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Saïp Ciss∗

January 27, 2015

Abstract

In the context of ensemble learning, especially for random forests models, the
out-of-bag (OOB) procedure, using the training set, produces an estimation of the
generalization error. The OOB error has the same purpose than the cross-validation
error, but comes with very specific points. First, there exists an OOB classifier that
leads to the OOB evaluation. Second, the OOB classifier is embedded in the forest
classifier. We show in this paper that these two intrinsic properties lead to produce
simple conditions for the test error to be bounded by the OOB error. Conditions
come with the only required and usual assumptions which are the i.i.d one and the
existence of first and second order moments. The main interest is that the OOB error
is explicitly known, hence one just needs a training set without any other assumption
on the model behind the data. As a practical case, we use Random Uniform Forests
(Ciss, 2015a), a variant of Random Forests (Breiman, 2001) that inherits of all
properties of the latter, to show how OOB bounds apply. We also provide an R
package, randomUniformForest , allowing to experiment all the arguments described
in the paper.

Keywords : Random Uniform Forests, Random Forests, statistical learning, bounds,
Out-of-bag error, classification, regression, R package.
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1 Introduction
Ensemble learning defines all the methods that use many base learners, then combine
them to produce a classifier. It has been shown to be effective (Breiman, 1996, 2001) and
two paradigms, with each many variants, constitute the main approaches. The first one
leads to construct many independent, or with low correlation, base learners combining
their outputs by majority vote (classification) or averaging (regression). The second one
builds base learners in a sequential way, using the residuals of one to improve the next
one, and the resulted classifier is some function of the base learners. Bagging (Breiman,
1996) and Random Forests (Breiman, 2001) are the most known models for the first
paradigm, while Gradient Boosting Machines (Friedman, 2001, 2002) are one of the most
effective for the second one, which was originally introduced with AdaBoost (Freund and
Schapire, 1997), short for adaptative boosting. In this paper, we will focus on Random
Uniform Forests (Ciss, 2015a), a variant of Random Forests. It shares the same principle
: use a decision tree as a base learner, build many ones with low correlation, then combine
them by majority vote or averaging. To build a random forest like classifier two steps are
needed :
- the bootstrap one : for each tree, choose at random and with replacement, n observations
among n from the training set. This step is not mandatory.
- the aggregating one : grow each tree independently from another, without pruning and
by selecting at random a subset of variables for each created node, then combine all trees
at the end. Since trees are randomized (more or less strongly), the usual combining tech-
nique is majority vote (classification) or the average (regression) of the trees outputs.

The bootstrap step can be replaced by a subsampling one (choose randomly m obser-
vations among the n of the training set, m < n), especially for regression. This is the
case for Random Uniform Forests. We seek to have little correlation between trees and
little variance for each tree. This is essential since, for the most general case of regression,
the forest error is bounded by the product of average correlation between trees residuals
and the average prediction error of a tree (i.e. average variance between trees residuals),
which depends to the variance of the trees. Hence random forests models usually focus
on how to obtain low correlation and low variance. Since it is very hard to decrease both
in the same time (variance is usually increasing as correlation is decreasing), Random
Uniform Forests are designed to decrease correlation faster than the increase of variance.

These arguments, correlation and variance, are the main directions from which the whole
analysis of random forests is pursued. Low correlation, as a replacement of independence,
is a necessary condition for the convergence of random forests. Variance is involved in
both correlation and generalization error of the forest classifier.

In section 2, we define the forest classifier for Random Uniform Forests and the OOB
classifier. In section 3, we describe the convergence of the prediction error, recalling
Breiman’s arguments. In section 4, we write the Breiman’s bounds and briefly discuss
about some cases where they are not adequate. Section 5 is the core of the article and
defines conditions to obtain OOB bounds. We discuss about the consequences of the
proposed bounds in section 6 and conclude in section 7. Proofs are sent to the appendix.
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2 The Random Uniform Forest classifier
Random Uniform Forests are close to Breiman’s Random Forests but they come with
many differences. The most important ones are the use of random cut-points and the
sampling with replacement a set of variables for each candidate node. Random Uniform
Forests are designed to be fairly simple and to let data speak for themselves with some
kind of global optimization when selecting an optimal node among many random ones.

