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Abstract

The recent financial crisis has lead to a need for regulators and policy makers to understand and

track systemic linkages. We provide a new approach to understanding systemic risk tomography

in finance and insurance sectors. The analysis is achieved by using a recently proposed method

on quantifying causal coupling strength, which identifies the existence of causal dependencies

between two components of a multivariate time series and assesses the strength of their asso-

ciation by defining a meaningful coupling strength using the momentary information transfer

(MIT). The measure of association is general, causal and lag-specific, reflecting a well inter-

pretable notion of coupling strength and is practically computable. A comprehensive analysis of

the feasibility of this approach is provided via simulated data and then applied to the monthly

returns of hedge funds, banks, broker/dealers, and insurance companies.

Keywords: Systemic risk, Financial crisis, Coupling strength, Financial institutions

JEL: G12, C40, C32, G29

1. Introduction

The recent financial crisis of 2007–2009 has lead to a need for the financial industry, regula-

tors and policymakers to develop a meaningful understanding and track of systemic risk. As

the events following the turmoil in financial markets unfolded, it became evident that modern

financial systems exhibit a high degree of interdependence making it difficult in predicting the

consequences of such an intertwined system. The nature of connections between financial insti-

tutions results from both the asset and the liability side of their balance sheet (Allen and Babus

(2008); Billio et al. (2012); Bisias et al. (2012)) . The structure of such connections between fi-

nancial institutions can be captured by employing a network representation of financial systems.

Network analysis is advancing as a common tool for assessing dynamics within the various

sections of the financial sector; it reveals that a truly systemic perspective needs to combine

the focus on various sections of the financial sector with an analysis of the interlinkages among
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them incorporating the interaction with the real economy (Bisias et al. (2012)). Intuitively, a

network structure describes a collection of nodes and the links between them. The nodes can be

individuals, institutions or countries, financial assets, or even collections of such entities. The

direct relation between these entities of interest are usually referred to as links. Network theories

can be used to monitor and assess systemic risks, contagion, linkages and vulnerabilities in the

financial system. The nature of networks permit us to picture beyond the immediate “point of

impact” of a shock and enhances the analysis of spillovers likely to arise from interlinkages.

Thus, network perspective would not only account for the various connections that exist within

the financial sector or between financial sector and other sectors, but would also consider the

quality of these links.

Recent works documenting the applications of network analysis to financial systems concen-

trates on issues such as financial stability and contagion. The literature mostly investigates how

financial institutions (or entities) are interconnected and how different network structures react

to the breakdown of a single (or an ensemble) institution in order to identify which ones are

more fragile (Allen and Babus (2008); Billio et al. (2012)). To our best of knowledge, existing

research focused on the network topology of asset returns of financial systems are the works of

Billio et al. (2012) and Bisias et al. (2012). In this article, our aim is to identify linkages, lags

of linkages and assess the strength of such connections. Our analysis exploits the concept of

quantifying causal coupling strength, which identifies the existence of causal associations be-

tween two components of a multivariate time series and assesses the strength of their association

by defining a meaningful coupling strength using the momentary information transfer (MIT)

(Runge et al. (2012a,b)). In otherwords, our proposed model-free approach which is based on

time series graphs and information theory, is able to detect and quantify causal dependencies

from multivariate time series.

Our empirical findings show that there is high coupling strength of linkages between the

four sectors, increasing the channels through which shocks can be transmitted throughout the

financial system. The results point to important asymmetry in the causal dependencies in the

insurance sector and brokers prior to the financial crisis of 2007–2009. We find that the returns

of insurers have significant impact on returns of brokers, where the time delay of impact is

shorter during the crisis. Over time, we find that banks were always contemporaneously linked

to brokers with a higher coupling strength observed before year 2000. In addition, our results

indicate that insurers did not, in many cases, directly impact hedge funds significantly. After

the year 2000, we find contemporaneous link between banks and insurers, and also between

brokers and hedge funds, where the former is with a higher coupling strength. The aftermath

of 1998 collapse of the $5 billion hedge fund Long Term Capital Management (LTCM) could

have lead to the contemporaneous link between brokers and hedge funds. In general, we find

that banks were not directly connected to hedge funds. However, the two sectors were indirectly

linked via a contemporaneous chain of dependencies from banks to brokers and then to hedge

funds. We remark that just prior to the financial crisis of 2007–2009, the hedge funds did have a

significant negative impact on banks. Interestingly, most connections were observe for the time

period (1994M01–2007M12), were hedge funds had a negative impact on the financial system

especially on the banks and brokers. This increase in size and causal dependencies between these

sectors could serve as a significant systemic risk indicator.

