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Abstract

The Tactile plate consists of piezo-ceramics glued on a copper-beryllium resonator. Its purpose is to create pro-
grammable tactile sensations, which give the illusion of finely textured surfaces. The illusion originates from the variable
friction between a finger and the vibrating resonator, caused by the squeeze film effect. In order to obtain a maximal
deflection of the plate for a minimal supply voltage, an optimization is carried out of the length, thickness, and width of
both the resonator and the ceramics. Constraints are realistic geometrical dimensions, a resonance frequency of at least
25 kHz, and a low supply voltage. The plate is modelled by both an analytical and a numerical model. The maximal
dynamical deflection per volt was achieved with thin piezo ceramics (0.5 mm) at the minimal frequency of 25 kHz. A
high deflection can be obtained in a wide range of the resonator length. With increasing length, the optimal resonator
thickness increases too. The plate width seems to have little influence. Experiments are carried out on two plates with
different geometry.
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1. Introduction

A tactile stimulator provides information to a user
through the sense of touch. It can be used as a texture
or shape simulator into an immersive virtual environment,
or as an input–output tactile pad as those found on any
new electronic hand-held device. To achieve that, some
stimulators try to create the illusion of touching a virtual
shape by using pins array. These devices suffer from their
large bulk size which increases with the resolution with
which the virtual shape is simulated[1]: the touching area
is thus limited, and the user’s fingertip can’t move with a
free motion. To tackle this problem, an other proposal is
deluding a user by simulating the effect of the shape on
the fingertip. Pin array is then used to recreate lateral
stretches of the skin appearing when a user is touching a
bump or a hole[2].

The tactile stimulator studied in this paper belongs to
another family of tactile devices. It is named ”the tac-
tile plate” as it uses a vibrating plate to produce tactile
stimuli. However, the vibration is not used to directly cre-
ate stimuli, but to modify the friction between fingertip
and the plate. The working principle of the tactile plate
is based on the squeeze film effect: if the thin layer of
air between the plate and the finger is compressed and
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expanded very rapidly by the vibration, then an overpres-
sure is generated that tries to lift the finger. The squeeze
film effect reduces the friction between the plate and the
finger during the vibration of the plate. Several exper-
imental studies have shown that it is possible to create
tactile feedback with this operating principle. For exam-
ple [3] modifies roughness perception of samples of sand
papers, while [4] has shown that it is possible to give the
illusion of touching finely textured surfaces with a pro-
grammable spatial period. The main advantage of such
devices is that they allow a free motion of the fingertip on
the virtual surface. By this way, user’s movement is not
constrained: interaction between the user and the device
is thus natural.

There exist several designs which produce tactile feed-
back based on friction reduction: [3] uses two langevin
transducers to make a thin iron plate vibrate; [5] uses a
disc shape ring resonator to reduce the size of the device.
In [4], a rectangular copper plate with thin piezo-electric
elements bonded on it was designed. This solution uses
a standing wave with multiple wavelength propagating on
top of the device. This design allows a large exploration
area, with a small thickness and thus results in size reduc-
tion. However, in each case, squeeze film effect is effectual
if the vibration amplitude is in the order of several mi-
crometers at 25kHz or above [6].

To complete surface texture rendering, the friction co-
efficient has to be a function of fingertip’s position, and
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then we need its precise and accurate control. For exam-
ple, gratings can be simulated by switching between a high
friction level, to a smaller one. Thus, the plate’s capabil-
ity to produce high vibration amplitude is a key feature
for tactile simulation since smaller friction level is achieved
with larger vibration amplitude. Previous work in [6] has
shown that friction reduction depends on plate’s original
roughness, but it’s also found that a value af 300nm can be
considered as a minimum deflection below which friction
reduction is too small.

Optimization of the tactile plate is required in order to
obtain a large vibration amplitude for a low supply volt-
age, without violating the several constraints. These con-
straints are 1) realistic dimensions of the plate 2) resonance
frequency above 25 kHz to have the squeeze film effect 3)
low supply voltage for safety reasons and for low power
consumption to avoid heating of the plate. The optimiza-
tion uses a 3D numerical model in combination with an
analytical model to accelerate the computation.

After explaining these models in section 2, we analyze
the influence of several geometrical parameters in section
3 in order to find some general design rules, similar to
[7, 8, 9]. Next to geometrical parameters, also the issue of
damping is discussed. Experiments are carried out for two
geometries (section 4). Finally, the conclusion summarizes
which parameters are important to develop an efficient tac-
tile plate.