A Random Uniform Forest is an ensemble of random uniform decision trees, which are
unpruned and binary random decision trees that use the continuous Uniform distribution
to be built. Since the results we are assessing can apply to any ensemble model that uses
bootstrap or subsampling and that can build an OOB classifier (see next section), we will
omit details of the algorithm and will focus on the general form of the classifier. Note
that we use, for convenience, E and Var as the expectation and variance operators. I is
the indicator function.

Let us consider Dn = {(Xi, Yi), 1 ≤ i ≤ n}, corresponding to the observations and
responses of a training sample, where (X, Y ) is a Rd × Y-valued random pair, with re-
spect to the i.i.d. assumption. Let us suppose, for brevity, that Y ∈ {0, 1} considering,
then, the binary classification case and when referring on classification in the rest of the
paper. The decision rule of a random uniform decision tree is given by

gP (x,A,Dn) = gP (x) =


1, if

∑n
i=1 I{Xi∈A,Yi=1} >

∑n
i=1 I{Xi∈A,Yi=0}, x ∈ A

0, otherwise.

A is the current terminal and optimal region (node), coming from the recursive partition-
ing scheme, where falls the observation x,
gP is the decision rule of the tree for a set A ∈ P , a partition of the data.
Hence we count, in a terminal node where falls an observation, the number of times each
label (defined by Y ) appears. The label that has the highest count is the one that is
assigned to the observation.

In regression we get

gP (x,A,Dn) = gP (x) =
1∑n

i=1 I{Xi∈A}

n∑
i=1

YiI{Xi∈A}, x ∈ A.

The average of all instances of Y , in a terminal node, is taken as the output of the classifier.

The decision rule, ḡ(B)
P

, of the Random Uniform Forest classifier is given by

ḡ(B)
P

(x) =


1, if

∑B
b=1 I{g(b)P (x)=1} >

∑B
b=1 I{g(b)P (x)=0}

0, otherwise.

And for regression :

ḡ(B)
P

(x) =
1

B

B∑
b=1

g(b)
P

(x).
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2.1 The OOB Forest classifier

The Out-of-bag (OOB) informations are the observations that do not participate to the
trees growth. For each tree, due to bootstrap or subsampling, some observations (at
random) are not chosen and are stored in order to build the OOB classifier, whose decision
rule is ḡ(B)

P ,oob
(X). The OOB classifier exists only for the training sample and use, on

average and in the bootstrap case, B′ trees, B′ = dexp(−1)Be , with n observations.
Note that the B′ trees are not necessary the same for each observation that needs to be
evaluated. We have for an observation x and for only Dn,

ḡ(B)
P ,oob

(x) =


1, if

∑B
b=1 I

{
g
(b)
P (x)=1

}I{b∈G− (x,B)} >
∑B

b=1 I
{
g
(b)
P (x)=0

}I{b∈G− (x,B)}

0, otherwise.

And, for regression :

ḡ(B)
P ,oob

(x) =
1∑B

b=1 I{b∈G− (x,B)}

B∑
b=1

g(b)
P

(x)I{b∈G− (x,B)},

where G−(x,B) is the set of trees, among the B, which have never classified x.

In practice, the design of the OOB classifier is the same than the one of the forest
classifier, except that the latter use all trees and applies to any test set with respect to
the i.i.d. assumption. The OOB classifier learns the training set and applies only on the
latter. Moreover, the OOB classifier is embedded in the forest classifier. For each tree,
some observations that have not been used to grow the tree are now used to evaluate the
classifier, as a test set would serve for the forest classifier. Main interests of Out-of-bag
evaluation can be summarized with the following lines:
i) the classifier is built during the learning phase, taking only a small computing time in
comparison to a k-fold cross-validation,
ii) except for some trees, it is the one that will be used for the test set,
iii) the OOB error is based on all the observations of the training set at once,
iv) one can assess convergence of the classifier by changing the sampling rate, especially
for large datasets.

