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Squeeze Film Effect for the Design of an Ultrasonic
Tactile Plate

Mélisande Biet, Fŕed́eric Giraud and Betty Lemaire-Semail,Member, IEEE

Abstract— Most of tactile displays currently built rely on pin
based arrays. Yet, to simulate finely textured surfaces, this kind
of tactile device is not always appropriate. In this paper, we
identify the squeeze film phenomenon and we use it to design
an ultrasonic tactile plate. The plate is actuated by piezoelectric
ceramics and ultrasonic vibrations produced in this way generate
the squeeze film effect. This enables us to simulate variable
friction on the surface of the plate. Thus, to identify the squeeze
film phenomenon, the study considers the case where the finger
with a planar bottom surface and with epidermal ridges is placed
on a rapidly vibrating plate. The overpressure is calculated and
the result enables us to assess the relative coefficient of friction
as a function of the vibration amplitude of the plate. Based on
this principle, from both analytic and FE method studies, and
given ergonomic and stimulation (squeeze film) requirements, we
show that it is possible to suggest a design of a tactile plate. This
gives rise to a comparison with experimental results.

I. I NTRODUCTION

W E experience everyday shapes and textures through
small and big skin distortions, changes in boundary

temperatures, as well as localized and distributed vibrations
at the skin surface in order to explore and feel our envi-
ronment. However, Human-computer interaction technology
rarely relied on touch to close the communication loop for the
information transfer from the computer to the user. In fact,
despite the huge number of devices produced with various
manufacturing and actuation technologies [1], most of the
tactile displays built to this day fail to efficiently deform the
skin and to be practical at the same time. For instance, in
order to create discrete representations of a texture or a small
shape, pin based arrays are widespread [2]. But, within the
framework of the e-commerce for example, which consists in
feeling a material via the internet, this kind of tactile device
is not appropriate to simulate finely textured surfaces because
miniaturization and technical integration problems are still to
be solved. Inevitably, miniaturization will reach its limits and
pin arrays technology will also impose technological and cost
restraints. Another possibility for simulating finely textured
surfaces is the use of the squeeze film effect principle. It
has been shown that a beam excited by ultrasonic vibration
can give rise to smooth or braking feeling according to the
amplitude of vibration [3]. Moreover, the feeling of roughness
can be generated by imposing low frequency periodic signal
over the ultrasonic vibration. We have experienced this on the
stator of an ultrasonic wave motor by controlling the wave’s
space period variation [4]. As a result, the squeeze force is also
modulated and allows us to simulate several shapes of ridges at
contact area. This technology is especially relevant to get more
complex spatial properties with a lower number of actuators.

Nevertheless, before designing a tactile plate able to simulate
this kind of sensations, it is required to better identify what
happens on the contact area between a vibrating surface and a
finger. In this study, it seems relevant to take into account the
fingerprint undulations for the calculation of the overpressure
created between the two surfaces. This is carried out in the
second part of the paper. Besides, this overpressure enables us
to find the relative coefficient of friction as a function of the
vibration amplitude of the acoustic wave. We obtain in this
way a criterion for the design of the tactile plate.

This plate (Fig. 1) can bend by means of PZT piezo-
ceramics glued on one of the two surfaces. The monomorph
built up in this manner is the subject of analytical and
numerical studies (part III). Design of the tactile plate based
on theoretical analysis and experimental evaluation is then
discussed in the fourth part.

Fig. 1. Complete view of the actuator: below side with a piezo-ceramics
matrix and above side which is the surface to touch

II. SQUEEZE FILM EFFECT BETWEEN A VIBRATING

SURFACE AND A FINGER

The goal of this section is to compute the overpressure
force occurring because of the squeeze effect. Then it will
be possible to find the conditions under which this force
leads to a variation of the friction coefficient of the surface.
In this section, the geometric properties of the fingerprints
(or epidermal ridges) are taken into account. Effectively, we
can not suppose that the undulations of the fingerprints are
negligible relatively to the roughness of the vibrating plate
(few micrometers) since the height (2he) and pitch (L) of the
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epidermal ridge are around 100µm and 350µm, respectively
[5] (Fig.2).

A. Squeeze film model

In this subsection, we are describing the squeeze effect [6].
Indeed, we consider the gas film created between the fingertip
and a planar vibrating object. We are going to rely on a study
developed in [7], but taking into account the fingerprints.
We regard the tip of the finger as an undulated surface while
the planar plate is assumed to oscillate sinusoidally in a
vertical direction (Fig.2).

Fig. 2. Approximate profile of a fingertip when the epidermal ridges are
taken into account.

