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ABSTRACT 1 

Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, 2 

although mutualistic, can create a conflict of interest between both partners and constrain 3 

plant mating systems at multiple levels, including the immediate ecological plant selfing rates, 4 

their distribution in and contribution to pollination networks, and their evolution. Here, we 5 

first review experimental evidence that pollinator behaviour influences ecological plant 6 

selfing rates in pairs of interacting species, and that reciprocally plants can modify pollinator 7 

behaviour through plastic and evolutionary changes in floral traits. We also examine how 8 

theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their 9 

foraging behaviour in plant mating system evolution. In doing so, we call for more 10 

evolutionary models combining ecological and genetic factors, and additional experimental 11 

data, particularly to describe pollinator foraging behaviour. We finally show that recent 12 

developments in ecological network theory clarify the impact of community-level interactions 13 

on plant selfing rates and their evolution, and allow for new research avenues to expand the 14 

study of mating systems of animal-pollinated plant species to the level of the plant-pollinator 15 

networks. 16 

 17 

KEYWORDS 18 

Pollinator foraging behaviour; Floral traits; Selfing rates; Plasticity; Inbreeding depression; 19 

Plant-pollinator interactions; Mutualistic networks 20 
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INTRODUCTION 1 

Flowering plants are stimulating models for studying the evolutionary biology of reproductive 2 

systems, owing to their wide diversity of mating systems (Barrett, 2003; Charlesworth, 2006). 3 

Typical topics of interest comprise the evolution of selfing rates (Goodwillie et al., 2005), 4 

including self-incompatibility (Goldberg et al., 2010), the evolution of separate sexes (Spigler 5 

& Ashman, 2012) and sex chromosomes (Charlesworth, 2013), and the maintenance of sexual 6 

reproduction (Silvertown, 2008). The reproduction of the vast majority of Angiosperm 7 

species is unique in its reliance on animals as pollen vectors (~90%, Ollerton et al., 2011), yet 8 

the study of plant mating system evolution has long remained uncoupled from pollination 9 

ecology, focusing primarily on genetic drivers. As mentioned by Charlesworth (2006), the 10 

failure to include ecological mechanisms into the evolution of plant mating may be due to 11 

their diversity: “Models of mating system evolution have emphasised genetic effects, even 12 

though (…) ecological circumstances, such as pollinator abundance or plant density, must 13 

often be important. Their complexity and variety, however, creates difficulties in developing 14 

any general theories”. 15 

The gap between the study of plant mating systems and pollination ecology has shrunk 16 

over the past decades, with many studies focusing mostly on animal-pollinated plants 17 

(reviewed e.g. in Harder & Barrett, 1996, 2006; Goodwillie et al., 2005; Mitchell et al., 2009; 18 

Eckert et al., 2010; Karron et al., 2012; Thomann et al., 2013) but also on wind-pollinated 19 

plants (Friedman & Barrett, 2009). This rich literature has revealed general patterns and 20 

processes out of the complexity mentioned by Charlesworth (2006). One such pattern is the 21 

increase in selfing rates under pollen limitation and its long-term evolutionary consequences 22 

(Wright et al., 2013). This intuitive expectation can now be challenged as pollinator 23 

abundance decline and reduced pollination service become a worldwide reality (Potts et al., 24 

2010; Gonzalez-Varo et al., 2013). Several papers discuss pollinator shortage as a cause of 25 
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outcross pollen limitation (see glossary) and increased immediate ecological selfing rates, 1 

which may determine future evolutionary changes in plant mating systems (Eckert et al., 2 

2010; Thomann et al., 2013). The latter prediction is supported by rapid evolution of the 3 

ability to self-fertilize observed in Mimulus guttatus in the absence of pollinators (Bobdyl 4 

Roels & Kelly, 2011). 5 

Pollinator foraging behaviour also emerges as an important factor influencing plant 6 

selfing rates and their evolution. The predicted impact of foraging behaviour on plant mating 7 

systems is however less clear than that of pollinator abundance because selection on 8 

pollinator vs. plant traits do not always act in the same direction. In plants, selection favours 9 

floral traits that influence pollen transfer to promote reception of conspecific and compatible 10 

pollen, increase the quantity and quality of seeds produced (including the ratio of selfed to 11 

outcrossed seeds) and the amount of pollen exported to conspecifics. In pollinators, selection 12 

favours traits that maximize the rate of energy gain through foraging behaviour (optimal 13 

foraging theory, Pyke, 1984), which may lead to non-optimal pollen transfer for plants. 14 

Hence, although plants and pollinators are involved in true mutualistic interactions with 15 

reciprocal benefits, conflicts of interest are widespread (Bronstein, 2001; Dufay & Anstett, 16 

2003; De Jong & Klinkhamer, 2005, p. 229). Constraints imposed by pollinators on plants, as 17 

well as constraints imposed by plants on pollinators, may induce plastic and evolutionary 18 

responses, such that the two partners are engaged in a permanent Red Queen-like co-19 

evolutionary race. The coevolution of plant and pollinator traits has been a major topic of 20 

research since Darwin, but constraints imposed by pollinator foraging behaviour on the 21 

ecology and evolution of plant mating systems are seldom integrated into experimental and 22 

theoretical studies. For example, most models of the evolution of plant selfing rates assume 23 

that these rates can evolve freely between zero and one. Another limit of studies connecting 24 

mating systems and pollination ecology is that they are often restricted to pairs of plant-25 
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pollinator species. Recent developments in ecological network theory have revealed that the 1 

community context, multi-species interactions, and the position of a species in a plant-2 

pollinator network can be key to understand the influence of pollinators on plant mating 3 

systems (Vanbergen et al., 2014). 4 

Here, we review how the interplay between pollinator behaviour and plant floral traits 5 

influences the immediate, ecological plant selfing rates (hereafter “ecological selfing rates”), 6 

the evolution of selfing rates, and their distribution in plant-pollinator networks (summarized 7 

in Fig. 1). We are interested in self-compatible plants, mostly with perfect flowers, that are 8 

pollinated by insects or birds (Buchmann & Nabhan, 1996), particularly bees and 9 

hummingbirds for which we have more data. In the first section, we show that the ecological 10 

selfing rates of about one half of flowering plant species is controlled partly by pollinator 11 

abundance and behaviour, which should therefore be included in theoretical investigation of 12 

plant mating system evolution. We argue, as do Karron et al. (2012), that the reciprocal 13 

effects of pollinator behaviour on floral traits are much better documented than their 14 

consequences for plant self-fertilization. Because we focus on pollinator behaviour, we 15 

intentionally exclude pollinator abundance, pollen limitation and their influence on the 16 

selection of floral traits, which were presented extensively elsewhere (Elzinga et al., 2007; 17 

Eckert et al., 2010; Schiestl & Johnson, 2013; Thomann et al., 2013). One should keep in 18 

mind that these two components strongly determine ecological selfing rates and their 19 

evolution. 20 

The second part of this review examines how theoretical studies of the evolution of 21 

plant selfing rates include pollinator behaviour and model the plant traits that can alleviate the 22 

constraints it might impose. We show that mechanistic models combining pollinator 23 

behaviour and the genetic consequences of selfing improve on pure ecological or pure genetic 24 

models by providing quantitative predictions of evolutionarily and ecologically stable plant 25 
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mating strategies. We propose a method to account for pollination ecology in models of the 1 

evolution of selfing rates, and provide experimental research avenues to help clarify the role 2 

of plant-pollinator interactions in the distribution of plant selfing rates. The last section shows 3 

that community-level processes can influence the ecology and evolution of plant mating 4 

systems, and outline how to use current knowledge on competing vs. facilitative interactions 5 

among plant species and pollinator species for a better understanding of the distribution and 6 

evolution of plant selfing rates. 7 

 8 

THE INTERPLAY BETWEEN POLLINATOR BEHAVIOUR AND FLORAL TRAITS DETERMINES 9 

ECOLOGICAL PLANT SELFING RATES 10 

The selfing rate or self-fertilization rate s is the fraction of selfed embryos produced by an 11 

individual plant. This fraction depends primarily on the rate of self-pollination, the relative 12 

amounts of self vs. outcross pollen transferred by pollinators or through non-pollinator means 13 