3 Convergence of the prediction error
Let us recall Breiman’s arguments, looking first classification. Let us consider mg, the
margin function that measures the difference (in frequency) between points (observations)
correctly classified and misclassified points. We have

mg(X, Y ) =

(
1

B

B∑
b=1

I{g(b)P (X)=Y }

)
−

(
1

B

B∑
b=1

I{g(b)P (X)6=Y }

)
.

Let us call (following Breiman’s notation) PE∗, the prediction (or generalization) error
for B trees, and define gP (X)

def
= gP (X, θ), where θ is the parameter that translates the
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randomness introduced. For the b-th tree, 1 ≤ b ≤ B, we define g(b)
P

(X)
def
= g(b)

P
(X, θb).

Then
PE∗ = PX,Y (mg(X, Y ) < 0) ,

and by the Law of Large Numbers, if trees are independent and when B →∞,

PE∗
p.s.→ PE = PX,Y {Pθ(gP (X, θ) = Y )−Pθ(gP (X, θ) 6= Y ) < 0} ,

(Breiman, 2001, theorem 1.2)
where PE is the generalization error of the (infinite) forest.

In regression, we get similar results. We have

PE∗(forest)
def
= PE∗(ḡ(B)

P
(X)) = EX,Y

(
Y − 1

B

B∑
b=1

g(b)
P

(X, θb)

)2

,

and when B →∞,

PE∗(ḡ(B)
P

(X))
p.s.→ PE(EθgP (X, θ)) = EX,Y (Y − EθgP (X, θ))2 ,

(Breiman, 2001, theorem 11.1).

As a consequence, Random (Uniform) Forests do not overfit if trees are independent
(in practice, a little dependent) and under the i.i.d. assumption. One can note that low
correlation between trees is easy to achieve in (binary) classification (usually around or
less than 0.1) but much harder in regression (usually around 0.3 or more). A second con-
sequence is that one does not need to grow a lot of trees. For a fixed dataset, convergence
toward the true prediction error of the model will quickly happen as one is adding trees to
the forest (one just needs to measure the difference in OOB error with new trees added).
The third one is that in classification one needs first to lower bias while in regression one
needs first to reduce correlation. But, the main application of convergence is the ability
to just focus on ways to reduce prediction error without the need to further work on
statistical consistency. More precisely, the forest will always do its best, depending on the
hyper-parameters provided. Hence, in practice, the main question will be to know how
many observations are needed for such a task, rather than to know if the model can match
the lowest possible error. It might, but the latter requires conditions (or assumptions)
that are not easily reachable in practice.

4 Bounds
As correlation decreases (required condition), average variance of trees increases and it
begins harder to reduce prediction error. Decreasing correlation is easy, since it only re-
quires to increase trees randomness. But then, variance will increase and one has to find
ways to not let it move too fast. If one wants to control both correlation and variance,
one key is to observe and monitor Breiman’s bounds. These are the bounds of Random
(Uniform) Forests that ensure that the prediction error (under the i.i.d. assumption) will
not increase beyond a limit. Most applications of Breiman’s bounds are linked with the

5



OOB classifier, that inherit to the bounds and show if more work (which is also depending
on n and on the hyper-parameters) is needed to improve the modeling or if there is no
more room for the algorithm.

Classification

At first, bounds involve classification and we have two. The first bound is, by the
Bienaymé-Tchebychev inequality,

PE∗ ≤
Var

X,Y
(mr)

s2
,

where
mr(X, Y ) = Pθ(gP (X, θ) = Y )−Pθ(gP (X, θ) 6= Y )

is the limit of mg and s, s > 0, the strength (or margin), is

s = EX,Y{mr(X, Y )}.