The film thickness,h, is the sum of the gap created when the
finger skin cannot follow the ultrasonic vibration of the plate
at all, which equals the amplitude of oscillation ,hvib, plus
the surface unevenness (roughness),hr. h also considers the
amplitude of the undulation of the fingerprint,he. Therefore,
the thickness of the film is given by [3]:

h(x, t) = (hvib + hr)[1 + cos(ω0t)] + he[1 + cos(
2π

L
x)] (1)

In which the vibrating frequency of the plate is given byω0.
If we normalizeh, the normalized airgap can be written with
non dimensional parameters as

H = 1 + ǫ cos(T ) + δ cos(kX) (2)

with h0 = hvib + hr, the non-dimensional parameters are

H =
h

h0 + he
, X =

x

l0
, T = ω0t,

ǫ =
h0

h0 + he
, δ =

he

h0 + he
, k =

2πl0
L

where the length in contact with the fingertip isl0.

We make the following assumptions [7]; 1) The fluid
behavior is governed by laminar viscous flow, 2) The fluid
is a compressible perfect gas, 3) The inertia effect of the
flow is negligible, 4) The relative lateral motion is equal to
zero. Under those conditions, the one-dimensional Navier-
stock equation is obtained. This equation associated with
continuity and ideal gas equations allows us to find the
governing Reynolds equation in the non-dimensional form:

∇(H3P 1/n.∇(P )) = σ
∂(P 1/nH)

∂T
(3)

In which n is a polytropic constant and where

P =
p

p0
, σ =

12ηω0l0
p0(h0 + he)2

(4)

p, p0 andη represent the pressure in the gap, the surrounding
gas pressure and the dynamic viscosity of the fluid respec-
tively. The squeeze number is given byσ, which represents a
measurement of the fluid compressibility in the gap. At low
squeeze numbers, the fluid is nearly incompressible, while at
high squeeze numbers, the fluid is trapped in the gap and acts
like a spring.

We further assume that the squeezed film is isothermal
(n=1). The latter assumption is reasonable since the gas film
is very thin and of low heat capacity when compared with that
of the vibrating surfaces. Then, to simplify the time derivation
term, we substitutePH by Ψ. For steady state conditions, the
integration with respect to one period yields to [7]

∇[
1

2
H∇(Ψ2

∞
) − Ψ2

∞
∇(H)] = 0 (5)

whereΨ∞ denotes theΨ inside the airgap whenσ → ∞ and
H is the mean normalized film thickness given by

H = 1 + δ cos(kX) (6)

It may be noticed that the analytical solution is accurate as far
asσ is assumed at a very large value. On the contrary, a low
value ofσ would imply a much more complex solution.

B. Approximate analytical solution

The equation 5 gives us the relationship between the nor-
malized film thickness and the normalized pressure for a fluid
behavior close to a spring. The solution of (5) is given by
(Appendix A) [7]:

Ψ2
∞

= K1[1 + δ cos(kX)]2 (7)

In which K1 is a constant.
The boundary conditions with respect toΨ2

∞
(X), noted down

asΨ∞B are

Ψ2
∞B(−

1

2
) = Ψ2

∞B(
1

2
) = K1[1 + δ cos(

k

2
)]2 (8)

In which 1
2 is the normalized value ofl02 .

By replacingK1 by its expression in (7), we obtain:

Ψ∞ = Ψ∞B(
1

2
)
|1 + δ cos(kX)|

|1 + δ cos(k
2 )|

(9)

Furthermore, in order to findΨ∞B , we will focus our
attention on the boundary region. Considering thatp0 is
constant in time and thatΨ∞B equalsΨ∞ when the boundary
region meets the interior of the airgap, we obtain [7]:

Ψ2
∞B(

1

2
) = p2

0

∫ T+2π

T
H3

B dT
∫ T+2π

T
HB dT

= p2
0

∫ T+2π

T
[1 + ǫ cos(T ) + δ cos(k

2 )]3 dT
∫ T+2π

T
[1 + ǫ cos(T ) + δ cos(k

2 )] dT

= p2
0[1 + δ cos(

k

2
)]2

[

1 +
3

2

ǫ2

[1 + δ cos(k
2 )]2

]

(10)
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By replacingΨ∞B by its expression in (9), we obtain:

P∞ =
Ψ∞

H

= p0

(1 + δ cos(kX))
√

(1 + δ cos(k
2 ))2 + 3

2ǫ2

(1 + δ cos(k
2 ))(1 + ǫ cos(T ) + δ cos(kX))

(11)

Remember thatP∞ is the normalized pressure inside the
airgap for an infinite value of the squeeze numberσ. With Ω
as a variable position on the airgap surface, the dimensionless
time average squeeze forceFs per unit length at steady state
can be expressed by