(e.g. stigma dragging). The self-pollination rate can be further modified by pre and post-14 

fertilization selection (see glossary), which is beyond the scope of this review. Only two 15 

categories of plant species have complete control over their selfing rate, although pollinators 16 

may still influence their seed set: (1) obligately outcrossing species (s = 0), such as self-17 

incompatible or dioecious species, representing ca. 50% of species (Igic & Kohn, 2006) and 18 

(2) completely selfing species (s = 1) relying on prior autonomous selfing (see glossary), such 19 

as species producing closed flowers only, which are however extremely rare (Goodwillie et 20 

al., 2005; Culley & Klooster, 2007). 21 

In the remaining half of animal-pollinated plant species, selfing rates are invariably 22 

influenced by pollinators, via the quantities of both outcross and self-pollen transferred 23 

among and within flowers (Figs. 1 and 2). Outcross pollen deposition on plant stigmas is 24 

always fully constrained by pollinators. In contrast, self-pollen deposition on stigmas depends 25 
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only partially, but sometimes strongly, on pollinators as it includes: (1) facilitated self-1 

pollination, the transfer of self-pollen within flowers caused by pollinator visits, (2) 2 

geitonogamous self-pollination caused by pollinator visits among flowers on a plant, and (3) 3 

autonomous, i.e. without the help of pollinators, prior, competing and delayed self-pollination 4 

within flowers (Fig. 2 and definitions of the glossary). Note that the amount of self-pollen 5 

deposited “autonomously” by a plant on stigmas may still be influenced by previous outcross 6 

pollen limitation, as is sometimes the case with delayed autonomous selfing (e.g. Ruan et al., 7 

2010). Besides, even if the amount of autonomous self-pollen is under the plant control, the 8 

rate of self-pollination depends on pollinators via the amounts of self and outcross pollen they 9 

deposit on stigmas. 10 

In the following, we examine how pollinator behavioural traits interact with plant traits 11 

to constrain patterns of outcross and self-pollen deposition and thereby the ecological selfing 12 

rates of plants. We review how pollinators can respond plastically to variation in floral traits 13 

to optimize their energy gains, and which floral traits can vary plastically or genetically to 14 

modify pollinator behaviour and control plant selfing rates. We consider one self-compatible 15 

plant species specialized (see glossary) on one pollinator species or functional group (Fenster 16 

et al., 2004), as is frequently done in studies of the relationship between pollinators and plant 17 

mating systems. Pollinator choice among multiple plant species (preference and constancy, 18 

see glossary), competition among plant species for shared pollinators, and their impacts on 19 

plant selfing rates are discussed only in the last section. 20 

Pollinator traits influencing outcross and self-pollen transfer 21 

Self-pollination rates are influenced by (1) the number of pollinator visits to individual plants 22 

and flowers, (2) the efficiency of pollen transfer from stamens to pollinators and from 23 

pollinators to stigmas, within and among flowers, and (3) the composition of pollen loads on 24 

pollinators, particularly the fraction of self vs. outcross pollen. All these components 25 
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ultimately depend on pollinator abundance, morphological and phenological matching of 1 

plants and pollinators, and pollinator foraging behaviour among and within plants. We focus 2 

on pollinator behaviour (Fig. 1) and do not address pollinator abundance, phenology or 3 

morphology (see e.g. Waser, 1978; Harder & Barrett, 1996 for details on pollen placement on 4 

pollinators; or O’Neil, 1997; Elzinga et al., 2007; Bartomeus et al., 2011 for phenology). 5 

Pollinator grooming behaviour influences pollen transfer efficiency within and among 6 

plants; its intensity and timing greatly determine patterns of pollen deposition of outcross and 7 

self-pollen throughout a foraging bout (see glossary). Grooming generally causes pollen to be 8 

deposited on fewer flowers (e.g. Harder et al., 2000; Castellanos et al., 2003), hence reduces 9 

pollen carryover, with contrasting impacts of within- vs. between-plant grooming. Between-10 

plant grooming reduces pollen dispersal among plants (Holmquist et al., 2012) and is likely to 11 

increase outcross pollen limitation. Within-plant, between-flower grooming reduces pollen 12 

carryover within plants and should increase geitonogamous selfing rates (Matsuki et al., 13 

2008). The scant available data suggest that most grooming occurs between plants (see e.g. 14 

Harder, 1990; Mitchell et al., 2004; Johnson et al., 2005), but the pattern may vary among 15 

pollinator species and depend on pollen availability, as shown by a higher probability of 16 

grooming between flowers with increasing pollen availability (Harder, 1990). More intensive 17 

and more frequent grooming is observed for pollen-collecting visitors (e.g. bees) than for 18 

nectar-collecting visitors (e.g. birds or moths; (Thomson, 1986; Castellanos et al., 2003). As a 19 

result, nectar-feeding species tend to transfer pollen more efficiently than do pollen-feeding 20 

species (Conner et al., 1995; Sahli & Conner, 2007; but see King et al., 2013). More 21 

generally, the extent of pollen carryover is negatively related to geitonogamous selfing rates 22 

(Geber, 1985; Robertson, 1992a; Morris et al., 1994): pollinators that deposit most of their 23 

outcross pollen on the first few flowers transfer mostly self-pollen on the subsequent flowers 24 

of the plant. Grooming can partially cause the negative relationship between pollen carryover 25 
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and geitonogamy (Rademaker et al., 1997; Matsuki et al., 2008), but pollen carryover is also 1 

strongly governed by interactions between pollinator morphology and floral design (Harder & 2 

Barrett, 1996). 3 

The number of flowers a pollinator probes successively on a plant increases 4 

geitonogamous self-pollination (Rademaker et al., 1999; Karron et al., 2009). Pollinators tend 5 

to probe more flowers on plants with larger floral displays (see glossary), but rarely probe 6 

more than a dozen flowers per plant, so that the fraction of flowers probed per plant is often a 7 

decreasing function of display size (reviewed in Snow et al., 1996; Ohashi & Yahara, 2001; 8 

Harder et al., 2004). Multiple reasons can explain why pollinators leave plants before visiting 9 

all open flowers on a plant (reviewed in Snow et al., 1996); the most general one involves the 10 

maximization of energy gains (optimal foraging). For pollinators, which have limited short-11 

term memory, visiting only a fraction of available flowers reduces the risk of visiting a given 12 

flower twice (Ohashi & Yahara, 1999, 2001, 2002). Similarly, pollinators leave a plant earlier 13 

when they encounter empty, rewardless flowers (e.g. Bailey et al., 2007 and references 14 

therein). Self-pollination also depends on the order in which flowers of a plant are visited by 15 

pollinators. As the first few flowers visited by pollinators contribute the most to outcross 16 

pollen transfer, outcross pollination is expected to be larger when independent pollinators 17 

visit flowers randomly on a plant than when all pollinators visit flowers in the same order 18 

(Devaux et al., unpublished manuscript, for a model). 19 

All above characteristics of pollinators affect the transfer of outcross and self-pollen 20 

among flowers, but not within-flower facilitated selfing (see glossary), which remains little 21 

studied. Facilitated selfing has been demonstrated unambiguously in a small number of 22 

species(e.g. Anderson et al., 2003; Duncan et al., 2004; Johnson et al., 2005; Owen et al., 23 

2007; Vaughton et al., 2008), but its broader contribution to total selfing rates in natural 24 

populations is currently unknown (see Box 1 for a method). It is unclear whether facilitated 25 
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selfing is primarily controlled by flower characteristics, such as spatial (herkogamy) or 1 

temporal (dichogamy) separation of anthers and stigmas (Lloyd & Webb, 1986; Webb & 2 