2. Efficient optimization requires two models of

the tactile plate

2.1. Analytical model

The first model is an analytical model based on the one
in [6]. It is recalled in the following paragraphs. Firstly,
the static deflection is studied on a simply-supported beam
(see Fig. 1) whose length is half of the wavelength λ. Sec-
ondly, the dynamic deflection is calculated. Thirdly, the
resonance frequency is determined, and finally, the cost
calculation is explained.

2.1.1. Static deflection

The modelled beam (Fig. 1) consists of a resonator with
thickness hi in copper beryllium – the mechanical res-
onator – glued to a layer of piezoelectric ceramics with
thickness hp. It is assumed that the thickness of the glue is
zero and that the strains are continuous on the resonator-
piezoelectric ceramic interface. The beams length is λ/2
and its width b.
Firstly, the displacement vector in the cartesian frame is
described using the Bernoulli-Euler theory [10]

U =





u
v
w



 =





(z0 − z) δw
δx

(z0 − z) δw
δy

w(x, y, t)



 (1)

where w(x, y, t) represents the displacement along the z
axis, and z0 the neutral plan ordinate, which distinguishes
the compressed and the stretched zones in the plate.

Figure 1: Half-wavelength beam which bends by contracting the
piezoceramics.

The radius of curvature, ρ, due to bending moments
caused by contraction of the piezoceramic, can be deter-
mined from the resulting stresses and strains in the com-
posite beam (Fig. 1). The plate does not vibrate according
to a planar movement but bends. In fact, it is easier to
realize bending deformation than planar deformation.

The resonator is considered to be isotropic and the stress
Ti can be expressed by the reduced form as follows:

Ti = EiSxx (2)

where Ei is the Young modulus of the Copper Beryllium
and where Sxx(z) is the strain component along the x-
axis acting on the plane normal to the x-axis. As for the
piezoelectric part of the plate, the constitutive relation-
ships between the stress, strain and applied fields can be
expressed in terms of the piezoelectric stress relations

Tp = cES − etE D = eS + ǫSE (3)

where E is the electric field intensity vector and D is the
electric flux density vector. cE , e and ǫS are respectively
the elastic constants short circuit matrix, the voltage co-
efficients and the dielectric constants matrixes.

Finally, the stress distributions on the x-faces due to an
applied electric field in the z-direction can be written as
follows:

Txx(z) =

{

EiSxx(z) hp < z < hp + hi

cE
11p

Sxx − d31c
E
11p

Ez 0 < z < hp
(4)

where et = d31c
E
11p

Considering that no external force acts on this structure,
we can deduce that curve c can be expressed as follows [6]:

c =
1

ρ
=

d2w

dx2
=

3

2

d31Ez

hpa
(5)

where

1

a
=

1 − 2f0

1 − 3f0 + 3f2
0 + α(3β + 3β2 + β3

− 6βf0 − 3β2f0 + 3βf2
0 )

and

α =
Ei

cE
11p

, β =
hi

hp
, f0 =

zo

hp
(6)
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By taking into account the boundary conditions of a
simply-supported beam and by integrating equation (5)
twice, we obtain the displacement profile:

w(x) =
3

4

d31Ez

hpa

(

x2 −
λ

2
x

)

(7)

and the static deflection wmax = w(λ/4) at λ
4 is given by:

wmax =
−3

16

d31Ez

hp

(λ/2)2

a
= −

3

16

d31Vz

h2
p

(λ/2)2

a
(8)

where Vz is the voltage applied between the piezo-ceramic
electrodes.

2.1.2. Determination of the dynamic deflection

In order to increase the deflection, we work at resonance
frequency. This explains why, in this subsection, we must
determine the dynamic deflection, which is the static de-
flection times the dynamic amplification factor.

The dynamic amplification factor Q = QmUmono/Upiezo

is the mechanical quality factor Qm of the piezoceramics
balanced by the ratio of the strain energy of the entire
monomorph Umono to the strain energy of the piezoelectric
layer Upiezo [11].