Fs =

∫ ∫

Ω

(P∞ − 1) dΩ

=
1

2Π

∫ 2π

0

(

∫ 1

2

−
1

2

(P∞ − 1)dX

)

dT

(12)

Then, the mean squeeze pressure is expressed by

P∞ = p0

(1 + δ cos(kX))
√

(1 + δ cos(k
2 ))2 + 3

2ǫ2

(1 + δ cos(k
2 ))

√

(1 + δ cos(kX))2 − ǫ2
(13)

C. Results of the model

First of all, let us remind you that in order to predetermine
analytically the over-pressure on the fingertip, we have to
satisfy the following condition :σ → ∞. However, we
assume in practice that the squeeze force (Eq.12) depends
almost entirely on the amplitude of vibration when the squeeze
number is larger than 10. Therefore, we calculate the squeeze
numberσ as shown in (4), with the parameters of Table I
as a function of the frequency of the oscillation for a given
amplitudehvib.

Considering the most unfavorable case, i.e. the smallest
slope of the straight line representingσ = f(ω0) (a surface
state,hr, of 1.6µm and a vibration amplitude,hvib, of 3µm),
the results (Fig. 3) show a first criterion on the frequency
(f >25 kHz) which enables us to use the equation (5).

Fig. 3. Squeeze number as a function of the vibration frequency of the plate
for hr = 1.6µm andhvib = 3µm.

Using the parameters shown in Table.I, we can compute the
pressure profile along the airgap using (Eq.11). According to
the previous results, the frequency of the oscillation is set to
40 kHz so as to be higher than 25 kHz.

TABLE I

L IST OF PARAMETERS

Amplitude of the fingerprint he 50 [µm]

Period of the fingerprint L 350 [µm]

Average roughness of the plate hr 0.2 - 0.4 - 0.6 - 0.8

1 - 1.2 - 1.4 - 1.6 [µm]

Length in contact l0 1 [cm]

Force applied by the fingertip Ff 0.3 → 0.7 [N]

Dynamic viscosity of air (at20◦C) η 1.85.10−5[Pa.s]

Atmospheric pressure p0 0.1 [MPa]

Fig. 4. Thickness of the film at a given time and spatial profile of the mean
time pressure under the finger (hr = 1.6µm, hvib = 3µm)

On the upper part of figure 4, the finger at contact is
modeled as a sinusoid with an amplitude of 50µm in order to
take into account the fingerprints. The interval from the zero
depicts mean roughness plus the vibration amplitude of the
vibrating plate itself. The curve below shows the evolution of
the pressure temporal mean as a function of the position on
X-axis. In this figure 4, pressure peaks are localized where
the finger-skin is as close as possible to the vibrating plate,
i.e. at the fingerprint ridges, whereas at the fingerprint grooves,
pressure is not far from the atmospheric pressure. The pressure
Pf is the mean finger pressure that it is used during an
exploration task.

Pf = Ff/l20 (14)

whereFf denotes the normal contact force applied by a person
exploring the surface. For its value, we choose 0.5 N as a mean
normal contact force according to [3] [8].

We can notice from Fig. 4 that there are some zones of the
fingerprint where the squeeze pressure is superior to the finger
pressure. Those zones are not in contact with the vibrating
plate.

Moreover, when the squeeze force occurs, we can express
the relative coefficient of friction,µ

′

µ in terms of (Eq.15).

µ′

µ
= 1 −

(P∞ − 1)

Pf
(15)
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Physically, and following the assumptions previously defined,
this equation means a weakening of the friction coefficient for
a given surface when the squeeze force occurs.

To illustrate the friction coefficient variations, we can com-
pute µ′

µ for 8 cases of surface roughness (Table.I). The results
are given in Fig.5.

Fig. 5. The relative coefficient of friction as a function of the amplitude of
vibration for Ff = 0.5N and for the 8 values ofhr (Table I)

We can easily calculate the relative friction coefficient,
taking into account the fingerprints. However, our results are
more pessimistic than those of Watanabe [3]. In fact, for an
average roughness of a few micrometers (which is realistic
from a technological point of view), a vibration amplitude of
the plate higher than 4µm would be necessary to reach a zero
relative friction coefficient instead of only 1µm found in [3].
Indeed, this is due to the consideration of the fingerprint in
our study. Hence, by lubrication effect (squeeze film effect),
we can succeed in changing the sensation by exploiting the
friction coefficient between the finger and the plate as it was
qualitatively checked in [9].