Lloyd, 1986; Brunet & Eckert, 1998) or if it can be influenced by pollinator behaviour. Buzz-3 

pollination by native bees causes high rates of facilitated self-pollination in the partially self-4 

incompatible Dianella revoluta (Duncan et al., 2004). Furthermore, reduced time spent at 5 

individual flowers by hawkmoths has been associated with decreased seed production in self-6 

compatible Petunia lines (Brandenburg et al., 2012), but we do not know whether any of the 7 

effect can be attributed to facilitated selfing. From available experimental studies, we can 8 

nevertheless argue that increased numbers of flowers probed per plant or increased probing 9 

time per flower should contribute to increased facilitated selfing at the plant level. 10 

Floral traits influencing self-pollination rates via pollinator behaviour 11 

Floral traits affecting self-pollination can be divided into three broad categories: (1) traits 12 

related to autonomous selfing (Lloyd & Schoen, 1992), (2) traits modifying mechanically 13 

pollinator-mediated outcross and self-pollen transfer, without altering pollinator behaviour 14 

(e.g. floral design, pollen size and stickiness, and within and among flowers temporal 15 

separation of male and female functions; Webb & Lloyd, 1986; Lloyd & Schoen, 1992) and 16 

(3) traits modifying pollinator behaviour directly. We focus on the latter floral traits, which 17 

typically influence two types of foraging behaviours: (3.1) patterns of flower visitation among 18 

plants (attraction, preference and constancy, see glossary), which are mostly discussed in the 19 

last section and (3.2) patterns of flower visitation within plants (number and sequence of 20 

flowers visited, as well as probing time). 21 

Floral display (see glossary) may be the most studied plant trait influencing pollinator 22 

behaviour. Plants with larger floral displays attract more pollinators, thereby receiving more 23 

outcross and geitonogamous pollen (Snow et al., 1996; Rademaker et al., 1999; Karron et al., 24 

2004; Williams, 2007). Floral display can be modified plastically, for example via flower 25 

Page 10 of 60Journal of Evolutionary Biology



11 
 

wilting when pollinators are abundant (Harder & Johnson, 2005), or flower abortion inducing 1 

pollinators to leave the plant (Ito & Kikuzawa, 2003); both mechanisms reduce the risk of 2 

geitonogamous selfing. Floral display can also be modified via evolutionary changes in the 3 

total flower production, in the distribution of open flowers among days (individual 4 

phenology) or in the longevity of flowers (Elzinga et al., 2007; Devaux & Lande, 2010). How 5 

these changes in floral display modify selfing rates depends on the rates and patterns of 6 

flower visitation by pollinators but the general trend is again an increase in plant selfing rates 7 

with larger floral displays. 8 

Many other floral traits are also cues for pollinator attraction and influence visitation 9 

rates and outcross pollen receipt. These include flower size, reward production, floral shape, 10 

colour, and scent (Cozzolino & Scopece, 2008), or more anecdotal characteristics, such as 11 

colourful leaves (Keasar et al., 2009), sterile anthers (staminodes, Sandvik & Totland, 2003) 12 

or sterile flowers (e.g. Centaurea cyanus, Garcia-Jacas et al., 2001). Nectar production and its 13 

replenishment dynamics have received particular attention, because they are critically related 14 

to geitonogamy. For example, bumblebees experiencing unrewarding (nectarless) plants 15 

probe more flowers on subsequent rewarding plants, such that the geitonogamous selfing rates 16 

of rewarding plants increased with the frequency of unrewarding plants in the population 17 

(Ferdy & Smithson, 2002). Conversely, maintaining nectarless flowers within an otherwise 18 

nectar-producing inflorescence may encourage pollinators to leave a plant early, thereby 19 

reducing geitonogamy (Hirabayashi et al., 2006; Bailey et al., 2007 and references therein; 20 

Whitehead et al., 2012). Pollinator behaviour within a plant, hence geitonogamy, can also be 21 

modified by floral complexity (more flowers visited in plants with simpler flowers, Ohashi, 22 

2002) or inflorescence architecture (e.g. lower selfing in racemes vs. umbels, Harder et al., 23 

2004; Jordan & Harder, 2006; or in more tightly twisted inflorescences, Iwata et al., 2012). 24 
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Again, floral traits influencing facilitated self-pollination are poorly known, apart from 1 

structural features preventing self-pollination, such as anther caps (Peter & Johnson, 2006) 2 

and spatial separation of sexes. In contrast, the production of complex floral design or shape 3 

can induce higher probing time (Ohashi, 2002), which can translate into higher seed set 4 

(Brandenburg et al., 2012), potentially because of higher facilitated selfing. 5 

There is ample and long-standing evidence that plant selfing rates are constrained by 6 

pollinator morphology and foraging behaviour (Harder & Barrett, 1996), which may favour 7 

plant traits that can alleviate constraints imposed by pollinators. Evolution of plant traits 8 

under pollinator-mediated selection has been extensively studied (Elzinga et al., 2007 for 9 

plant phenology; Schiestl & Johnson, 2013 for floral signals), but with surprisingly little 10 

emphasis on plant mating systems, except in verbal models (Eckert et al., 2010; Thomann et 11 

al., 2013). In the next section, we review the few theoretical studies that include pollinator 12 

behaviour in models of the evolution of plant mating systems. We argue that combining 13 

pollination ecology and the genetics of inbreeding depression is necessary to describe 14 

accurately and to understand plant mating system evolution. We conclude by pointing out 15 

experimental data needed to extend theoretical work on the evolution of plant mating system 16 

under pollinator constraints. 17 

 18 

THE ROLE OF POLLINATORS IN THE EVOLUTION OF PLANT SELFING RATES 19 

We clarify how the interplay between plants and pollinators determines plant fitness 20 

components, besides selfing rates, and review how models of the evolution of selfing rates 21 

implicitly or explicitly integrate plant-pollinator interactions. 22 

Constraints imposed by pollinators on plant fitness components and the evolution of plant 23 

selfing rates 24 
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The fitness of a plant is determined by the number of outcrossed and selfed seeds it produces 1 

and the number of pollen grains it successfully exports to other plants (male outcrossed siring 2 

success), weighted by the relative offspring fitnesses. Hence the fitness of animal-pollinated 3 

plants depends critically on pollinators, also via resource allocation to attraction traits, and on 4 

inbreeding depression (see glossary, Lloyd, 1979; Lande & Schemske, 1985; Charlesworth & 5 

Willis, 2009)  6 

Two major phenomena involving pollinators and influencing plant fitness components 7 

are often included in studies of the evolution of plant selfing rates without explicit modelling 8 

of pollinators (reviewed in Goodwillie et al., 2005): pollen limitation and pollen discounting 9 

(see glossary). Pollen limitation is a key component favouring the evolution of higher selfing 10 

rates (Cheptou, 2004; Porcher & Lande, 2005b) and depends greatly on pollinator abundance 11 

(Ashman et al., 2004; Eckert et al., 2010; Thomann et al., 2013). Several authors have 12 

proposed that stronger outcross pollen limitation can mimic declines in pollinator density and 13 

hamper the evolution of complete outcrossing (Sakai & Ishii, 1999; Masuda et al., 2001; 14 

Morgan & Wilson, 2005). Pollen discounting, a negative relationship between selfing rate and 15 

pollen export, can be caused by pollinators transferring large amounts of self-pollen among 16 

multiple flowers of plants, which are therefore lost for outcrossing (Karron & Mitchell, 2012), 17 

and hinders the evolution of high selfing rates (Goodwillie et al., 2005). 18 

More generally, correlations or functional relationships among fitness components are 19 

important drivers of the evolution of plant mating systems. Several models show that the 20 

maintenance of mixed mating can result from relationships between male fertility, female self 21 

fertility and female outcross fertility (including pollen discounting, Johnston et al., 2009), 22 

between viability and selfing rate (Jordan & Otto, 2012), or between selfing and a cost of 23 

interaction with pollinators (Lepers et al., unpublished manuscript). Correlations among plant 24 

fitness components are partly governed by pollinators (see below), particularly by their 25 
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foraging behaviour within plants in response to floral traits (e.g. floral display, Best & 1 