The stored elastic energy in the piezoelectric layer is

Upiezo =
λb

2

1

2

∫

z

SxxTspiezo
dz (9)

and the stored elastic energy in the entire monomorph is
given by

Umono =
λb

2

1

2

∫

z

Sxx(Tspiezo
+ Tsreson

) dz (10)

From [6], we can deduce the stored energy as a function of
the material properties and the geometrical dimension of
the structure:

Upiezo =
λb

4

∫ hp

0

cE
11p

S2
xx dz (11)

=
3

16
λbhpd2

31E
2
z cE

11p

1 − 3f0 + 3f2
0

a2
(12)

and

Umono =
λb

4

∫ hp

0

d31c
E
11p

Ez

(

z − z0

ρ

)

dz (13)

The neutral line ordinate z0 is found by expressing that
the sum of the stresses at both sides of the line equals zero:
0 =

∫

z
Sxx(Tspiezo

+ Tsreson
) dz, resulting in

z0 =
hp(1 + αβ2 + 2αβ)

2(1 + αβ)
(14)

Here, we assumed that the materials are purely elastic, i.e.
with a null electric field. Then, by inserting (14) into (13),
we obtain

Umono =
3

16
λbhpd2

31E
2
z cE

11p

1 − 2f0

a

Finally, Q = Qm
a(1−2f0)

1−3f0+3f2
0

and wdyn = w
(

λ
4

)

Q:

wdyn = Qm

−3

16

d31Vz

h2
p

λ2

4

1 − 2f0

1 − 3f0 + 3f2
0

(15)

Notice that the deflection in the analytical model is inde-
pendent of the beam width b.

2.1.3. Determination of the resonance frequency

The resonance frequency fr is [12, 13]:

fr =
2π

λ2

√

Gb

Mb
(16)

with Gb = cE
11p

∫ hp

0
(z−z0)

2 dz+Ei

∫ hp+hi

hp
(z−z0)

2 dz the

flexional rigidity of the beam in [N.m] and Mb = ρbhb +
ρihi the total mass per length in [kg/m2].

2.1.4. Analytical cost function

For use in optimization routines, a cost function is cre-
ated that contains the analytical model.

The objective is to have a maximal deflection per volt
supply voltage. This means that the cost is given by (15)
with Vz equal to a constant voltage. Since users directly
touch the tactile plate. We chose Vz = 15V because it is a
safe voltage level.

The six parameters to optimize are the length, thickness
and width of the resonator and the ceramics. Nevertheless,
the cost function has only three inputs: the wavelength λ,
the resonator thickness hi, and the piezo-ceramics thick-
ness hp. As the number of piezo-ceramics n = 7 and
the space between adjacent ceramics δ are constant, the
wavelength also determines two additional parameters: the
length lp of the ceramics and the length L of the resonator
as shown in Table 1. The two remaining parameters – the
width of the ceramics and the resonator – are equal and
denoted by b. However, the width b cannot be optimized
in the analytical model, because the cost (15) does not
depend on b.

2.2. Numerical model

2.2.1. Finite element model

The second model is a 3D linear finite element model
(FEM) in the software package Comsol. The number of
degrees of freedom varies between 104 and 105, depending
on the geometry. The modelled geometry and boundary
conditions are shown in Fig. 2: the FEM geometry is only a
quarter of the tactile plate because symmetry is exploited
both along the x- and the y-direction.

The model in Comsol was validated by comparing it
with the Ansys model in [6] for the same plate geome-
try. The geometry studied in the following sections is how-
ever slightly different from the one in the cited paper: the
length of the resonator is increased by λ/8 at both ends
in comparison with the plate in [6]. The aim of the modi-
fication is to slightly modify the wavelength at resonance
so that λ = 2(lp + δ). This means that the nodes of the
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Table 1: Geometric and material properties of the tactile plate
Resonator
Wavelength λ 15 < λ < 40 mm
Number ceramics along x n 7
Gap between ceramics δ 1.0 mm
Length L 2n+1

4
λ → 56 < L <150 mm

Thickness hi 0.2 < hi < 3 mm
Width b 0.03 < b < 0.10 m
Young modulus Ei 123 × 109 N.m−2