We have to notice that the relative coefficient of friction is
strongly dependent on the force applied by the user (Ff ), thus
the results of (Fig.5) have to be considered with care.

D. Guidelines for the design

Thanks to the results of (Fig.5), it is possible to foresee
the vibration amplitude required to levitate the fingertip, i.e.
the amplitude for which the relative coefficient of friction
is annihilated. Nevertheless, the goal of our tactile device is
not to induce the finger levitation. All we want to do is to
decrease the friction coefficient between the surface and the
finger in a significant way in order to make the user feel
the difference of perception. Therefore, this analysis gives us
an indication for the design of the plate. For instance, an
amplitude of vibration of 1.5µm with a carefully prepared
surface (hr = 0.6µm) would be enough for the user to
feel the difference of perception (half of the relative friction
coefficient).

III. D ESIGN OF THE TACTILE PLATE

According to the previous study, we know the range of
vibration amplitude we have to impose on the plate in order

to obtain a squeeze film effect. Now, we have to find the
dimensions of the composite plate (monomorph) in order
to fulfil ergonomic, amplitude and frequency requirements.
To achieve this goal, we have chosen to generate ultrasonic
vibrations in a plate by gluing piezoceramics on it. Thus, we
are going to use the ultrasonic standing wave in this plate.
It may be noticed that the motion of the surface points are
no more uniform in that case. Nevertheless, we make the
assumption that the overpressure will still exist. The results
will be checked experimentally.
For the analytical deflection study, the simple structure consid-
ered is the half-wavelength portion of a heterogeneous beam
with a rectangular section. This study enables us to determine
the deflection of the beam as a function of geometrical
parameters. Then, a calculation of the resonant frequency is
also made as a function of geometrical parameters. Results
of both the deflection and the frequency enable us to give
boundaries of the numerical study. The numerical study is
carried out using computation software by finite elements and
allows us to justify some of the assumptions of the model.

A. Requirements for the design - An ergonomic workspace

The compatibility of our tactile device with the user’s move-
ment does not have to exclusively deserve the mechanisms
of stimulation. It also has to offer perspectives on tangible
interaction with computer-generated surfaces for example.
Therefore, the definition of the ergonomic workspace plays an
important role for the use of such devices. For finely textured
surfaces, it is recommended to ”allow the freedom of active
exploration” [10]. For that purpose, the biggest exploration
surface needs to be considered for the design of the tactile
plate. There is no exact dimension of exploration surface in
literature, but it is known, according to the observations of
Klatzky and Lederman, that typically the finger quickly rubs
back and forth along a small, homogeneous area of the surface,
and that interior surfaces are explored rather than edges [11].
Moreover, useful information in measurements of movement
amplitudes are reported in [12]. In his experiment, this author
collects the position and normal force exerted by the fingertip
while volunteers are actively exploring finely textured surfaces.
The values for the movement amplitude along the X and Y
directions are 97.27mm and 84.38mm . The mean and the
biggest rectangular areas that are touched measure respectively
28.18cm2 and128.37cm2.

B. Analytical study

The analytical study is realized following two steps. At the
first step, we begin with an analysis of the static deflection of
the plate due to piezoelectric excitation. We examine a half-
wavelength portion of the plate,λ/2, modeled as a simply-
supported beam as illustrated in (Fig.6). After determining
the static deflection of the plate; the deflection magnitude at
resonance can be calculated by multiplying the static value
by a dynamic amplification factor. At the second step, we
calculate the resonant frequency as a function of the half-
wavelength for a given width.
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Fig. 6. A half-wavelength section of the monomorph is modeled as a simply-
supported beam

1) Determination of the static deflection:The considered
monomorph (Fig.6) consists of a layer of piezoelectric ce-
ramic, thicknesshp, and of a layer of passive material (Copper
Beryllium, for example), here called mechanical resonator,
thicknesshi. Ceramic and substrate are stuck together. The
working assumption retained is that this assembly is perfect,
which amounts to consider that there is no thickness of
adhesive and that the strains are continuous on the substrate-
piezoelectric ceramic interface. The beam’s length isλ/2 and
its width is b.
First of all, the displacement vector in the cartesian frame is
described according to Bernoulli-Euler theory [13]

U =





u
v
w



 =





(z0 − z) δw
δx

(z0 − z) δw
δy

w(x, y, t)



 (16)

With w(x, y, t) the displacement along the z axis, andz0

the neutral plan ordinate, which distinguishes the compression
and the stretching zones into the plate.

Fig. 7. Small part of the half-wavelength beam which bends by contraction
of piezoceramics.