Bierzychudek, 1982). Yet, models that use these correlations without integrating pollinators 2 

explicitly are useful to address the effects of pollinators on selfing rates and have helped 3 

understand the qualitative role of pollination in the evolution of plant mating. Assuming a 4 

positive correlation between the number of selfed and outcrossed ovules is relevant for many 5 

animal-pollinated species in which more pollinator visits increase both geitonogamous self-6 

pollination and the number of outcrossed seeds (Johnston et al., 2009 and references therein). 7 

Similarly, a negative correlation between reward production and selfing rate (as in Lepers et 8 

al., unpublished manuscript), or between the production of costly open (vs. closed) flowers 9 

and selfing rate (as in Masuda et al., 2001; data in Oakley et al., 2007) can be used to 10 

understand the evolution of selfing syndromes (see glossary; reviewed by Sicard & Lenhard, 11 

2011). 12 

Further progress towards more reliable, quantitative predictions of equilibrium mating 13 

systems requires mechanistic models of the constraints that pollinator behaviour imposes on 14 

plant selfing rates, which are still few. Morgan et al. (2005) used optimal foraging theory to 15 

model evolution of selfing by assuming a decreasing rate of geitonogamous selfing with 16 

increasing plant density, which was justified because pollinators are more likely to switch 17 

between plants when flight distances are smaller (Cresswell, 1997; Mustajarvi et al., 2001). 18 

Another approach has included the demography of plant and pollinator populations, 19 

highlighting the possibility of demographic extinction of pollinator and plant populations 20 

during the transition to higher selfing rates (Lepers et al., unpublished manuscript), due to 21 

reduced production of rewards for pollinators. The most comprehensive mechanistic models 22 

tackle the evolution of floral traits influencing pollinator behaviour, and therefore plant 23 

selfing rates. For example, models that jointly describe the evolution of daily floral display 24 

and pollinator foraging behaviour show that pollinators can generate stable intermediate 25 
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geitonogamous selfing rates (de Jong et al., 1992; Masuda et al., 2001; Devaux et al., 1 

unpublished manuscript). Similarly, models of the evolution of nectar content have analysed 2 

how the production of rewardless flowers can decrease the geitonogamous selfing rate of 3 

individual plants (Bailey et al., 2007) and conversely how pollinator learning can increase the 4 

geitonogamous selfing rates of rewarding plants that co-occur with non-rewarding plants 5 

(Ferdy & Smithson, 2002). 6 

Models combining pollinator foraging and the evolution of floral traits are promising 7 

tools to study the ecological drivers of plant mating system evolution, but they can still be 8 

improved. The number of flowers probed, hence the geitonogamous selfing rate of self-9 

compatible hermaphrodite species, critically depends on pollinator foraging behaviour, but the 10 

latter is simplified in existing models: pollinators are assumed to visit all flowers on a plant 11 

(de Jong et al., 1992), the number of pollinator visits per plant is assumed proportional to 12 

floral display (Masuda et al., 2001, 2004), the probability to leave a plant is assumed 13 

unrelated to floral display (Devaux et al., unpublished manuscript), and pollinators are 14 

assumed to leave a plant immediately after visiting a rewardless flower (Bailey et al., 2007); 15 

these assumptions are at odds with empirical observations (Robertson, 1992b; Duan et al., 16 

2005; Ishii & Harder, 2006). Such assumptions are unavoidable, and highlight the difficulty 17 

of including realistic but sufficiently general models of pollination ecology in models of the 18 

evolution of plant selfing rates (but see Ferdy & Smithson, 2002 for a model incorporating 19 

pollinator learning). 20 

The interplay between pollinators and the dynamics of purging inbreeding depression 21 

determines the evolution of plant selfing rates  22 

Inbreeding depression (see glossary and Box 2), the relative fitness of selfed vs. outcrossed 23 

offspring, is a central evolutionary force that has received much attention in the population 24 

genetics approach to studying plant mating system evolution (reviewed in Charlesworth & 25 
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Willis, 2009). The joint evolution of inbreeding depression and plant mating systems, i.e. the 1 

purging of deleterious mutations with increasing selfing rates, has been extensively studied 2 

both experimentally (Husband & Schemske, 1996) and theoretically, but has rarely been 3 

included in ecological models of plant mating system evolution. Allowing for an evolving 4 

rather than constant inbreeding depression in models of pollination ecology can nevertheless 5 

greatly alter the outcomes of models of the evolution of selfing. First, conditions favouring 6 

the maintenance of outcrossing are much more restricted in the presence of evolving rather 7 

than constant inbreeding depression (Porcher & Lande, 2005a; b). Second, purging creates a 8 

strong positive feedback on the evolution of selfing: an increase in the population selfing rate 9 

decreases inbreeding depression (Fig. 3), thereby strongly favouring the further evolution of 10 

increased selfing. This can destabilize equilibria that appear evolutionarily stable in models 11 

where inbreeding depression does not depend on the selfing rate. Porcher et al. (2009) 12 

demonstrated that incorporating a genetic model for inbreeding depression and the possibility 13 

of purging destabilizes intermediate selfing rates that would otherwise be maintained by 14 

temporal variation in inbreeding depression (Cheptou & Schoen, 2002). 15 

The joint evolutionary dynamics of inbreeding depression and plant mating system are 16 

often overlooked in ecologically-oriented models because their analysis requires complex 17 

genetic models over and above the complexity of ecological processes. A method based on an 18 

approximation for the purging of inbreeding depression (e.g. Lande et al., 1994) provides a 19 

powerful way around this complexity (Box 2), on the condition that genomic mutation rates to 20 

deleterious alleles causing inbreeding depression remains moderate (Box 2, Porcher & Lande, 21 

2013). This approximation has been used in some ecological models to study the joint role of 22 

ecological and genetic constraints in plant mating system evolution (Johnston, 1998; Devaux 23 

et al., unpublished manuscript; Lepers et al., unpublished manuscript). These models show 24 

that ecological and genetic mechanisms interact strongly to determine evolutionary outcomes. 25 
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For example, Devaux et al. (unpublished manuscript) identified two types of equilibrium 1 

selfing rates when modelling the evolution of floral display and geitonogamous selfing under 2 

pollinator constraints: (1) ecological equilibria constrained by pollinator behaviour only, 3 

which exist regardless of inbreeding depression, and (2) evolutionarily stable equilibria 4 

maintained by a trade-off between pollinator attraction and avoidance of geitonogamous 5 

selfing, and governed by evolving inbreeding depression. This model also suggests that a 6 

baseline rate of unavoidable geitonogamous selfing constrained by pollinators can trigger 7 

purging of inbreeding depression and create conditions favouring evolution of increased 8 

autonomous selfing. In view of this interaction between ecological and genetic mechanisms, 9 

we encourage modellers interested in the ecological drivers of plant mating system evolution 10 

to account for evolving inbreeding depression, which can be easily done using approximation 11 

methods (Box 2). 12 

Experimental limits to theoretical models 13 

No model has yet analysed the joint evolution of plant selfing rates and pollinator 14 

characteristics: the morphologies and foraging behaviours of pollinators are generally 15 

assumed to be constant (but plastic) functions of floral signals. Univariate pollinator-mediated 16 

selection on multiple floral traits and their genetic architecture are well documented 17 

(Kingsolver et al., 2001; Geber & Griffen, 2003; Ashman & Majetic, 2006; Karron et al., 18 

1997; Galliot et al., 2006). Several papers have shown that floral traits could adapt rapidly 19 