Mass density ρi 8250 kg/m3

Poisson coefficient νi 0.31

Ceramic
Length lp

λ

2
− δ → 6.5 < lp < 19 mm

Thickness hp 0.5 mm, 1.0 mm or 2.0 mm
Piezoelectric constant e31p

−4.9 C.m−2

Elastic constant cE
11p

6.79 × 1010 N.m−2

Charge coefficient d31 −247 × 10−12 m.V−1

Mechanical quality factor Qm 60
Mass density ρp 7410 kg/m3

Poisson coefficient νp 0.33

Symmetry plane

Symmetry plane

h
i

h
p

l
lp

d

b/2

Resonator

Piezo ceramic

L/2

x

z

y

Figure 2: Geometry of the tactile plate in the 3D FEM, which is
only one quarter of the entire plate. The dots represent the points
used to determine the average deflection (antinodes). Dimensions
and material properties can be found in Table 1.

standing wave are exactly between adjacent ceramics (at
x = k(lp + δ)/2, k = −7,−5, ..., 7) and the anti-nodes are
exactly in the middle of the ceramics (k = −6,−4, ..., 6).
This increases the efficiency of the piezo-ceramics to gen-
erate a strong vibration.

In contrast with the analytical model, the numerical
model has also transverse resonance modes for some ge-
ometries. Fig. 3 shows that a small modification of
the plate width b can make the difference between a
pure longitudinal resonance mode, and a mixed longitu-
dinal/transverse resonance mode.

2.2.2. Numerical cost function

The cost function containing the parametrized numeri-
cal model should be able to determine wdyn for each possi-
ble geometry of the tactile plate. The resonance frequen-
cies and the corresponding resonance modes (along the x-
direction and/or along the transverse y-direction) are not
known a priori. To tackle this problem, the cost function
is organized as follows. After creating the geometry and
the mesh, the cost function searches for eigenfrequencies.

(a)

(b)

Figure 3: Deformation in µm of (one quarter of) the tactile plate
with λ = 24 mm, hi = 2.0 mm, hp = 1.0 mm. In (a), the width b is
55 mm giving rise to a pure resonance mode in x-direction. In (b),
the width b is 48 mm, resulting in an additional transverse resonance
mode

Then, it performs a time-harmonic FEM analysis for each
considered eigenfrequency. The damping is set by a quality
factor Q. Next, for each time-harmonic model, the deflec-
tion is calculated as an average of the deflection |wdyn| in
the 44 relevant points shown in Fig. 2. The points are at
the positions where in theory the maximal deflection of
the standing wave occurs. Finally, among all considered
resonance modes, the cost function selects the resonance
mode that has the highest deflection.

The analytical model is very useful to limit the calcula-
tion time of the FEM model, because it estimates the res-
onance frequency fr. Without a priori information about
fr, all resonance modes in the considered frequency range
should be evaluated in a time-harmonic FEM evaluation.
By using the predicted fr from the analytical model for
the same inputs, the numerical cost function has to evalu-
ate the 3D FEM only for a few resonance frequencies close
to the predicted fr. In practice, evaluating the six “near-
est” eigenfrequencies seemed to be sufficient for the whole
range of hi and λ in Table 1. On a 2.4 GHz CPU, the
evaluation time of the numerical cost function considering
six eigenfrequencies is between 50 s and 650 s, depending
on the number of degrees of freedom.

The cost of the numerical cost function is the same
as for the analytical model: the dynamical deflection for
Vz = 15 V. The function has four inputs: the same three
inputs λ, hi, and hp as the analytical model, and the plate
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width b as an additional input.

2.3. Optimization

Both the analytical and the numerical cost functions
are optimized, in order to see the difference between both
functions. The optimization routines try to maximize the
deflection for a given voltage by iteratively evaluating the
analytical or the numerical cost function. The optimiza-
tion routines consider two real input parameters λ and
hi, and one discrete parameter hp: not all thicknesses are
commercially available. In order to cope with the mixed
discrete/real optimization problem, the optimization for
the two real parameters only is repeated for several val-
ues of hp. The parameter b is not included because it has
no or few influence on the cost. The influence of b in the
numerical model is shown in section 3.3.

From the three constraints mentioned in the introduc-
tion, the first one – realistic dimensions – is achieved by
setting the lower and upper boundaries of the parameters
as given in Table 1; the second one – fr > 25 kHz – is
programmed as a constraint in the optimization routine;
the third one is taken into account by choosing a constant,
safe Vz of 15 V.

The analytical cost function is optimized by the Matlab
function fmincon, which is a gradient based technique.