The radius of curvature,ρ, due to bending moments caused
by contraction of the piezoceramic, can be determined from
the resulting stresses and strains in the composite beam (Fig.7).
The plate is not vibrating with a planar movement but bends.
In fact, it is easier to realize bending distortion than planar
distortion.

To carry out this modeling, we suppose that we are in the
case of small deflections, so that all the lines which are parallel
with the neutral line,r, have the same radius of curvature [14].

dΦ

r
≃

dΦ

x
=

1

ρ
=

d2w

dx2
(17)

In which dφ is the small angle between the extreme lengths
of the small beam (Fig.7). The radius of curvature,ρ, due to

bending moments caused by contraction of the piezoceramic,
can be determined from the resulting stresses and strains in
the composite beam (Fig. 7).

If z0 denotes the neutral line ordinate andz−z0 the distance
between a deformed line and the neutral line, the strainSxx

is written:

Sxx(z) = (z0 − z)
d2w

dx2
=

z − z0

ρ
(18)

in which Sxx(z) is the x-directed strain component acting on
the face normal to the x-axis.

The resonator is considered to be isotropic and the stress
Ti can be expressed by the reduced form as follow:

Ti = EiSxx (19)

in which Ei is the Young modulus of the Copper Beryllium.
As for the piezoelectric part of the plate, the constitutive
relationships among stress, strain and applied field can be
expressed in terms of the piezoelectric stress relations

Tp = cE
S − etE

D = eS + ǫSE
(20)

in which E andD are respectively the electric field intensity
vector and the electric flux density vector.cE , e and ǫS

are respectively the elastic constants short circuit matrix, the
voltage coefficients and dielectric constants matrixes.

Finally, the stress distributions on the x-faces due to an
applied electric field in the z-direction are:

Txx(z) =







EiSxx(z) hp < z < hp + hi

cE
11p

Sxx − d31c
E
11p

Ez 0 < z < hp

(21)
whereet = d31c

E
11p

Moment balance requires that the moment of forces be zero,
as there are no externally applied moments or forces acting
on this structure.

M = 0 = b

∫

z

(z − z0)Txx(z) dz (22)

We integrate equation (22) between zero and(hp +hi) (Fig.6)
and we use the expressions ofTxx given by (21) and the
relation (18).

∫ hp

0

(z − z0)d31c
E
11p

Ez dz =

∫ hp

0

(z − z0)
2

ρ
cE
11 dz +

∫ hp+hi

hp

(z − z0)
2

ρ
Ei dz

(23)

By integrating equation (23), the expression of the curvec
can be deduced:

c =
1

ρ
=

d2w

dx2
=

3

2

d31Ez

hpa
(24)

with

1

a
=

1 − 2f0

1 − 3f0 + 3f2
0 + α(3β + 3β2 + β3 − 6βf0 − 3β2f0 + 3βf2

0 )
(25)
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and with

α =
Ei

cE
11p

, β =
hi

hp
, f0 =

zo

hp
(26)

By taking into account the boundary conditions of a simply-
supported beam and by integrating equation (24) twice, we
obtain the displacement profile:

w(x) =
3

4

d31Ez

hpa
(x2 −

λ

2
x) (27)

and the static deflection atλ4 is given by:

wmax = w(
λ

4
) =

−3

16

d31Ez

hp

(λ/2)2

a

= −
3

16

d31Vz

h2
p

(λ/2)2

a

(28)

In which Vz is the voltage applied between the piezo-ceramic
electrodes.

2) Determination of the dynamic deflection:In order to
increase the deflexion, we are going to work at the resonance.
That is why in this subsection we have to determine the
dynamic deflection which is the static deflection times the
dynamic amplification factor.

The dynamic amplification factor is the mechanical quality
factor Qm of the piezoceramic balanced by the ratio of the
strain energy of the entire monomorphUmono to the strain
energy of the piezoelectric layerUpiezo [15].

Q = Qm
Umono

Upiezo
(29)

The stored elastic energy in the piezoelectric layer is given by

Upiezo =
λb

2

1

2

∫

z

SxxTspiezo
dz (30)

Substituting in the expression (30) stress and strain, we obtain:

Upiezo =
λb

4

∫ hp

0

cE
11p

S2
xx dz

=
λb

4

∫ hp

0

cE
11p

(

z − z0

ρ

)2

dz

=
λbcE

11h
3
p

12ρ2

(

1 −
3z0

hp
+

z2
0

h2
p

)

=
3

16
λbhpd

2
31E

2
z cE

11p

1 − 3f0 + 3f2
0

a2

(31)

In the same way, the stored elastic energy in the entire
monomorph is given by

Umono =
λb

2

1

2

∫

z

Sxx(Tspiezo
+ Tsreson

) dz (32)