The paper is organised as follows: In Section 2, an overview of time series graph using

momentary information transfer measure is provided. In Section 3 & Section 4, we present a

comprehensive analysis of the feasibility of this approach to simulated and real data is provided.

Section 5 concludes.

2

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.69



2. Background

2.1. Overview of Approach

In this section, we provide an overview of a model–free approach which makes use time

series graphs and information theory. The approach is based on the momentary information

transfer (MIT) which builds on the fundamental concept of source entropy (as detailed in Runge

et al. (2012a,b)). The MIT is a time-delayed conditional mutual information and a measure of

association that is general in that it does not assume a certain model class underlying the pro-

cess that generates the time series. This measure of association will be useful in understanding

the interdependence in multivariate economic and financial time series analysis as the process

underlying the generated signals are a priori unknown (Addo et al. (2012)). In addition, the gen-

eral framework of graphical models1 (Lauritzen (1996); Dahlhaus (2000); Eichler (2012)) makes

MIT causal as it gives a non-zero value only to lagged components that are not independent

conditional on the remaining process. This measure in many cases is able to exclude the mis-

leading influence of autodependency within a process in an information-theoretic way. Runge

et al. (2013) successfully used this approach in quantifying the strength and delay of climatic

interactions. In order to test hypotheses on the interdependencies between processes underly-

ing data, there is a need for statistical measures of association. We seek for a measure with the

following properties:

1. General – it should not be restricted to certain types of association like linear measures.

2. Equitability – it should give similar scores to equally noisy dependencies. This property is

essential for comparisions and ranking of strength of dependencies within subprocesses of

the multivariate time series.

3. Causality – the measure should give non-zero value only to the dependency between lagged

components of a multivariate process that are not independent conditional on the remaining

process.

4. Coupling strength autonomy – given dependent components, the measure should provide

a causal notion of coupling strength that is well interpretable. In otherwords, it is uniquely

determined by the interaction of the two components alone and in a way autonomous of

their interaction with the remaining process.

5. “practically computable” – estimation does not for instance require somewhat arbitrary

truncation as in the case of other methods like Transfer entropy (TE).

These properties in the MIT approach allows to reconstruct interaction networks where not

only the links are causal, but also meaningfully weighted and have the attribute of coupling

delayed. To our best of knowledge, other methods such as the transfer entropy (TE) which is

the information-theoretic analogue of Granger Causality do not support these properties. For

instance, the TE is not uniquely determined by the interaction of the two components alone

and depends on misleading effects such as autodependency and interaction with other process.

This voilates the coupling strength autonomy. In addition, aside that the TE requires arbitrary

truncation during estimation, this measure can lead to false interpretation since it is not lag-

specific.

In this work, we outline our proposed “two-steps” approach for the determination of a cou-

pling strength:

1Graphical models provide a framework to distinguish direct from indirect interactions between and within subpro-

cesses of a multivariate process (Lauritzen (1996)).
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1. This first step determines the existence or absence of a link, which also provide useful

information on the causality between lagged components of the multivariate process. The

graphical model is estimated as detailed in Runge et al. (2012b).

2. Estimation of ρMIT as a meaningful weight for every existing link in the graph detailed in

Runge et al. (2012a).

2.2. Notations and Definitions

Given a stationary multivariate discrete-time series stochastic process X. Let the uni or mul-

tivariate subprocesses be A,B,C,D, · · · and the random variables at time t as Xt,At,Bt, · · · .

X
−
t = (Xt−1,Xt−2, · · · ) and A−t = (At−1,At−2, · · · ) denotes the past. For convenience X, Xt, X

−
t

andA−t are treated as sets of random variables, in thatA−t can be considered a subset of X−t .