For the numerical cost function, two optimization rou-
tines are compared. The first one is also fmincon, where-
for the starting value is the optimum of the analytical cost
function. The second routine is the Space Mapping tech-
nique [14, 15, 16] which is an efficient optimization tech-
nique if a fast but inaccurate model and a slow but accu-
rate model are available. This technique combines both
models to take advantage of the speed of the fast model
without loosing the accuracy of the slow model. The an-
alytical model is useful as fast inaccurate model and the
numerical model as slow accurate model. The analytical
model speeds up the optimization in two ways: on the one
hand, by reducing the number of numerical cost function
evaluations in the space mapping algorithm, and on the
other hand by limiting the number of resonance frequen-
cies to investigate in the numerical cost function.

3. Effects of geometrical parameters and damping,

simulated by both models

3.1. Resonator thickness and length of the piezo ceramics

For all simulations and experiments, the resonator is
made from a copper-beryllium alloy, and the ceramics are
lead titanate zirconate ceramics type PI-91, manufactured
by Saint-Gobain Quartz. The characteristics of the ma-
terials are given in Table 1. Additional properties of the
ceramics can be found in [6]. As already mentioned, the
voltage supply of the piezo-ceramics is set to 15 V in order
to avoid dangerous voltages. For this section, the quality
factor Q is chosen constant and equal to 54. This value
is obtained from experiments on the plate from [6] with

λ = 24 mm, hi = 2.0 mm, hp = 1.0 mm and b = 49 mm.
In the following sections, this plate is called the “origi-
nal tactile plate”. For the chosen Q-value, the simulated
dynamical deflection of the original plate equals the exper-
imentally observed one.
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Figure 4: Contour lines of equal dynamical deflection in (a)
and equal resonance frequency in (b) found by the analyti-
cal model for hp = 1.0 mm and Q = 54. The black cir-
cle shows the optimum (λ∗ = 20.54 mm, h∗

i = 0.712 mm,
wdyn = 1.4908 µm, fr = 25.00 kHz), and the cross shows the
original plate (λ = 24.00 mm, hi = 2.00 mm, wdyn = 1.070 µm,
fr = 32.13 kHz). The dotted line indicates the minimal frequency of
25 kHz and the dashed line indicates the minimal resonator thickness
of 0.5 mm. An additional contour line is added at wdyn = 1.4908 µm
to indicate the points with equal deflection as the optimum.

For a piezo-ceramics thickness of 1.0 mm, the deflec-
tion of the beam and its resonance frequency calculated
by the analytical cost function are shown as a function of
the wavelength λ and the resonator thickness hi in Fig. 4.
It is recalled that the results of the analytical model are
independent of the plate width b, and that the wavelength
is related to the length L = (2n + 1)λ/4 of the plate, and
to the length of the piezo-ceramics: lp = λ/2 − δ with δ
the separation between adjacent ceramics. When moving
to the right in the figure, the total plate length L increases;
when moving upward, the total thickness increases. High
deflections can be found in the lower right corner, but here
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the resonance frequency is below 25 kHz. Because of the
constraint that the frequency should be above 25 kHz to
produce squeeze film effect, the plate dimensions should
be chosen in the region left of the dotted line. Further-
more, the minimal resonator thickness should be 0.5 mm
for practical reasons, so that the optimum is not allowed
to be below the dashed line. The minimization results in
the point indicated by a circle in Fig. 4. This is the point
where the curve with frequency equal to 25 kHz (dotted
line) is tangential to the curve with deflection equal to
1.49 µm (thick gray line).

The results of the numerical model are shown in Fig. 5
for b = 49 mm. The contour lines of equal resonance
frequencies correspond well with the ones of the analyt-
ical model; the contour lines of equal deflections are less
smooth. This is caused by transverse modes that influence
the determination of the average deflection. These modes
are not taken into account by the analytical model.
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Figure 5: Contour lines of equal dynamical deflection in (a) and
equal resonance frequency in (b) found by the numerical model
for hp = 1.0 mm and Q = 54. The square shows the opti-
mum (λ∗ = 20.60 mm, h∗

i = 0.683 mm, wdyn = 1.8417 µm,
fr = 25.04 kHz). The original plate indicated by the cross has
λ = 24.00 mm, hi = 2.00 mm, wdyn = 1.151 µm, fr = 31.17 kHz