Substituting in the expression (32) stress and strain, we obtain:

Umono =
λb

4

(

∫ hp

0

cE
11p

S2
xx dz +

∫ hp+hi

hp

EiS
2
xx dz

)

(33)

Now, from (23), we know that:
∫ hp

0

d31c
E
11p

Ez

(

z − z0

ρ

)

dz =

∫ hp

0

cE
11p

(

z − z0

ρ

)2

dz +

∫ hp+hi

hp

Ei

(

z − z0

ρ

)2

dz

(34)
Thus, by substituting in the expression (33), we obtain

Umono =
λb

4

∫ hp

0

d31c
E
11p

Ez

(

z − z0

ρ

)

dz

=
λb d31c

E
11p

h2
p

8ρ

(

1 −
2z0

hp

)

=
3

16
λbhpd

2
31E

2
z cE

11p

1 − 2f0

a

(35)

Finally,

Q = Qm
a(1 − 2f0)

1 − 3f0 + 3f2
0

(36)

and

wdyn = w(
λ

4
)Q = Qm

−3

16

d31Vz

h2
p

(
λ

2
)2

(

1 − 2f0

1 − 3f0 + 3f2
0

)

(37)
Since the dynamic deflection (or the amplitude of vibration)

is expressed as a function of geometrical parameters for a
given voltage value, it could be feasible to bring out the half
wavelength beam which meets the guidelines of the ”squeeze
film effect” study.

3) Condition on the frequency:The resonance frequency,
fn, is a function of the plate dimensions and can be expressed
by the following equation:

fn =

(

π

λ/2

)2 √

Gb

Mb
(38)

in which Mb is the total mass per length, expressed as follow:

Mb = ρphp + ρihi (39)

in which Gb is the flexional rigidity of the monomorph in
N.m. Gb is the sum of the flexional rigidity of both materials
where z here is measured from the neutral axis.

Gb = cE
11p

b

∫

piezo

z2 dz + Eib

∫

substrate

z2 dz (40)

4) Neutral line ordinate: To complement our study, we
need to find the neutral line ordinatez0 as a function of
geometrical parameters. Since the neutral line is situated where
stresses cancel each other out and change of sign, the sum of
stresses at both sides of the line gives a null result. Calculation
is carried out in a purely elastic working, i.e. with a null
electric field. Atz0, we can write down

0 =

∫

z

Sxx(Tspiezo
+ Tsreson

) dz (41)

After developing this expression, we find:

z0 =
hp(1 + αβ2 + 2αβ)

2(1 + αβ)
(42)
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5) Results: We have at our disposal passive materials in
copper-beryllium, and a piezoelectric ceramics PZT, referred
to as PI-91, marketed by Saint-Gobain Quartz company (α
is set). The characteristics of the material are indicated in
TableII. The voltage supply of piezoactive ceramics is set to
15V in order to avoid a dangerous voltage. Moreover, the
thickness of the piezoceramic is 1mm, while the thickness
of the substrate is set to 2mm (this value has been chosen to
guarantee mechanical holding and fabrication considerations)
leading toβ = 2.

In Fig.8, the evolution of the absolute value of the dynamic
deflection according to the half wavelength,wdyn, is repre-
sented, plotted for the thickness ratioβ = 2.

Following the guidelines of the previous section (Fig.5), it
is implied that we have to design a plate in which the half
wavelength is higher than 8.2 mm (Fig.8) for a supply voltage
of 15V. The calculation of the frequency is made forb =
49 mm in order to have a sufficient workspace according to
ergonomic requirements.

Fig. 8. Dynamic deflection as a function of the half wavelength (λ/2) for
a thickness ratioβ = 2 and for a supply voltage of 15V.

In Fig.9, the evolution of the resonant frequency obtained
from (Eq. 38),fn, is represented according to the half wave-
length. To match the condition on the frequency according to
the squeeze number (Fig. 4), we needfn >25kHz, which
implies that the half wavelength needs to be smaller than
14.75 mm.

C. Numerical study

Now that we know the range of half wavelength required
to change the roughness feeling under the fingerpulp for a
thickness ratio,β, of 2 and supply voltage of 15V, the final
size of the plate remains to be decided. In order to satisfy
ergonomic requirements and to check the boundaries of the
analytical study (Fig.3), a finite element analysis is performed.
The aim of this numerical modeling is to calculate natural
frequencies and modal shapes of the plate and to perform
harmonic analysis.