In the graphical model approach (Lauritzen (1996)), each node in the graph represents a

single random variable i.e. a subprocess at a certain time t. We say that the nodes At−τ and Bt

are connected by a directed link “At −→
τ Bt” pointing forward in time if and only if τ > 0 and

I
A

link
−→B

(τ) ≡ I
(

At−τ;Bt

∣

∣

∣ X
−\{At−τ}

)

> 0. (1)

Thus, At−τ and Bt are connected if they are not independent conditionally on the past of the

whole process excluding {At−τ} (denoted by the symbol \) which implies a lag-specific causality

with respect to X. If A , B then “At −→
τ Bt” represents a coupling at lag τ. An autodepen-

dency at lag τ corresponds to A = B. The nodes At and Bt are connected by an undirected

contemporaneous link “A− B” (Eichler (2012)) if and only if

I
A

link
− B
≡ I
(

At;Bt

∣

∣

∣ X
−
t+1\{At,Bt}

)

> 0. (2)

Notice that the contemporaneous present Xt\{At,Bt} is included in the condition. Thus Xt\{At,Bt} ⊂

X
−
t+1\{At,Bt}. In the case of the multivariate autoregressive process, this corresponds to non-zero

entries in the inverse covariance matrix of the innovation terms. The equations 1 & 2 involve in-

finite dimensional vectors and can not be directly computed. Using the Markov property, this

issue can be circumvented by introducing the notion of parents and neighbors of subprocesses.

Let

PBt
≡ {Zt−τ : Z ∈ X, τ > 0,Zt−τ −→ Bt} (3)

be a finite set of parents of Bt which separates Bt from the past of the whole process X−t \PB.

The past lags of the subprocess B in X can be part of the parents. The neighbors of a process Bt

is defined as

NBt
≡ {At : A ∈ X,At − Bt} (4)

The parents of all subprocesses in X together with the contemporaneous links forms the time se-

ries graph. The estimation of these time series graphs is obtained by iteratively inferring parents

is well detailed in Runge et al. (2012b). This allows for the determination of the existence or

absence of a link and a causality between lagged components of X.

Definition 1. For two subprocesses A, B of a stationary multivariate discrete time process X

with parents PAt
and PBt

in the associated time series graph and τ > 0, the general information

theoretic measure MIT (described in Runge et al. (2012a)) betweenAt−τ and Bt is given by

I
A

MIT
−→B

(τ) ≡ I
(

At−τ;Bt

∣

∣

∣ PBt
\{At−τ},PAt−τ

)

> 0 (5)
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and contemporaneous MIT defined by

I
A

MIT
− B
≡ I
(

At;Bt

∣

∣

∣ PBt
,PAt
,NAt

\{Bt},NBt
\{At},PNAt \{Bt},PNBt \{At}

)

. (6)

Definition 2. For two subprocesses A, B of a stationary multivariate discrete time process X

with parents PAt
and PBt

in the associated time series graph and τ > 0, the partial correlation

measure, denoted ρMIT , associated with equation (5), for the strength of coupling mechanism

betweenAt−τ and Bt is given by

ρ
A

MIT
−→B

(τ) ≡ ρ
(

At−τ;Bt

∣

∣

∣ PBt
\{At−τ},PAt−τ

)

. (7)

The measure ρMIT quantifies how much the variability in A at the exact lag τ directly in-

fluences B, irrespective of the past of At−τ and Bt. ρ
MIT is the cross-correlation of the residual

afterAt−τ and Bt have been regressed on both the parents ofAt−τ and Bt. In economics, the de-

tection of causal relationships among variables are of great importance (Granger (1969); Billio

et al. (2012)). These variables can be viewed as nodes of graph where the links correspond to

interactions. Unlike classical statistics, interactions in the framework of information theory are

viewed as transfers of information and thus our approach is model-free. The section that follows

will be dedicated to the empirical illustration of the feasibility of the approach on simulated and

real data.

3. Simulations experiment

In this section, we provide a simulation study on the identification of interdependences and

strength in a simulated multivariate process with a priori knowledge on the network structure. In

this respect, consider a simulated 1000 points of a multivariate autoregressive process (displayed

in Figure (1a)) made up of four subprocesses {Xt,Yt,Zt,Wt}
′

defined by

Xt = aXt−1 + cZt−4 + εx (8)

Yt = cXt−1 + aYt−1 + εy (9)

Zt = dYt−2 + bZt−1 + f Wt−1 + εz (10)

Wt = eYt−3 + gWt−1 + εw (11)

and the innovation covariance matrix given by Σε =





























1 0 d 0

0 1 0 d

d 0 1 0

0 d d 1





























, where a = 0.6, b = 0.4, c =

0.3, d = −0.3, e = −0.6, f = 0.2, and g = 0.4. Notice that the lagged causal chain for this process

is X −→1 Y −→2 Z with feedback Z −→4 X, and Y −→3 W −→1 Z, plus contemporaneous links

X−Z and Y−W. The results of the time series graph via MIT approach is provided in Figures (1b

& 1c). We obtained that the causal dependencies between the subprocesses are well identified

and coincide with our a priori knowledge on the network structure. We remark that not only are

the causal lags of dependencies between subprocesses identified, the magnitude and sign of the

MIT coupling strength of linkages is also obtained (see Figure (1c)). In the section that follows,

we will provide an application of this approach to analysing systemic risk.
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(a) Plot of four subprocesses of a multivariate autoregressive process
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(b) MIT plot for the simulated process.
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(c) The plot of significant lags for simulated process associ-

ated with the MIT plot.