The optima of the analytical cost function (circle in
Fig. 4) and of the numerical cost function (square in Fig. 5)

are very close to each other. In spite of the good correspon-
dence, it is not a good idea to design a tactile plate using
the analytical cost function only. The numerical model
is useful in order to avoid possible undesired transverse
modes that are not predicted by the analytical model.
For the analytical cost function, the optimum was found
quickly by the Matlab routine fmincon. The numerical
cost function was also optimized by fmincon, using the op-
timal solution of the analytical model as a starting value.
Although the “landscape” of the numerical cost function
is not very smooth, the gradient based algorithm was able
to find the optimum in 48 evaluations. When using space
mapping, the optimization required only four evaluations
of the numerical cost function. In addition, four optimiza-
tions were needed of the analytical cost function, but the
time to optimize the analytical cost function is negligible
compared to the time to evaluate the numerical model.
Although the total CPU time is ten times less than for the
conventional gradient approach, the optimum found was
almost the same (difference less than 0.1 mm).

3.2. Thickness of the piezo-ceramics

The influence of the thickness can be seen by comparing
the deflection for hp = 1.0 mm in Fig. 4 and Fig. 5, with the
deflection for hp = 2.0 mm in Fig. 6 and for hp = 0.5 mm
in Fig. 7 and Fig. 8. The supplied voltage and the Q-factor
are unchanged.

The deflection decreases for thicker piezo-ceramics. The
contour lines of equal deflection have a bend that occurs
at a thickness that is roughly half of the ceramics thick-
ness. If the wavelength increases, the corresponding hi

that generates the highest deflection increases too. The
optimum hi increases if hp increases: for hp = 0.5 mm it
is on the minimal allowed thickness. For hp = 1 mm, it
is at 0.7 mm, and for hp = 2 mm, it is on 1.5 mm. Also
the optimal wavelength increases for increasing hp. To
summarize: if the piezo thickness increases, then all other
dimensions of the plate should increase also. Nevertheless,
the amplitude of deflection reduces with increasing hp.

The frequency decreases only a bit with increasing hp.
For all three considered thicknesses, the optimum has a
resonance frequency of 25 kHz. Higher frequencies always
have lower deflections.

3.3. Plate width

In Fig. 9, the dashed line shows that in the analytical
model, the plate width b has no influence on the deflec-
tion, neither on the frequency. The numerical model shows
that the deflection and the resonance frequency slightly de-
crease for low b < 40 mm. The analytical model does not
predict this decrease. Indeed, for small plate widths, the
analytical model is not valid as it assumes that the plate
thickness hi+hp is much smaller than its length and width.
The deflection should in theory be constant for b > 40 mm.
The deflection obtained by the numerical model as a func-
tion of b is not smooth at all. This is caused by transverse
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Figure 6: Contour lines of equal dynamical deflection in (a) and
equal resonance frequency in (b) found by the analytical model
for hp = 2.0 mm. The circle shows the position of the optimum
(λ∗ = 29.04 mm, h∗

i = 1.425 mm, wdyn = 0.7454 µm, fr = 25.00 kHz)

modes that disturb the efficient deformation of the plate –
see also Fig. 3. In the hypothetic case without these trans-
verse modes, the deflection would be given by a curve that
connects all the tops of the curve. This curve would pre-
dict a deflection that corresponds well with the analytical
one. The resonance frequency is not much affected by the
transverse modes, as can be observed in Fig. 9, taking into
account the detailed scale.

3.4. Damping

The Q-factor for the damping was experimentally deter-
mined based on the deflection of the original tactile plate.
In the previous sections, the same Q-factor of 54 was cho-
sen also for other geometries. For the optimized plate with
hp = 0.5 mm (black square in Fig. 8), this results in the
deflection wdyn shown in Fig. 10 as a function of time and
in Fig. 11 as a function of the frequency. The maximal
deflection is about 4 µm and the time constant is approx-
imately 1 ms.

However, according to literature, the Q-factor decreases
with the vibration velocity of the piezo-ceramics. The fig-
ure 3.8 in [17] shows for a piezo-ceramic without resonator
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Figure 7: Contour lines of equal dynamical deflection in (a) and
equal resonance frequency in (b) found by the analytical model for
hp = 1.0 mm and Q = 54. The circle shows the position of the
optimum (λ∗ = 15.76 mm, h∗

i = 0.500 mm, wdyn = 2.9308 mm,
fr = 25.00 kHz), which has h∗

i and fr equal to the constraints of
0.5 mm and 25 kHz resp. (dashed lines). If the constraint on hi

is removed, the optimum is at λ∗ = 14.52 mm, h∗

i = 0.356 mm,
wdyn = 2.9814 µm, fr = 25.00 kHz.

a Q-factor that strongly decreases as a function of the
displacement speed v: Q is about 2000 for v < 0.1 m/s,
and decreases rapidly if v increases: Q is about 200 at
v = 0.25 m/s. To obtain a more realistic map of the de-
flection wdyn(λ, hi), the Q-factor was experimentally mea-
sured as a function of v for the original setup. The result
– displayed in Fig. 12 – is similar to [17] for v >0.2 m/s,
and much lower for smaller v. The latter is due to the
additional damping by the glue that is not present in the
cited figure.