This first bound states that prediction error would always be under a limit which is
explicit but unknown (unless one evaluates it using OOB informations). It is the upper
bound of the prediction error and it can be loose (but useful in case of problems with
imbalanced classes or more difficult ones).
The second bound is tighter. We have (Breiman, 2001, theorem 2.3)

PE∗ ≤ ρ̄(1− s2)

s2
,

where

ρ̄ =
Eθ,θ′ [ρ(θ, θ

′
)
√

Var(θ)
√

Var(θ′)]

Eθ,θ′ [
√
Var(θ)

√
Var(θ′)]

,

ρ̄ is the average (weighted) correlation between trees,
ρ(θ, θ

′
) is the correlation of two trees of random and independently chosen parameters θ

and θ′,
Var(θ) is the variance of the tree over the observations, standing as the variance of the
raw strength. Let us note the latter rmg. We have

rmg(θ,X, Y ) = I{gP (X,θ)=Y } − I{gP (X,θ)6=Y },

Var(θ)
def
= Var

X,Y
(rmg(θ,X, Y )),

and
mr(X, Y ) = Eθ(rmg(θ,X, Y )).

An estimate of ρ̄ is, then, given by

ˆ̄ρ =

∑
1≤b<c≤B ρ̂b,c

(θb, θc)
√
V̂ar

X,Y
(rmg(θb, X, Y ))

√
V̂ar

X,Y
(rmg(θc, X, Y ))∑

1≤b<c≤B

√
V̂ar

X,Y
(rmg(θb, X, Y ))

√
V̂ar

X,Y
(rmg(θc, X, Y ))
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where

V̂ar
X,Y

(rmg(θ,X, Y )) =
1

n

n∑
i=1

(
I{gP (Xi,θ)=Yi} − I{gP (Xi,θ) 6=Yi} −mg(Xi, Yi)

)2
.

An estimate of s is given by

ŝ =
1

n

n∑
i=1

mg(Xi, Yi) =
1

n

n∑
i=1

{(
1

B

B∑
b=1

I{g(b)P (Xi)=Yi}

)
−

(
1

B

B∑
b=1

I{g(b)P (Xi)6=Yi}

)}
.

Here, we are concerned by correlation and much more by strength, which is connected
with bias. In Random Uniform Forests, we first expect to increase the strength by adding
more trees. If we try more optimization, strength may also increase but correlation will
increase too. Fortunately, we can lower correlation by using more randomization (up to
a limit) without not affecting strength too much. we call Breiman’s second bound the
expected bound of the prediction error and one result we are looking for is that it must
not be exceeded, thanks to the OOB classifier.

One can note that the bound might not work in case of imbalanced classes or corre-
lated covariates. Empirically, we found that for correlated covariates, some issues arise,
depending of the number of correlated variables and the dimension of the problem. One
solution is to the change the space of representation, but Variable Importance will be lost.
A more natural solution is to use first the algorithm without any optimization (e.g. as a
purely random forest) and get a benchmark against which more sophisticated options will
challenge. In the case of imbalanced classes, the bound does not work because strength
will focus on the majority class, coming from the intrinsic growth of trees (cases with the
majority class will be more favored by their number rather than by their relation with
the labels). However, estimating the correct Breiman’s bound usually only requires to
balance classes, using the appropriate technique.

Regression

In regression, Breiman also provides a bound and the theoretical prediction error of the
forest (generalization error). The key difference with classification resides in the fact that
the bound has stronger link with (average) variance of trees residuals.

Suppose that, for all θ, E(Y ) = EX(gP (X, θ)). We have, (Breiman, 2001, theorem 11.2),

PE(forest) ≤ ρ̄PE(tree),

where
PE(tree)

def
= PE(gP (X, θ)) = EθEX,Y(Y − gP (X, θ))2,

is the average prediction error of a tree (or the average variance of trees residuals) and

PE(forest) = PE(EθgP (X, θ)) = EX,Y (Y − EθgP (X, θ))2

= EX,Y {Eθ (Y − gP (X, θ))}2

= EθEθ′EX,Y (Y − gP (X, θ)) (Y − gP (X, θ′)) .
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ρ̄ is the average (weighted) correlation between trees residuals, defined by

ρ̄ =
EθEθ′ρ(θ, θ′)

√
Var

X,Y
(Y − gP (X, θ))

√
Var

X,Y
(Y − gP (X, θ′))(

Eθ

√
Var

X,Y
(Y − gP (X, θ))

)2 ,

where ρ is the correlation between two trees residuals of random and independently cho-
sen parameters θ and θ′.