Figure 1: The detection & quantification of causal dependencies in a simulated multivariate autoregressive process

described in equations (8–11) via the MIT approach. The results indicates a lagged causal chain as X −→1 Y −→2 Z

with feedback Z −→4 X, and Y −→3 W −→1 Z, plus contemporaneous links X − Z and Y − W. In Figure (1c), the

existence of a dot at a particular lag τ of a subprocess ξ on the plots located on the diagonals indicates an autoregressive

link of the form ξt−τ −→ ξt , which we denote as “ξt −→
τ ξt”. Contemporaneous links can be read from the plots by

observing dots at where τ = 0. The vertical axes represent the sign and magnitude of the MIT coupling strength (ρMIT )

of the linkages, which corresponds to the coefficients of the simulated autoregressive process.

4. Application to multivariate financial time series

The recent global financial crisis (2007–2009) has clearly demonstrated the need for the

financial industry, regulators and policymakers to develop a better understanding of systemic risk.
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In particular, measuring the financial systemic importance of financial institutions is crucial in

identifying linkages and the potentially destabilizing constituents of the global financial system.

In this section, we consider the dataset used in Billio et al. (2012), with special attention on

identifying the linkages, lags of linkages and to assess the strength of such linkages among the

four main sectors: hedge funds (HR), banks (BK), Broker/dealers (PB) and insurers (IN). These

financial institutions represents the financial and insurance sectors described in more detail by

Billio et al. (2012). In this respect, we make use of the monthly returns of these sectors as

inputs for the MIT approach in analysing systemic risk. The time period for the data set in

Jan 1994–Dec 2008. Our analysis is performed on the full sample period and also considers

the following different time windows : 1994M01–2004M12, 1994M01–2005M12, 1994M01–

2006M12, 1994M01–2007M12, to study possible changes in the systemic risk network structure.

HF

PB

BK

IN

1

2

1

5

0.0 0.2 0.4 0.6 0.8 1.0

Auto-MIT
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Cross-MIT

(a) MIT plot for full Sample: Jan 1994–Dec 2008

0.0

0.2

0.4

0.6

HF

→ HF → PB → BK → IN

0.0

0.2

0.4

0.6

PB

0.0

0.2

0.4

0.6

BK

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

IN

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

ρMIT

lag τ [units]

(b) MIT lag plot for full Sample: Jan 1994–Dec 2008

Figure 2: The MIT Plots showing both the linkages among the four sectors and the strength of such connections for

the full study period, Jan 1994–Dec 2008. The second representation Figure (2b) of the MIT plots provides additional

information on autoregressive linkages by inspecting the diagonals. The existence of a dot at a particular lag τ of sector

ξ on the plots located on the diagonals indicates an autoregressive link of the form ξt−τ −→ ξt , which we denote as

“ξt −→
τ ξt”.

The results of the proposed MIT approach when applied to the multivariate process {HFt, PBt, BKt, INt}
′

for the full time period is shown in Figure (2). Lag-specific causal dependencies between the four

sectors can be easily visualized in Figures (2a & 2b). The sign and magnitude of the coupling

strength can be read from Figure (2b). The time series graph (network structure) provides an

understanding of the possible channels through which financial crisis were transmitted. In Fig-

ure (2a), we detect three contemporaneous links: BK − PB, PB − HF and BK − IN, where the

latter has a higher coupling strength (ρMIT ≃ 0.6) as seen in Figure (2b). We remark that the

results on the multivariate process {HFt, PBt, BKt, INt}
′

displayed in Figures (2a & 2b) can also
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be represented by the set of equations:

HFt = 0.5PBt + 0.2PBt−1 + 0.2INt−2 (12)

PBt = 0.5HFt + 0.5BKt + 0.2INt−1 (13)

BKt = 0.5PBt + 0.6INt + 0.3I Nt−5 (14)

INt = 0.6BKt + 0.3INt−5. (15)

Most directed links observed in Figure (2a) originates from insurers (IN) and in this case, a

failure of the insurers could cause a significant impact in the financial system. Moreover, the

given the high coupling strength between banks and insurers, a failure in the banking system

could significantly unstabilize the financial system. In addition, due to the high coupling strength

of the contemporaneous links between the three sectors: banks (BK), Broker/dealers (PB) and

insurers (IN), any large shock in one will spread quickly through the system.