(Ashman et al., 2004; Thomann et al., 2013), and a recent review has suggested that plants 20 

could adapt more rapidly to pollinator-mediated selection than pollinators do to floral traits, 21 

which can explain why we frequently observe pollination syndromes and floral convergence 22 

in plants (Schiestl & Johnson, 2013 and references therein). Thus, the rarity of coevolutionary 23 

models could reflect the lack of data on traits and behaviour of pollinators, and their adaptive 24 
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potential, although a few models of coevolution of plant and pollinator traits do exist (Kiester 1 

et al., 1984; Zhang et al., 2013), but do not address the evolution of plant mating. 2 

Modelling the joint evolution of plant mating and pollinator traits would require the 3 

following experimental steps: (1) for plants, estimation of facilitated self-pollination and 4 

elucidation of pollinator characteristics and behaviour involved (see Box 1 for a method); (2) 5 

for plants again, estimation of the multivariate selection induced by pollinators on several 6 

floral traits simultaneously, as both direct and indirect (correlated) selection is responsible for 7 

the observed phenotypic distribution of floral traits; (3) for pollinators, accurate description of 8 

the genetic architecture (number of and correlation among genes) and the selection gradients 9 

on morphological and behavioural traits imposed by plants or their competitors; and (4) 10 

estimation of the adaptive potential of both floral and pollinator traits. 11 

 12 

THE RECIPROCAL CONTRIBUTION OF PLANT-POLLINATOR NETWORKS TO PLANT SELFING 13 

RATES 14 

The interactions between plants and pollinators determine immediate ecological self-15 

pollination rates, as well as the evolution of plant selfing rates. Most studies, both 16 

experimental and theoretical, address this topic by focusing on pairs of interacting species, 17 

whereas plants and their pollinators are part of complex interaction networks (Bascompte et 18 

al., 2003; Strauss & Irwin, 2004; Pocock et al., 2012), which should influence plant mating 19 

systems and their evolution. The combination of estimates from independent populations 20 

scattered across the globe indicates a U-shaped distribution of plant selfing rates, with a 21 

strong bias towards highly outcrossing species and numerous species with intermediate 22 

selfing rates (Goodwillie et al., 2005; Igic & Kohn, 2006). Whether this distribution is 23 

representative of local plant communities is debatable, nevertheless it is likely that selfing 24 

rates exhibit interspecific variation within communities. In the following we argue that (1) in 25 
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a network, the distribution of selfing rates of plant species that are not completely outcrossing 1 

or completely selfing can be explained partly by the multispecies interactions operating at an 2 

ecological time scale (Fig. 1), and (2) conversely, on longer time scales, the evolution of plant 3 

mating systems, particularly the transition to higher selfing, can constrain the architecture of 4 

plant-pollinator networks. 5 

The influence of the architecture of mutualistic networks on plant ecological selfing rates 6 

and their evolution 7 

Here, we review the scarce available data and make predictions for the expected impact of 8 

multispecies interactions on plant mating. We also point out the data needed to test these 9 

predictions and better understand community-level effects on plant selfing rates. 10 

Plant-pollinator networks are shaped by pollinator optimal foraging and morphological 11 

or phenological matching between partners (e.g. Junker et al., 2013). Within a given network, 12 

plants differ in the identity of their pollinators, which is a primary mechanism leading to 13 

differences in selfing rates in a plant community: different pollinator species have different 14 

foraging behaviour and pollen transfer efficiencies and therefore contribute to variation in 15 

selfing rates (Morinaga et al., 2003; Brunet & Sweet, 2006; Matsuki et al., 2008; but see 16 

Eckert, 2002). Mutualistic interaction networks are also characterized by their nestedness (see 17 

glossary), which implies asymmetric relationships between plant and pollinator species: 18 

specialist plant (respectively pollinator) species interact (more often) with generalist 19 

pollinator (respectively plant) species (Bascompte et al., 2003; Thébault & Fontaine, 2010). 20 

This architecture determines the level of interferences among specialist plant species because 21 

of shared (generalist) pollinators, and among specialist pollinator species because of shared 22 

(generalist) plant species. The combination of all interference components determines the 23 

number of pollinator visits per plant and the quantity of heterospecific, outcross and self-24 
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pollen deposited per pollinator visit, hence immediate ecological selfing rates (Wilcock & 1 

Neiland, 2002; Vanbergen et al., 2014). 2 

In pollinator-sharing plant species, the rate of heterospecific vs. conspecific outcross 3 

pollen transfer is governed by the floral constancy of pollinators (Ashman & Arceo-Gomez, 4 

2013 and see glossary). Within-bout floral constancy of individual pollinators is likely to 5 

maintain high outcrossing rates by increasing the relative amount of conspecific vs. 6 

heterospecific pollen deposited on stigmas. We are unaware of any experimental study of this 7 

relationship between floral constancy and selfing rates, but floral constancy is influenced by 8 

the structure of both plant and pollinator communities, which should contribute to variation in 9 

the selfing rate of a given plant species among communities. Similarities in floral traits among 10 

plant species of a community tend to lower floral constancy: de Jager et al. (2011) observed 11 

higher probabilities of pollinators switching between co-occurring Oxalis species of similar 12 

colour. Conversely, Gegear & Laverty (2001, 2005) predicted and verified experimentally 13 

that the diversity of plant species in a community increases floral constancy, particularly 14 

when plant species differ in multiple floral traits. Interference among pollinators in a 15 

community can also alter floral constancy, and thus the amount of outcross pollination. For 16 

example, experimental removal of an abundant pollinator caused weaker interspecific 17 

competition for food resources among the remaining pollinator species, which decreased their 18 

floral constancy, thus plant seed set, in natural populations of Delphinium barbeyi (Brosi & 19 

Briggs, 2013); the consequences on selfing rates were however not examined. 20 

In addition to heterospecific pollen transfer, interference among (specialist) plant 21 

species sharing pollinators also impacts pollinator visitation rates, with two contrasting 22 

patterns: (1) decreased visitation rates (competition), caused by a combination of higher 23 

density of competitor plants and higher pollinator preference for competitor plants (Rathcke, 24 

1983; Vamosi et al., 2006; Flanagan et al., 2011), and (2) increased visitation rates 25 
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(facilitation), resulting from more effective attraction cues, maintenance of larger populations 1 

of pollinators (Sargent & Ackerly, 2008; Liao et al., 2011), or availability of complementary 2 

resources for pollinators (Ghazoul, 2006). Competitive and facilitative interactions influence 3 

selfing rates because they control the amount of outcross pollen deposited on stigmas 4 

(Vamosi et al., 2006; Alonso et al., 2010). Which of these predominates among plant species 5 

likely depends on phylogenetic distances among species (facilitation is more likely among 6 

closely related species, Moeller, 2004; Schuett & Vamosi, 2010; Sargent et al., 2011) and the 7 

overlapping of population flowering phenologies within (Fründ et al., 2011) and among days 8 

(Motten, 1986; Devaux & Lande, 2009; Runquist, 2013). 9 

Predicting how heterospecific pollen transfer and competition for pollinator visitation 10 

jointly impact plant mating is straightforward: both mechanisms cause conspecific outcross 11 

pollen limitation, which should be associated with increased selfing. Only a couple of studies 12 

have demonstrated increased (ecological) selfing rates due to competition for pollinators: in 13 

Mimulus ringens (Bell et al., 2005) and Laguncularia racemosa (Landry, 2013). At broader 14 

time scales, highly selfing populations of Arenaria uniflora are thought to have evolved to 15 

avoid competition with A. glabra (Fishman & Wyatt, 1999). In contrast, the effect of 16 

pollinator sharing on selfing rates in plant species with facilitative interactions is less 17 

intuitive, because heterospecific pollen transfer and increased pollinator visitation rates 18 

should compensate one another. In Clarkia communities characterized by facilitative 19 

interactions, increased autonomous selfing is selected for under low plant species diversity 20 