TABLE II

L IST OF PARAMETERS

Mechanical properties of the resonator

Young modulusEi (109N.m−2) 123

Poisson coefficientνi 0.31

Mechanical properties of P1-91 ceramic

Piezoelectric constante31p (C.m−2) −4.9

Elastic constant

cE
11p

=
sE
11

(sE
11

)2−(sE
12

)2
(1010N.m−2) 6.79

Charge coefficient

d31 (10−12m.V −1) −247

Mechanical quality factor

Qm 60

Physical properties of the monomorph structure

Elastic constant ratioα 1.81

1) Modal analysis considering several half wavelengths:
In this subsection, we calculate the natural frequency of
a simply supported beam which length isλ/2 and width
b as it is described in the previous section (Fig.6). This
analysis is realized using the finite element method (FEM)
Ansys software. We consider 7 half wavelengths that measure
respectively 9mm, 10mm, 11mm, 12mm, 14mm, 16mm and
20mm. Dimensions and materials used for the simulations are
given in TableII and in the Appendix B. The piezoceramics are
glued on the mechanical resonator. Numerical results are done
for b = 49 mm in order to be compared with the analytical
study.
The numerical study (Fig.9) yields to a lower boundary for
λ/2 (13.6mm) than the one of the analytical study.

Fig. 9. Natural frequency as a function of the half wavelength: comparison
between the analytical and the numerical study.

2) Choice of the final plate size - modal analysis of the
entire monomorph:We have at our disposal two types of
ceramics; the first type measures 15mm and the second type
11mm. Moreover, the dimension of the piezo-ceramics has
to approach the size of the half wavelength. And, since the
results of the numerical study show that the real frequency is
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probably below the predicted frequency, we choose to take the
11mm one in order to take a margin of error. Then, following
the requirement for the design, we choose a surface length
L = 83mm in order to put 7 ceramics measuring 11mm
isolated from each other by a distance of 1mm. The final
dimensions of the plate are:L × b = 83mm × 49mm. This
gives us a surface area of40.67cm2.

Fig. 10. FE model of the monomorph.

A modal analysis is performed considering the entire
monomorph. We find the (8; 0) mode which corresponds
to a half-wavelength of10.37mm in the X direction. The
modal shape is presented in Fig.11 and proves that this
resonance frequency (35.6kHz) is in concordance with the
squeeze analysis (>25kHz).

Fig. 11. Result of the modal analysis: deformed shape of the (8;0) mode at
f=35.6kHz

3) Harmonic analysis of the entire monomorph:We are go-
ing to check if those dimensions meet amplitude requirements.
The FE model of the monomorph is represented in Figure 10.
Those ceramics are activated by two electrical signals, with a
180o phase shift between each. This creates a standing wave.

The harmonic response of the actuator gives the vertical
displacement as a function of the frequency (Fig.12) and shows
that the natural frequency is located at 34.77kHz. With this
frequency, a vertical displacement of3.2µm is obtained at the
top of the standing wave (cross point reported in Fig.9).

IV. EXPERIMENTAL EVALUATION

The prototype is presented in Fig.1. The polarity of each
ceramic is oriented to satisfy the wave production along the
X direction. The device is supplied by one voltage source
adjusted to a mechanical resonance frequency so as to generate

Fig. 12. Result of the harmonic analysis: Vertical displacement of a surface
point.

the standing wave along the length of the plate. Some exper-
iments with the prototype built at the laboratory have been
performed to confirm analytical and numerical simulations.

A. Vibration amplitude measurement

The vibration amplitude is measured using a single-point
LASER Doppler Vibrometer (OFV505) linked to a controller
(OFV-5000) that is connected to an oscilloscope.

As the results show, a deflection amplitude of about 2.3µm
peak to peak is obtained by applying a voltage of 15V. The
resonant frequency is 30.5kHz, (ring point reported on Fig.9)
which gives a squeeze number of 15.9 forhr = 0.6µm.

Fig. 13. Laser vibrometric measurements of the (8; 0) mode.

The vibration amplitude of the prototype is smaller than
the predicted amplitude. This amplitude attenuation may be
due to the manufacturing of the monomorph and especially to
the gluing phase. More precisely, the gluing phase is crucial
for the vibration quality owing to the ideal gluing hypothesis.
However, according to the relative friction study, this vibration
amplitude of the plate can be enough to feel the difference
of perception. This assumption will be checked in the next
section.