Modifying the map with a variable Q-factor gives rise
to Fig. 13. The resonance frequency is not shown because
it remains the same as in Fig. 5. The deflection remains
the same for the original plate (indicated by a cross). The
deflection becomes much lower for most other geometries,
but the position of the optimum doesn’t change.

In some applications, a prescribed deflection should be
obtained with the lowest possible voltage. Fig. 13 shows

7



2

2

2
4

4

4

6

6
6

8

8

8

810

10

12

12
14

14
16

1618 18202224 26 26

Wavelength λ  [mm]

S
ub

st
ra

te
 th

ic
kn

es
s 

 
h i  [

m
m

]

Dynamical deflection w
dyn

[µm], b = 49mm, h
p
= 0.5mm (FEM)

15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

10

10

20

20

20

30

30

40

40

50607080 25

25

25

Wavelength λ  [mm]

S
ub

st
ra

te
 th

ic
kn

es
s 

 
h i  [

m
m

]

Resonance frequency f
r
 [kHz], b = 49mm, h

p
= 0.5mm (FEM)

15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Figure 8: Contour lines of equal dynamical deflection in (a) and
equal resonance frequency in (b) found by the numerical model for
hp = 0.5 mm and Q = 54. The black square shows the position of
the optimum (λ∗ = 16.10 mm, h∗

i = 0.500 mm, wdyn = 3.9743 µm,
fr = 25.07 kHz).

the voltage needed to obtain a deflection of 1.15 µm. For
the original plate, evidently, the required voltage is 15 V.

Changing the thickness of the piezo-ceramics results in
Fig. 14. The deflection is still larger than for hp = 1 mm,
but the difference is much smaller than with constant Q.

The optimal wavelength and resonator thickness for
hp = 1 mm and 0.5 mm changes only slightly in compari-
son with the ones for Q constant, but the deflection at the
optimum is strongly reduced. This is an important con-
clusion, because it means that the changes in the damping
type has almost no influence on the optimal dimensions of
the plate.

4. Experiments

Tactile plates are built up with piezo cells which are
bonded on the copper-beryllium substrate. First, a thin
layer of Epoxy is spread onto the substrate. Then the cells
are precisely positioned. The assembly is pressed, and put
into an oven for polymerization of the glue. Figure 15
presents a tactile plate after the polymerization process.
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Figure 9: Deflection as a function of the plate width shows the effect
of transverse modes for the original configuration. The deformation
for b = 48 mm and for b = 55 mm is shown in Fig. 3.
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Figure 10: Time simulation at 25070 Hz for the optimized tactile
plate with hp = 0.5 mm, λ∗ = 16.10 mm, h∗

i = 0.500 mm. The gray
line shows the average deflection that has at the resonance frequency
a phase lag of 90◦ compared to the applied voltage over the piezo-
ceramics (black line). The time constant is approximately 1 ms.

Two tactile plates were manufactured according to op-
timization’s results. However, we could not be supplied
with hi = 0.673mm, we have chosen hi = 0.75mm in-
stead. We name these two plates P1 and P2, and they
have the following characteristics respectively:

• P1: hp = 1.0mm, hi = 0.75mm and λ∗ = 20.56mm,

• P2: hp = 0.5mm, hi = 0.5mm and λ∗ = 15.66mm.

Dynamical deflection, resonance frequency , and the
voltage necessary to reach 1.15µm were measured. Re-
sults are presented in the following paragraphs.

4.1. Experimental characterization of the optimized plates

The resonant frequency was measured on each tactile
plate. We found:
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Figure 11: Time harmonic simulation (a) around 25070 Hz for the
tactile plate with hp = 0.5 mm, λ∗ = 16.10 mm, h∗

i = 0.500 mm
and (b) around 31170 Hz for the tactile cell with hp = 1.0 mm,
λ∗ = 24.00 mm, h∗

i = 2.0 mm. The peak values correspond with
Fig. 8and Fig. 5 respectively.
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Figure 12: The quality factor decreases if the speed during resonance
increases.