(Moeller & Geber, 2005), which suggests weak outcross pollen limitation and limited impacts 21 

of heterospecific pollen transfer in highly diverse plant communities. The negative effects of 22 

heterospecific pollen transfer can be avoided by increased floral constancy of pollinators 23 

(Gegear & Laverty, 2005), separate pollen placement on pollinator bodies (Waser, 1978; 24 
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Huang & Shi, 2013 and references therein) or higher tolerance to heterospecific pollen 1 

transfer (Ashman & Arceo-Gomez, 2013). 2 

Finally, we may predict lower selfing rates on average for generalist than for specialist 3 

plant species for two reasons. First, generalist plant species should receive more independent 4 

visits by pollinators, which should deposit larger amounts of outcross pollen. In a nested 5 

network, a significant fraction of this outcross pollen may however be heterospecific, because 6 

generalist plant species are visited by specialist as well as generalist pollinators. Fang & 7 

Huang (2013) for example observed higher rates of heterospecific pollen transfer in generalist 8 

vs. specialist plants. Heterospecific pollen transfers may explain why the general negative 9 

relationship between pollinator diversity and outcross pollen limitation remains weak (Davila 10 

et al., 2012). Second, interference among pollinators can alter pollinator behaviour within 11 

plants, thereby influencing selfing rates via geitonogamous pollen transfer. Optimal foraging 12 

selects for pollinators that leave plants before interacting with competitors and predators. 13 

Hence, generalist plant species could exhibit lower geitonogamous selfing rates because 14 

interference among multiple pollinator species is likely to reduce the number of flowers each 15 

pollinator probes on a plant. One experimental study provides indirect support for this 16 

phenomenon: Greenleaf & Kremen (2006) showed that in sunflower (Helianthus annuus) 17 

fields containing male-fertile and male-sterile individuals, honey bees that interacted with 18 

wild bees on male-sterile plants flowers were more likely to switch to a male-fertile plant than 19 

when they interacted with a conspecific, thereby enhancing pollen transfer among individuals. 20 

Further investigation is needed to confirm or rule out the prediction of larger outcrossing rates 21 

in generalist vs. specialist plant species, for which at present there is little direct experimental 22 

evidence. 23 

There is thus mounting evidence that the architecture of plant-pollinator networks can 24 

contribute to plant selfing rates and their evolution (Fig. 1). Experimental data are however 25 
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needed to explore the relationship between selfing rates and network architecture, particularly 1 

plant specialization to pollinators (see glossary), and broaden our understanding of the 2 

underlying mechanisms. Particularly, quantified plant-pollinator networks are crucial for an 3 

accurate assessment of plant specialization (Ings et al., 2009). Note however that most 4 

networks are based on visitation data, which may not be representative of actual pollen 5 

transfer networks (Alarcón, 2010; King et al., 2013). We also need reliable estimates of 6 

selfing rates, based on genetic markers for plant species of the same network (David et al., 7 

2007), to document the community-level distribution of plant selfing rates, now only available 8 

in different ecological contexts (Goodwillie et al., 2005). As a first step, selfing rates could be 9 

regressed on specialization (number of visiting pollinator species) across all plant species of a 10 

given plant-pollinator network at a given time. Alternatively, analyses could focus on a single 11 

or a few plant species and make use of the documented spatial or temporal variation in 12 

mutualistic networks. For example, Vanbergen et al. (2014) estimated the selfing rate of 13 

Cirsium palustre and characterized plant-pollinator networks across a gradient of grazing 14 

intensity. They observed higher selfing rates, associated with less densely connected 15 

networks, in ungrazed vs. intensively grazed habitats. However, for a given grazing intensity, 16 

selfing rates were positively related to network connectance. No general conclusion can be 17 

drawn from this single study with conflicting patterns, but the work of Vanbergen et al. 18 

(2014) does confirm that the architecture of plant-pollinator networks impacts plant selfing 19 

rates. 20 

Finally, studies of pollinator floral constancy are still rare: existing data deal with the 21 

specialization of pollinator species only, whereas floral constancy is defined at the individual 22 

level. Floral constancy and specialization can overlap (a pollinator species specialized on a 23 

single plant species can only be constant), but remain distinct features of pollinator behaviour 24 

(a generalist pollinator can be or not constant within a foraging bout, see glossary). Hence, we 25 
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believe that pollinator specialization is informative to study the dynamics of plant-pollinator 1 

networks, but not to understand realized pollination patterns at the network level. Estimates of 2 

floral constancy should ideally quantify the probability of pollinator switching, and go beyond 3 

binomial classifications (in/fidelity, as in Brosi & Briggs, 2013). 4 

The influence of plant mating systems on plant-pollinator network architecture  5 

Evolutionary changes in selfing rates, particularly autonomous selfing, may in the short-term 6 

involve minor modifications of floral traits (e.g. herkogamy, Webb & Lloyd, 1986), and have 7 

little consequence for pollinator visitation rates and patterns. In the long term however, they 8 

can induce more conspicuous changes and dramatically reduce pollinator visits, e.g. via a 9 

decrease in floral size, nectar and scent production, or pollen/ovule ratio (Sicard & Lenhard, 10 

2011), which could eventually alter the architecture of plant-pollinator networks. Few studies 11 

so far have examined how plant mating systems shape plant-pollinator networks, with the 12 

exception of Ollerton et al. (2006) and Davila et al. (2012), who found no difference in plant 13 

specialization between self-compatible and self-incompatible species (a qualitative approach). 14 

Yet, comparing self-compatible and self-incompatible species may not be appropriate to 15 

detect a relationship between plant specialization and selfing rate, because self-compatible 16 

species exhibit a wide range of selfing rates, from complete outcrossing to complete selfing 17 

(Goodwillie et al., 2005). 18 

We present here a preliminary analysis that corroborates our prediction that 19 

predominantly selfing species should be visited by fewer pollinator species than 20 

predominantly outcrossing species. For this analysis, we brought together data on plant 21 

mating system from the Biolflor database (Klotz et al., 2002) with three published networks 22 

providing qualitative or quantitative plant-pollinator interactions: a forest understory 23 

(Robertson, 1929), a meadow (Memmott, 1999) and the Norwood farm (Pocock et al., 2012) 24 

networks. The same tendency of fewer pollinator species on predominantly selfing plant 25 
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species is observed across the three networks (Fig. 4), although differences among the mating 1 

system classes are not all significant. A higher diversity of pollinator species on outcrossing 2 

species can result from two non-exclusive phenomena: a lower visitation rate to highly selfing 3 

species, which is mechanically associated with fewer pollinator species via a sampling effect, 4 

and a higher “true” specialization of selfing plant species. 5 

This example emphasizes the need for quantified interaction networks, to separate the 6 

contributions to plant specialization due to overall pollinator (or plant) abundance vs. 7 

diversity of visiting pollinator species. Several authors (e.g. Blüthgen et al., 2007) have 8 

stressed the influence of plant or pollinator abundance on the measurement of specialization, 9 

but specialization is still frequently measured as a number of species, so that highly-selfing 10 

plant species receiving few visits may be mistaken for extremely specialist species. In the two 11 

quantified networks available here the number of pollinator species was always strongly and 12 

significantly correlated with the total number of visits on a plant (not shown). There was also 13 

a tendency, although not significant, for fewer visits to highly-selfing plant species vs. highly-14 

outcrossing plant species. When controlling for the effect of the number of visits a residual 15 

effect of mating system on the number of pollinator species remained, but only in the 16 

Norwood network for which predominantly outcrossing plant species were visited by a higher 17 

diversity of pollinators. 18 

This analysis has several shortcomings (crude classification of plant mating systems, 19 

single trait approach ignoring correlates of mating systems that may also influence plant-20 

pollinator interactions, species considered as independent samples, etc.), and does not provide 21 

a causal relationship between plant selfing rates and the plant-pollination networks. However, 22 

it offers new research directions, both theoretical and experimental, to understand the 23 

contribution of plant mating systems to the architecture of plant-pollinator networks. 24 