B. Qualitative study of the sensation

In this subsection, we suggest to test qualitatively the
sensation brought by the squeeze film phenomenon in our
tactile plate. By controlling the amplitude of the ultrasonic
vibration, we will show that we can vary the tactile sensation.
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The upper surface of the plate is the surface to touch (Fig.1).
The experiment is conducted with twelve naive students aged
between 18 and 25 years. In all conditions, all volunteers (9
men, 3 women) wear closed headphones (Fig.14). This allows
us to mask the audible cues produced by friction between the
finger and the texture. The volunteer’s task is to insert the
hand horizontally into the box and to bring the elbow in front
of the opening. Then, he or she has to form a straight line
with a backward motion of the index finger to discover the
surface (the tactile plate) presented in the rectangular aperture
(Fig.14). As the feeling of lubrication is obtained by vibrating

Fig. 14. Experimental setup.

the surface of the plate, we employ 4 virtual surfaces which
correspond to 4 amplitudes (peak to peak) of vibration: 0µm,
0.5µm, 1.2µm and 2.3µm. During the first test, the stimuli are
presented when the vibration amplitude decreases. Volunteers
are asked to say if there is some differences. If he or she
answers ”yes”, the subject is asked to say what has been
removed in this phase. All of the subjects feel clearly the
difference during the test, and they immediately say that it is
”less slippery”.
Finally, a second experience was proposed. Volunteers have to
scale their perception with an absolute magnitude estimation
as a function of the wave amplitude. For each ”virtual surface”,
the volunteers rate the slippiness of the surfaces with their own
scale after having explored it. The virtual surfaces are always
chosen at random. To control the differences in numerical

Fig. 15. Mean magnitude estimate as a function of the vibration amplitude
of the plate.

scale, the magnitude estimations are multiplied in order to
bring back the magnitudes of the scale to 100. In Figure 15,
means for the magnitude estimates are shown as a function
of the vibration amplitudes of the plate. It also confirms

a variation of the friction coefficient as a function of the
vibration amplitude.

V. CONCLUSION

This work presents theoretical consideration in the design of
the ultrasonic tactile plate and verification with experimental
results. This design first relies on the squeeze film effect study,
which considers the overpressure between a vibrating plate and
a fingertip with its epidermal ridges. This helps to deduce some
guidelines in term of the vibration amplitude and the average
roughness of the plate needed to induce a slippery feeling. In
order to generate vibration in the plate and to meet ergonomic
requirements, piezoelectric ceramics are glued on a resonator
(substrate) made of Copper Beryllium. According to the results
of the first study, an analytical study is realized to determine
the dynamic deflexion of the beam as a function of geometrical
parameters. Results allow us to choose the thickness of the
plate and the half-wavelength required to have the vibration
amplitude found in the squeeze film study for a given voltage.
Then, a numerical study is carried out to calculate the natural
frequency and modal shapes of the plate and to check the
vibration amplitude stipulated in the analytical study.
Experimental trials have been carried out to check perfor-
mances of the tactile plate. The vibration amplitude is mea-
sured and the slippery feeling is qualitatively checked by
means of psycho-physic tests. Although this plate is not yet
providing different types of texture because the control is not
achieved, this allows us to imagine the same results as those
found with the control strategy previously studied [4]. Future
work should indeed produce different kinds of texture by mean
of amplitude modulation.

APPENDIX A
RESOLUTION OF THE DIFFERENTIAL EQUATION

1

2
[1 + δ cos(kX)]

dΨ2
∞

dX
+ Ψ2

∞
kδ sin(kX) = K (43)

dΨ2
∞

Ψ2
∞

= −2
δk sin(kX)

1 + δ cos(kX)
dX (44)

Ψ2
1 = K1(X)[1 + δ cos(kX)]2 (45)

K ′

1(X) =
2K

[1 + δ cos(kX)]3
(46)

Since the functionΨ2
∞

is a square function, it is necessarily
an even function, as
Ψ2

∞
(X) = Ψ2

∞
(−X) and dΨ2

∞
(X)

dX = −
dΨ2

∞
(−X)

dX . By replac-
ing X by -X in (43), we obtain:

1

2
[1 + δ cos(kX)]

dΨ2
∞

dX
+ Ψ2

∞
kδ sin(kX) = −K (47)

which implied thatK = 0 and thatK ′

1(X) = 0 from (7).
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APPENDIX B

Material data of Copper-Beryllium :
Density:

ρi = 8250 kg.m−3

Material data of the used PZT ceramic PI-9111×9×1 mm3

from Saint-Gobain Quartz company, France.
Density:

ρp = 7410 kg.m−3

Stiffness matrix[1010N.m−2] :

cE =

















12.09 7.63 7.31 0 0 0
12.09 7.31 0 0 0

11.26 0 0 0
3.36 0 0

3.36 0
2.23

















Piezoelectric constants[C.m−2]:

e =





0 0 0 0 17.1 0
0 0 0 0 17.1 0

−4.9 −4.9 21.4 0 0 0
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