• for P1: fr = 23.160kHz,

• for P2: fr = 23.950kHz.

These figures don’t exactly match the target value of the
optimization process. However, the small shift observed
is compatible with squeeze film effect: sensation may be
softened but is still perceptible to human finger.

We also measured the dynamical deflection for the two
plates, using a laser interferometer. We present in figure
16 the contour and a 3-d view of the same measurements
for the plate P1. We also depicted the same plots for the
plate P2 in figure 17. In order to avoid resonant frequency
drift due to temperature rise during the run, measurements
were done at low voltage level, and thus low vibration am-
plitude.

These figures show that the resonance mode found is
the same for both plates, and the wavelength matches the
value found for the optimization process. However, the two
plates do not behave exactly the same. In fact, dynamical
deflection of the big plate (hi = 0.75mm,hp = 1.0mm) is
more disrupted than the thin one: tactile stimulation is not
homogenous all over the plate, more particularly for the
big plate. This problem is due to a transverse mode which
resonance frequency is too close to the working frequency.
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Figure 13: Contour lines of equal dynamical deflection in (a) and
required voltage to obtain a deflection of 1.15 µm in (b) found by
the numerical model for hp = 1 mm and Q-factor given in Fig. 12.
The optimum λ∗ = 20.56 mm, h∗

i = 6.73 mm has the same position
as in Fig. 5, but a lower wdyn = 1.2731 µm. The dashed line shows
the configurations with fr = 25 kHz.

Compared to the original plate, the transverse mode of
the optimized plates has a more harmful effect, as shown
in figure 18.

We finally measured the dynamical deflection of each
plate as a function of the voltage supplied to the resonator.
The results, presented in figure 19, show that the voltage
which is necessary to attain the nominal deflection is lower
for the thin plate than for the big one or the original tactile
plate.

Thus, the optimized tactile plate needs less voltage to
produce the same dynamical deflection, and requires less
energy during operation. Best results are obtained with
the thin plate because the required supply voltage is 6[V ]
only to produce 1.15µm. This confirms the analytical con-
clusion of chapter 3.2, because for the same voltage am-
plitude, dynamical deflection reduces by increasing hp.

5. Conclusion

This paper presents the optimization process of a tac-
tile plate. Optimized plates require higher deflection for
the same voltage level and a resonance frequency higher
than 25kHz to allow squeeze film effect. We obtained
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Figure 14: Contour lines of equal dynamical deflection in (a) and
required voltage to obtain a deflection of 1.15 µm in (b) found by
the numerical model for hp = 0.5 mm and Q-factor given in Fig. 12.
The optimum λ∗ = 15.66 mm, h∗

i = 0.500 mm has almost the same
position as in Fig. 8, but a lower wdyn = 1.215 µm. The dashed line
shows the configurations with fr = 25 kHz.

Figure 15: A manufactured tactile plate made up with 28 piezo cells
glued onto the copper beryllium plate.

two optimized plates which were manufactured and char-
acterized. The new designs present more transverse mode
than on the original plate configuration, and a resonance
frequency slightly lower than the optimization condition.
However, more deflexion at lower voltage level is obtained
in return. The optimized plate with the thinner layer of
piezo-ceramic offers better performances than the bigger
one. Deflection is more homogenous over the tactile plate,
and a supply voltage of 6[V ] only is required to work at
nominal deflection. This new design has an important

Figure 16: Measured dynamical deflection for the plate P1(hp =
1.0mm, hi = 0.75mm and λ∗ = 20.56mm).

Figure 17: Measured dynamical deflection for the plate P2 (hp =
0.5mm, hi = 0.5mm and λ∗ = 15.66mm).

Figure 18: Measured dynamical deflection for the original plate con-
figuration

Figure 19: Measured dynamical deflection as a function of the sup-
ply voltage Vs (1) is for the plate P1(hp = 1.0mm, hi = 0.75mm,
λ∗ = 20.56mm) and (2) is for P2(hp = 0.5mm, hi = 0.5mm,
λ∗ = 15.66mm). The cross indicates the dynamical deflection of
the original tactile plate
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property: with such a low voltage, the tactile plate can
be used in a computer environment more easily.
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