We now provide results for four time periods: (1994M01–2004M12, 1994M01–2005M12,

1994M01–2006M12, 1994M01–2007M12), in Figures (3& 4). We make use of expanding win-

dow size to allow for the detection of changes in network structure across time. For all the

time periods considered, we identified three contemporaneous links: BK − PB, PB − HF and

BK − IN with the latter link having a higher coupling strength ρMIT ≃ 0.65 as shown in Figure

(4). Moreover, there exists a causal autodependency in insurers at lag τ = 5 (INt −→
5 INt) and

a direct link INt −→
2 HFt with |ρMIT | ≃ 0.25. We obtain that hedge funds were only linked

with banks (HFt −→
2 BKt) prior (1994M01–2006M12,–2007M12) to and during the financial

crisis of 2007–2009, which was not evident at the end of the full sample period. Notice that right

before and during the financial crisis of 2007–2009 (1994M01–2007M12), the interlinkages be-

tween the sectors increased. One of the lagged causal chain for this sample period is given by

HFt −→
2 PBt −→

5 BKt, HFt −→
2 BKt, and INt −→

6 PBt. We find that the lag of the direct

link between insurers and brokers observed for time period (1994M01–2006M12,–2007M12)

changed from τ = 6 to τ = 1 at the end of full sample period. This means that it did take

less time for shocks in the insurance sector to be transmitted to brokers during the crisis. We

also find that time series graph was unchanged for the time period (1994M01–2004M12) and

(1994M01–2005M12) as shown in Figures (3a& 3b) except for the exclusion of INt −→
6 PBt in

the latter.

Finally to account for the possibility of nonlinearity in the form of breaks or rare events in the

multivariate signal, we make use of the unthresholded recurrence plot, which is well documented

in literature (Iwanski and Bradley (1998); Marwan et al. (2007); Addo et al. (2013)). We identify

breaks at the dates: 1998M08, 2000M03 and 2008M11, as shown on Figure (5). Based on these

dates, we define three time windows: 1994M01–1998M08, 1994M01–2000M03, and 1998M08–

2008M11, for the MIT analysis. The results of the time series graphs for each time period is

provided in Figure (6) and Figure (7). For the time period (1994M01–1998M08 and 1994M01–

2000M03) , we obtain the same network structure and coupling strengths. The time series graph

for this period is composed of a high coupling strength of a contemporaneous link between

between brokers and banks (ρMIT ≃ 0.75), and INt −→
6 HFt (ρMIT = −0.4). For the time period

(1998M08–2008M11), the coupling strength for the contemporaneous link BK − PB reduced

from ρMIT ≃ 0.75 to 0.5 (see Figure (7c)). We also find that the causal autodependency in

insurers at lag τ = 5 (INt −→
5 INt) and two other contemporaneous links: PB − HF and

BK − IN identified (see Figures (3)) in the previous time windows, emerged after year 2000 (see

Figures (6b& 6c)). These contemporaneous links could be due to the early 2000’s recession (i.e

2001 to 2003: the collapse of the Dot Com Bubble and September 11th attacks).

8
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(a) MIT plot for 1994M01–2004M12
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(b) MIT plot for 1994M01–2005M12
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(c) MIT plot for 1994M01–2006M12
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(d) MIT plot for 1994M01–2007M12

Figure 3: The MIT Plots displays how the four sectors are linked and the strength of the linkages. It shows autoregressive

links, contemporaneous links and directed (i.e across sectors) links among sectors. The numbers at some ends of directed

arrows (links) corresponds to the significant lag of the linkage. Thus, a directed link “A −→τ B” means that B is

influenced byA at lag(s) τ. Contemporaneous links between two sectors: A and B, is denoted “A− B”.

