0,1] tv + ψ(v)
where ψ is the Legendre-Fenchel transform of f . The minimum is achieved for v = f (t) and therefore, for a given triangulation T , the minimization of G is then equivalent to minimize the following functional:

G (u, v, T ) = K∈T |K ∩ Ω| 1 h K (v K |∇u| 2 + ψ(v K ) h K ),
over all u ∈ V (Ω) and v = (v K ) K∈T , piecewise constant on each K ∈ T . For a fixed u, the minimizer over each v is explicitly given by:

v K = f (h K |∇u| 2 ) (13) 
and the optimal u for fixed v solves an elliptic equation. The algorithm of the iterative method used in [START_REF] Chambolle | Discrete approximation of the mumford-shah functional in dimension two[END_REF] is then similar of the adaptive strategy presented in this paper and the local choice of α using the error indicator η 2 K is similar of the choice of v K in (13) with v = α.

IV. JOINT IMAGE RESTORATION AND INPAINTING

There is typically a trade-off between noise removal and edges preservation because, in some cases, the known portions of the image in Ω\D are corrupted by noise. The latter will affect the domain D via the available information in ∂D. To overcome this problem, the most practical idea is to simultaneously denoise the available part of the image and fill-in the missing ones.

Starting with a large value of α in the adaptation steps will certainly smooth the input image f in Ω\D at the first iterations which causes the loss the edges. However, in these known portions, we want to eliminate noise and not edges. Thus, the two parameters α and λ might be controlled adaptively in order to join inpainting and restoration. We assume in this case that the parameter λ is not constant and it depends on the postion of x ∈ Ω\D. Then, for each element K ⊂ Ω\D, we have:

η 1 K = α -1 2 K h K ||λ h (u α,h -f h ) + α h ∆u α,h || L 2 (K) + 1 2 e∈E K α -1 2 e h 1 2 e ||[α e ∇u α,h • n e ]|| L 2 (e) (14) 
For K ⊂ D, we have:

η 1 K = α -1 2 K h K ||α K ∆u α,h || L 2 (K) + 1 2 e∈E K α -1 2 e h 1 2 e ||[α e ∇u α,h • n e ]|| L 2 (e) (15) 
where α e = max(α K 1 , α K 2 ), K 1 and K 2 being the two elements adjacent to e. In the first residual error indicator, the following quantity

E K = α -1 2 K h K ||λ h (u α,h -f h ) + α h ∆u α,h || L 2 (K) (16) 
acts as a confidence measure locating regions of large errors in the computed solution relatively to to the input noisy image f in Ω\D.

To inapint, we control the diffusion coefficient α(x) in the sub domain D and in the same way as the algorithm II-1.

To restore the complementary region Ω\D, we keep α(x) constant and we control the regularization parameter λ by increasing it near the edges to privilege the fidelity part ||λ(u -f )|| L 2 (Ω\D) . The update of λ is automatic and locally depending on the position of x ⊂ Ω\D by the use of the following formula: For K ∈ Ω\D;

λ (k+1) K = min{λ k K * 1 + κ * E K ||E|| ∞ -0.1 + , λ thr },
where λ thr is a threshold parameter.

V. ADAPTIVE STRATEGY FOR THE COMPLEX GINZBURG-LANDAU EQUATION

This equation was originally developed by Ginzburg & Landau in [START_REF] Landau | On the theory of superconductivity[END_REF] to phenomenologically describe phase separation and it is given by:

-∆u + W (u) 2 = 0 ( 17 
)
where u : Ω -→ [-1, 1], is a small positive parameter and W (u) = (1 -|u| 2 ) 2 . It is the Euler Lagrange equation associated to the minimizing of the following energy

1 2 Ω |∇u| 2 dx + Ω W (u) 2 2 dx, (18) 
This equation was used in several works in image processing probelms [START_REF] Belhachmi | Coupling parareal and adaptive control in optical flow estimation with application of movie's restauration[END_REF], [START_REF] Grossauer | Using the complex ginzburg-landau equation for digital inpainting in 2d and 3d[END_REF], [START_REF] Aubert | Detecting codimension-two objects in an image with ginzburg-landau models[END_REF]. For digital image inpainting purposes, it was developed by H. Grossauer and O. Scherzer in [START_REF] Grossauer | Using the complex ginzburg-landau equation for digital inpainting in 2d and 3d[END_REF]. The key advantage of this model is that its solutions are known to produce effects like vortices and shock-waves of the phase when -→ 0 and the solution reveals high contrast in the inpainting domain, which makes it particularly suited for the inpainting task.