 25 

Page 25 of 60 Journal of Evolutionary Biology



26 
 

CONCLUDING REMARKS 1 

The study of plant mating systems in plant-pollinator networks is still in its infancy, but there 2 

is already conclusive evidence that ecological plant selfing rates and their evolution are 3 

shaped by conflicts of interest between plants and their pollinators, and by interactions 4 

between pollinator behaviour and plant mating systems at the network level. The relative 5 

contribution of such ecological constraints vs. genetic drivers to the evolution of plant mating 6 

systems, as well as the role of temporal variation in plant-pollinator networks, remains largely 7 

unknown and should be explored both empirically and theoretically. Regardless of what 8 

drives the evolution of plant selfing rates, it is associated with changes in floral traits, as is the 9 

case in the selfing syndrome: the consequences of plant mating system evolution on the 10 

architecture of plant-pollinator networks is another topic that warrants further investigation. 11 
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GLOSSARY 1 

 2 

Floral constancy (or fidelity) refers to the propensity for an individual pollinator to visit 3 

flowers of a single floral type (hence one or a few plant species) within a foraging bout. It can 4 

be measured by the number of transitions among floral types visited within a bout (Waser, 5 

1986; Chittka et al., 1999). Constancy is widespread across pollinator species and is 6 

explained, at least partially, by the limited short-term memory of pollinators for visual and 7 

olfactory cues and by their limited motor learning for handling flowers (Chittka et al., 1999). 8 

Floral display is the total number of flowers that are open simultaneously on a plant on a 9 

given day. Note that floral display sometimes also includes floral size (e.g. Goodwillie et al., 10 

2010), despite an existing trade-off between number and size of flowers (Sargent et al., 2007). 11 

A foraging bout is the time a pollinator spends visiting flowers during a single sequence, 12 

between the moment it leaves its nest and the moment it returns to it. 13 

Inbreeding depression is the relative decrease in fitness of selfed vs. outcrossed progeny, 14 

caused mostly by a combination of highly deleterious, nearly recessive alleles and mildly 15 

deleterious, nearly additive alleles. Recessive deleterious mutations are more likely to be 16 

eliminated by natural selection (purging) in inbred homozygotes, which creates a negative 17 

relationship between inbreeding depression and the population selfing rate (Lande & 18 

Schemske, 1985; see Box 2). 19 

Nestedness characterizes networks with many specialist species and few extremely generalist 20 

species, as well as asymmetric specialization (specialist species tend to interact with 21 

generalist species). 22 

Pollen carryover is the extent to which pollen collected on a flower is transported and 23 

deposited on stigmas of other flowers (of the same plant or different plants) during a foraging 24 
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bout; it depends on both the pollen uptake rate and pollen deposition rate (de Jong et al., 1 

1993). 2 

Pollen discounting is the reduction in outcrossed male siring success associated with an 3 

increase in selfing rate, due to decreased amounts of exported pollen (Nagylaki, 1976). 4 

Pollen limitation is the reduction in plant reproductive success (fruit or seed set) due to 5 

inadequate quantity or quality in pollen receipt; it is usually tested for through supplementary 6 

pollination (see Knight et al., 2005 for a review). 7 

Pollinator preference is the propensity for an individual pollinator to visit a plant species 8 

disproportionately to the availability of resources this species provides (Cock, 1978); it is 9 

usually measured as number of visits per plant relative to other plant species. 10 

Self-pollination rate is the fraction of self-pollen vs. conspecific outcross pollen deposited on 11 

plant stigmas. 12 

Selfing rate is the rate of self-fertilization, the fraction of selfed vs. outcrossed embryos 13 

produced by an individual plant. It is defined at fertilization (primary selfing rate) but usually 14 

measured at a later stage (in seeds, seedlings or even adults, secondary selfing rate). Primary 15 

and secondary selfing rates can differ from the self-pollination rate due to (1) self-16 

incompatibility, which can be partial or cryptic (e.g. via differences in growth rates of selfed 17 

vs. outcrossed pollen tubes) and (2) post-fertilization selection processes, for example 18 

selective flower abscission, fruit abortion or inbreeding depression. 19 

Selfing and outcrossing components of self-compatible animal-pollinated plants with 20 

perfect flowers (following Lloyd, 1992). Autonomous selfing (a, dotted white lines; left 21 

panel of Fig. 2) corresponds to autogamous (within-flower) self-pollination occurring without 22 

pollinator visits; it is divided into three modes depending on the timing of outcross- vs. self-23 

pollination: prior, competing (simultaneous), and delayed autonomous selfing. Facilitated 24 

selfing (f, dashed white lines; left panel of Fig. 2) corresponds to autogamous (within-flower) 25 
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self-pollination induced by pollinator visits. Geitonogamous selfing (g, solid white lines; left 1 

panel of Fig. 2) corresponds to self-pollination among flowers induced by pollinators probing 2 

several open flowers on the same plant. Outcross pollination (o, solid black lines) refers to 3 

pollen deposited on a flower that originates from other plants in the population. Estimates 4 

obtained from the method proposed in Box 1 are given with upper-case letters next to three 5 

flowers (right panel of Fig. 2). 6 

Selfing syndrome is a characteristic set of morphological and functional plant traits that 7 

enhance pollen transfer efficiency within flowers and/or decrease pollinator visitation. Selfing 8 

syndrome usually includes small flowers, thus reduced anther-stigma distance (herkogamy), 9 

reduced petal size, and reduced corolla width (following Sicard & Lenhard, 2011). 10 

Specialization has many definitions but is generally inversely related to the total number of 11 

species an individual, a population or a species interacts with. This number can be weighted 12 

by the frequency of interactions with each partner species. 13 
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BOX 1: A METHOD FOR ESTIMATING FACILITATED SELFING 1 

Estimation of facilitated selfing is challenging because it requires devices to mark pollen or 2 

follow pollinator visits, while controlling for resource allocation, outcross pollen limitation 3 

and pollinator attraction. However, facilitated selfing could contribute significantly to 4 

observed selfing rates and their evolution. Indirect evidence of facilitated selfing is available, 5 

but only for plant species with specific floral types (Fig. 2 of the glossary): Johnson et al. 6 

(2005) make use of the absence of autonomous selfing in Disa cooperi, Vaughton et al. 7 

(2008) of the absence of geitonogamous selfing in Bulbine vagans and Owen et al. (2007) of 8 

the absence of both in Bulbine bulbosa; on the other hand, Anderson et al. (2003) use 9 

Roridula species for which facilitated selfing is performed by insects (hemipterans) that do 10 

not contribute to the other selfing components, performed by bees. 11 

A simple, but adjustable, experiment to estimate all components of selfing  12 

Estimating the three components of selfing or self-pollination (Fig. 2 in the glossary) requires 13 

a detailed description of single-pollinator visits to individual plants. The method requires N 14 

replicate caged plants with F individually-marked open perfect flowers. Identical numbers of 15 

flowers control for resource allocation if selfing (not self-pollination) rates are to be 16 

estimated. Each plant should be visited by a single pollinator carrying no pollen, which 17 

precludes outcross pollination and the visitation order of the pollinator should be recorded 18 