5. Concluding Remarks

The global financial crisis of 2007–2009 has created a renewed interest to develop a better

understanding of systemic risk. As documented in literature, the financial system has become

considerably more complex and interconnected over the past two decades. In this work, we

propose a novel information theoretic approach to understanding systemic risk. We show that

this model–free approach identifies linkages, transmission channels, lags of linkages and assess

the strengths of such connections. Unlike existing methodologies with assumptions on station-

arity of time series, model structure and parameter space, our approach only requires that the
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(b) MIT lag plot for 1994M01–2005M12
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(c) MIT lag plot for 1994M01–2006M12
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(d) MIT lag plot for 1994M01–2007M12

Figure 4: This is an alternative representation of the MIT Plots in Figure3. A directed link “A −→τ B” means that B is

influenced by A at lag(s) τ. The existence of a dot at a particular lag τ of sector ξ on the plots located on the diagonals

indicates an autoregressive link of the form ξt−τ −→ ξt , which we denote as “ξt −→
τ ξt”. Contemporaneous links can

be read from the plots by observing dots at where τ = 0. The vertical axes represent the MIT coupling strength of the

linkages.

multivariate time series be stationary. Our approach excludes the misleading influence of au-

todependency within a process by assigning a non-zero value only to lagged components that are

not independent conditional on the remaining process. Using monthly returns data for insurers,

brokers/dealers, hedge fund indexes and portfolios of publicly traded banks, we detect and quan-

tify causal dependencies in these financial institutions to provide an understanding of systemic

risk.

Our results point to important asymmetry in the causal dependencies in the insurance sector

and brokers prior to the financial crisis of 2007–2009. We find that the returns of insurers have
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Figure 5: A contour plot (heat map) of the unthresholded recurrence matrix, which is also referred to as the distance

matrix in Addo et al. (2014). Considering the entire sample, we identify breaks at the dates: 1998M08, 2000M03 and

2008M11. We define time windows: 1994M01–1998M08, 1994M01–2000M03, 1998M08–2008M11, based on these

dates for the MIT analysis.

significant impact on returns of brokers, where the time delay of impact is shorter during the crisis

(see Figures (3c & 3d) and Figure (2a)). For all time periods considered, we find that banks were

always contemporaneously linked to brokers with a higher coupling strength observed before

year 2000. In addition, our results indicate that insurers did not, in many cases, directly impact

hedge funds significantly. After the year 2000 (see Figure (6b)), we find contemporaneous link

between banks and insurers, and also between brokers and hedge funds, where the former is with

a higher coupling strength. The aftermath of 1998 collapse of the $5 billion hedge fund Long

Term Capital Management (LTCM) could have lead to the contemporaneous link between bro-

kers and hedge funds. In general, we find that banks were not directly connected to hedge funds.

However, the two sectors were indirectly linked via a contemporaneous chain of dependencies

from banks to hedge funds: BK−PB−HF, as seen Figure (3). We remark that just prior to the fi-

nancial crisis of 2007–2009, the hedge funds did have a significant negative impact on banks (see

Figures (4c & 4d)). Most connections were observe for the time period (1994M01–2007M12),

shown in Figure (3d), were hedge funds had a negative impact on the financial system especially

on the banks and brokers. This increase in size and causal dependencies between these sectors

could serve as a significant systemic risk indicator. Our results have showed that there is high

coupling strength of linkages between the four sectors, increasing the channels through which

shocks can be transmitted throughout the financial system.
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(c) MIT plot for 1998M08–2008M11
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(d) MIT plot for full Sample: Jan 1994–Dec 2008

Figure 6: A directed link “A −→τ B” means that B is influenced byA at lag(s) τ. The existence of a dot at a particular

lag τ of sector ξ on the plots located on the diagonals indicates an autoregressive link of the form ξt−τ −→ ξt , which

we denote as “ξt −→
τ ξt”. Contemporaneous links can be read from the plots by observing dots at where τ = 0.

The vertical axes represent the MIT coupling strength of the linkages. We define time windows: 1994M01–1998M08,

1994M01–2000M03, 1998M08–2008M11, based on the distance matrix plot in Figure (5).
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(b) MIT lag plot for 1994M01–2000M03
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(c) MIT lag plot for 1998M08–2008M11
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(d) MIT lag plot for full Sample: Jan 1994–Dec 2008

Figure 7: The lag plot indicating significant causal dependencies and coupling strength between subprocesses for the

time windows: 1994M01–1998M08, 1994M01–2000M03, 1998M08–2008M11. In otherwords, this is an alternative

representation of Figure (6) with information on the magnitude and sign of the coupling strength.
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