The real Ginzburg-Landau equation ( 17) is appropriate only for two-scale images because the minima of the potential function W are attained in the sphere |u| = 1. For gray-scale images, we follow the same methodology of Grossauer and Scherzer in [START_REF] Grossauer | Using the complex ginzburg-landau equation for digital inpainting in 2d and 3d[END_REF]. We rescale the intensity of the input image f (x) to the interval [-1, 1]. Then f is identified with the real part of the complex valued function f re : Ω -→ C such that:

   f = f re + if im , where : f re = the initial damaged image f 0 , f im = 1 -f 2 0 ( 19 
)
By this choice, the complex valued solution u will also have an absolute value equal to 1 but inpainted image (the real part of u) may contain any value from the interval [-1, 1]. Thus, for a gray-scale images, we seek to find a minimizer u α ∈ H 1 (Ω, C) of the following Ginzburg-Landau type energy:

F (u) = Ω α(x) 2 |∇u| 2 dx + Ω W (u) 2 2 dx + Ω λ 2 (u -f ) 2 dx, (20) 
where H 1 (Ω, C) is the Hilbert space of complex functions. A minimizer u α of F satisfies the following Euler-Lagrange equation:

-∇.[α(x)∇u α ] + 1 2 u α (|u| 2 α -1) + λ(u α -f ) = 0, in Ω, α(x)∂ n u α = 0, on ∂Ω. (21) Proposition 2: Let f ∈ L 2 (Ω) be given with |f (x)| ≤ 1 a.e. in Ω. The functional (20) admits a unique minimizer u α in H 1 (Ω, C) with |u(x)| ≤ 1 a.e. in Ω.
Evolution equation:: As it is often done, to solve problem (21), we transform it into a dynamical scheme as follows: 

∂u α ∂t -∇.[α(x)∇u α ] + W (u α ) 2 + λ(u α -f ) in Ω, (22) 
W (u n+1 α ) ≈ (|u nα | 2 -1)u n+1 α
More precisely, the time discrete form leads to the following semi-implicit problem: Having

u n α , find u n+1 α ∈ H 1 (Ω) such that: Ω u n+1 α -u n α δt φdx+ Ω α h ∇u n+1 α ∇φdx+ Ω W (u n+1 α ) 2 φdx + Ω λ(u n+1 α -f )φdx = 0 ∀φ ∈ H 1 (Ω, C).

VI. NUMERICAL EXAMPLES

In this work, all the PDEs were numerically solved using FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF], a finite element free software. In all examples, the damaged regions are marked with red.