(some flowers can be visited several times, and some flowers may remain unvisited). The 19 

components of selfing and self-pollination can then be estimated by analysing the seed set of 20 

the N × F flowers or by counting pollen grains deposited within each flower stigmas, 21 

respectively. 22 

The simplest estimation method requires discarding all flowers visited more than once 23 

and counting pollen grains, not seeds, per flower to eliminate the delayed autonomous selfing 24 

component. Pollen loads provide information about (1) autonomous selfing for unvisited 25 
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flowers (2) autonomous and facilitated selfing jointly for flowers visited once as the first 1 

flower of the sequence, thus by a pollinator carrying no self-pollen, and (3) all three 2 

components of selfing for flowers visited once as the second flower of the sequence, by a 3 

pollinator carrying self-pollen from one previously visited flower (Fig. 2 of the glossary, right 4 

panel). More sophisticated methods could use seed sets from all F flowers but would need to 5 

control for delayed autonomous selfing (possibly via the number of visits per focal flower or 6 

per plant, depending on the underlying mechanisms) and for the quantity of geitonogamous 7 

self-pollen deposited on flowers as a function of their visitation rank. For practical reasons F 8 

needs to be small enough to keep track of the entire pollinator visitation sequence and large 9 

enough such that pollinators do not visit all open flowers, but generate variation in the number 10 

of flowers visited per plant; some flowers may have to be removed and some pollinators may 11 

have to be excluded from the experimental cage to avoid too long visitation sequences. 12 
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BOX 2: AN APPROXIMATION FOR EVOLUTIONARY EQUILIBRIA OF PLANT SELFING RATES: 1 

how to include the purging of inbreeding depression into ecological models of the 2 

evolution of selfing 3 

The evolutionary dynamics of inbreeding depression greatly influence plant mating system 4 

evolution and should not be overlooked. The joint evolution of inbreeding depression and 5 

selfing rates can be modeled using detailed genetic models of inbreeding depression, which 6 

has rarely been done in ecological theoretical studies (but see Porcher & Lande, 2005a; b; 7 

Porcher et al., 2009) because it requires complex models and long computation time. 8 

Alternatively, an approximation assuming that plant selfing rates evolve by small mutational 9 

steps allows modeling the dynamics of purging without a full genetic model for inbreeding 10 

depression (Lande et al., 1994; Johnston, 1998). This approximation amounts to letting the 11 

level of inbreeding depression vary with the selfing rate, and finding joint equilibria of the 12 

mating system and inbreeding depression, instead of assuming constant inbreeding depression 13 

(see Porcher & Lande, 2013 for more details). A numerical or analytical relationship between 14 

inbreeding depression and population selfing rate can be obtained from any genetic model 15 

(e.g. Kondrashov, 1985; Charlesworth et al., 1990). Analytical relationships are derived from 16 

polynomial regressions (Johnston, 1998; Lepers et al., unpublished manuscript) with 17 

relatively simple models of inbreeding depression (e.g. based on a single locus, Charlesworth 18 

et al., 1990). 19 

A change in the selfing rate modifies inbreeding depression, but also other components 20 

of plant fitness, via the automatic advantage of selfing (Fisher, 1941), reproductive assurance 21 

in pollen-limited environment, or pollen discounting. The approximation examines the 22 

indirect selection gradient on small changes in the selfing rate to find joint equilibria of the 23 

mating system and inbreeding, which occur at the intersection of the inbreeding depression 24 

function and a constraint function (Fig. 3). This constraint function summarizes all other 25 
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drivers of the evolution of the selfing rate, particularly ecological mechanisms, some of which 1 

are governed by pollinators and their behaviour (Porcher & Lande, 2005b; Devaux et al., 2 

unpublished manuscript; Lepers et al., unpublished manuscript). Singular strategies (selfing 3 

rates) correspond to fitness maxima or minima, which can be distinguished from the sign of 4 

the second partial derivative with respect to selfing rate at this strategy. Graphically, the 5 

singular strategy is evolutionarily stable (i.e. a maximum) if the constraint function is smaller 6 

(respectively larger) than inbreeding depression when the equilibrium selfing rate is increased 7 

(respectively decreased; Fig. 3). 8 

The approximation ignores genotypic association among the loci controlling the selfing 9 

rates and those controlling inbreeding depression, and is therefore accurate only for moderate, 10 

but biologically realistic, genomic rates to deleterious mutations causing inbreeding 11 

depression (U < 0.2, Porcher & Lande, 2013). For larger mutation rates, differential purging 12 

occurs between genotypes with different selfing rates, a phenomenon that is not accounted for 13 

in the approximation, which thus becomes inaccurate. Large U may be found in perennial 14 

plants (see Porcher & Lande, 2013) and may better account for the observed similar levels of 15 

inbreeding depression in completely outcrossing and mixed-mating populations (Winn et al., 16 

2011). 17 
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FIGURE LEGENDS 1 

Figure 1. Summary of the constraints imposed by pollinator behaviour on the ecology and 2 

evolution of plant selfing rates. The upper panel describes the plant and pollinator traits that 3 

influence the deposition of each of the three origins of self pollen, as well as outcross pollen 4 

(see glossary). Traits with a positive (respectively negative) impact on amounts of pollen 5 

deposited are in black (respectively grey). The inner square recalls the definition of the rate of 6 

self-fertilization. The intermediate square groups plant and pollinator traits operating at the 7 

flower or individual plant levels. The outer square groups plant and pollinator characteristics 8 

operating at the population or network levels. 9 

 10 

Figure 2. Clarification (left panel) and one estimation method (right panel, see also Box 1) of 11 

selfing components for self-compatible animal-pollinated plants with perfect flowers 12 

(following Lloyd, 1992). 13 

 14 

Figure 3. Evolutionarily stable (closed circles) and unstable (open circles) selfing rates found 15 

at the intersection of the inbreeding depression curve (black line) and an ecological constraint 16 

function on plant fitness components (gray line). 17 

 18 

Figure 4. Relationship between mating system and plant specialization in three plant-19 

pollinator networks. 20 

Box plots (with whiskers representing 1.5× interquartile) and mean (closed circles) of the 21 

number of pollinator species per plant (A-C) and number of pollinator species per visit (D-E). 22 

Mating systems were obtained from the Biolflor database and divided into three classes to 23 

obtain balanced and sufficient sample sizes: allogamous (“Allo.”, comprising ‘allogamous’ 24 

and ‘facultative allogamous’ species of the database), mixed mating (“Mixed”), and 25 
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autogamous (“Auto.”, comprising both ‘facultative autogamous’ and ‘autogamous’ species of 1 

the database). P-values for the ‘mating system’ effects were obtained by analysing the 2 

variation in pollinator richness (either per plant or per visit), assuming it follows a 3 

quasipoisson distribution, as a function of the mating system alone (A-C) or the mating 4 

system, the number of visits and their interaction (D-E). 5 

6 

Page 52 of 60Journal of Evolutionary Biology



53 
 

Within-plant grooming

Among plant grooming

# flowers probed

Constancy in
probing order

Constrains

Evolution of selfing

Genetical effects

Inbreeding depression

-

+
-

Geitonogamous self-pollen (g)

Ecological S

Outcross self-pollen (o)

A
u
to

g
a

m
o

u
s

s
e
lf-p

o
lle

n
 (a

)

F
a
c
ili

ta
te

d

s
e
lf
-p

o
lle

n
 (

f)

a + g + f

a + g + f + o
Spatial and 
temporal 

separation of 

male and 
female 

functions

Floral shape
& complexity

Probing time

Buzz 

pollination

+

Floral display

Reward production

Floral scent 

& color

Sterile flowers

-

Constancy in
probing order

Pollen carryover

Among-plant
grooming

Attraction

Pollen

limitation

+

Divergence among 
species in floral scent, 

color, reward

Plant specialisation

Heterospecific

pollen transfer

between plant species

Constancy of pollinators

Pollinator specialisation

facilitation
Competition

vs.

-

+

+

-

-

-

-

+

Interferences among

pollinator species

Floral display /
Aborted flowers

Reward production

Floral / inflorescence 

complexity

Δ in nectar quality

& amount

Intraspecific

reward variability

Pollen

carryover

+

-

-

-

-

+

+

=

+ -

+

+

+

+

-

Outcross pollen limitation

Ecological effects

Pollen discounting

Automatic advantage

-
+

 1 

 2 

Figure 1 3 

Page 53 of 60 Journal of Evolutionary Biology



54 
 

 1 

 2 

 3 

 4 

Figure 2 (to be included in the glossary) 5 
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Figure 3 (to be included in Box 2) 7 
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