In the first example, the task is to inpaint gaps in a white stripe. We display in Fig. 3 the evolution of the meshes at the iterations 0, 10 and 20. We can see that they are progressively sparsified. The first is the initial mesh T 0 which is regular such that every node corresponds to a pixel in the image. We give in Fig. 4 the damaged image and the results obtained using Harmonic model (2) and our model ( 4) with adaptation. Harmonic inpainting (middle-hand plots of Fig. 4) is achieving no connection, producing a smooth solution u in D. Contrariwise, We can see the efficiency of the proposed adaptive method (right-hand plots of Fig. 4) and the edges of the stripe were connected sharply. In the second example, we have chosen a gray-scale image (220×220 Pixels) containing edges and jumps. We illustrate in Fig. 5 the damaged image and the results obtained using total variation (middle) and Harmonic model (2) (right). In Fig. 6, we display the inpainted images using the proposed model (4) where the adaptation was made using the error indicators η 1 K (left) and η 2 k (middle). For both cases, we initialized the algorithm by a large value of α = 50 and we performed 20 adaptive iterations for the error indicator η 2 K and 40 iterations for η 1 K . The right-hand plots of Fig. 6 is the restored image using the Ginzbrg-Landau equation where the adaptation was made using the error indicator η 2 k . We mention that in this case, we took the solution of the Harmonic equation (α is a constant) as an initial guess u 0 in the time discretization. Increasing the values of α by iteration in the same time with the mesh adaptation allows to obtain sharp edges and less regularization (smoothing) at these locations. We give in Fig. 7 a zoom caption in the damaged region 1 for the different models. We remark that our model gives a comparable result to the one obtained using the Ginzburg-Landau equation. We present in Fig. 8 the evolution of the meshes for various time iterations (1,5 and 20) where we used η 2 k as an error indicator. The curve in the right-hand plots of Fig. 9 represents the degrees of freedom as a function of adaptation iterations. It explains how the algorithm works: after some iteration, the number of elements decreases very quickly, then more slowly to improve the sparsification by updating α. We also give in the left-hand plots of Fig. 9the L 2 -error between the restored and the exact image as a function of adaptation iterations. The experiment in Fig. 10 shows the efficiency of the proposed method in a very promising application. The aim is to remove the foreground text in the input image. The text have been successfully removed and the image is well restored. We present in Fig. 11 the result for simultaneous image inpainting and restoration. The input image f is contaminated by a Gaussian noise in the region Ω\D. We performed 20 adaptive iterations and we display the evolution of the restored image for iterations 5 and 20. In the 5th iteration (middle), the image is smoothed in the know regions. The adaptation processes of λ near the edges in this case allows us to recover discontinuities in Ω\D ( see right-hand plot of Fig. 11). we display the solution of the complex Ginzburg-Landau equation. First, the complexification allows us to diffuse more than two phases. Second, this model with adaptation allows us to approximate the corner between the homogeneous regions and reveals high contrast, which is the key advantage of this model compared to others and so it makes it particularly suited in this case.

CONCLUSION

We have investigated an adaptive approach for image inpainting based on a local selection of the different parameters in the models, and on mesh adaptation techniques. We started with the formulation of a linear variational models, and detailed its numerical implementation based on the adaptive discretization which approximate in the sense of the Γ-convergence the Mumford-Shah functional. Numerical experiments on different images were performed and showed the efficiency of the proposed method. We can also say that the linear continuous model presented in this work gives the same final result that one might expect by solving a nonlinear one.
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 3 Fig. 3. The mesh at the iterations 1, 10 and 20, respectively.
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 4 Fig. 4. From left to right: Damaged, Harmonic (2) and model (4) & adaptation images, respectively.
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 5 Fig. 5. From left to right: Damaged image, Total variation and Harmonic model (2) results.
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 6 Fig. 6. From left to right: restored images using model (4) & adaptation (error indicator η 1 ), model (4) & adaptation (error indicator η 2 ) and Complex Ginzburg-Landau model (22) & adaptation.
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 7 Fig. 7. Zoom on region 1: From let to right: TV, Harmonic (2), Harmonic (4) & adaptation (error indicator η 2 ), Ginzburg-Landau (22) & adaptation and Harmonic (4) & adaptation (error indicator η 1 ), respectively.
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 8 Fig.8. The mesh at the iterations 1, 2 and 20.
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 9 Fig. 9. Left: L 2 -error ER = ||u k α -uexact|| 2 as function of adaptation iterations. Right: Number of degrees of freedom as function of adaptation iterations.
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 10 Fig. 10. The damaged, mask and restored images, respetively.

Fig. 11 .

 11 Fig. 11. From left to right: Damaged and noisy -restored at iteration 5restored at iteration 20. In Fig 12, we tested the behavior of the different methods when the damage region contains a corner. For the harmonic model & adaptation (see the middle-hand plots of Fig 12), we can approximate the corner (but not well achieved!) and the edges are improper contrasted. In the left-hand plots of Fig 12,we display the solution of the complex Ginzburg-Landau equation. First, the complexification allows us to diffuse more than two phases. Second, this model with adaptation allows us to approximate the corner between the homogeneous regions and reveals high contrast, which is the key advantage of this model compared to others and so it makes it particularly suited in this case.
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 12 Fig. 12. From left to right: Damaged and the restored image using Harmonic models (4) & adaptation, and complex Ginzburg-Landau (22) & adaptation, respectively.