We also get the estimate of the theoretical prediction error of the forest, given by

P̂E∗(forest) = P̂E∗(ḡ(B)
P

(X)) = ˆ̄ρ

 1

B

B∑
b=1

√√√√ 1

n

n∑
i=1

(
Yi − g(b)

P (Xi)
)2

2

,

with

ˆ̄ρ =

∑
1≤b<c≤B ρ̂b,c

(θb, θc)
√

V̂ar
X,Y

(Y − g(b)
P (X, θb))

√
V̂ar

X,Y
(Y − g(c)

P (X, θc))(∑B
b=1

√
V̂ar

X,Y
(Y − g(b)

P (X, θb))

)2 .

In regression we are concerned by both correlation and average prediction error of trees.
Here, each time one wants to lower variance, correlation increases unless one finds a way
to do both reduction. To avoid variance getting high, one strategy is to work more on
the dimension, growing large and deep trees and, in many cases, to use post-processing.
In regression, the main problem is that randomization leads to a lot of combinations
that affect variance but not enough reduce correlation. We can link this with two points
addressed by the algorithm:
- due to this correlation, not enough low, a part of the problem is linked with bootstrap
which does not generate enough diversity (in terms of different values). That’s why it is
not used in Random Uniform Forests for regression.
- Due to variance that may remain high, we allow to select a set (or subset) of variables,
at each node, with replacement in order to increase competition, and thus try to reduce
average variance of trees at some cost (expected low) to the correlation.
A way to assess it is to monitor the theoretical prediction error of the forest using the
OOB classifier. If it is lower than the OOB prediction error then improvements may
be found at the cost of more computation. If not then one has to take care of possible
overfitting that is most likely to happen in the regression case, due to higher correlation
between trees residuals.

Breiman’s bounds provide strong guarantees. However and in practice, one should avoid
to use bound, in regression, as an upper one except if correlation and bias are low enough.
The most interesting and practical case comes from the fact that all Breiman’s bounds
and theoretical prediction error of the forest can be estimated using the OOB classifier,
allowing first to compare OOB empirical error and OOB estimates of the bounds. While
useful, it still does not allow to conclude about the test error, since both measures come
from the same training set while we want to assess the test set.
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5 Decomposition of the prediction error and OOB bounds
We suppose, here, that the relation between Y and X is unknown. Only first and second
order moments are expected and the i.i.d. assumption. Hence, we do not look if there
is a model behind the data, since the purpose is to know if there exist bounds that are
data-dependent without any knowledge of a best model or hypothesis from this model.

Then, we can decompose the prediction error in order to find where to look for the
control of the latter. For the Random Uniform Forest classifier, the general form of the
true prediction error, in regression, is given by

EX,Y (Y − EθgP (X, θ))2 =

E(ε2) + {EX,Y [Y − EθgP (X, θ)]}2 + VarX (EθgP (X, θ))− 2CovX,Y(EθgP (X, θ), Y ),

with ε def= Y − E(Y ).

One can note that we consider the infinite forest classifier and write the decomposi-
tion for all values of the pair (X, Y ). Since, in practice, EθgP (X, θ) is unknown, we can
derive the relation above by using the forest classifier with the number of trees, B, fixed.
For binary classification (and Y ∈ {0, 1}), we get

PX,Y

(
ḡ(B)
P

(X) 6= Y
)

= P(Y = 1) + PX(ḡ(B)
P

(X) = 1)− 2EX,Y

{
Y ḡ(B)

P
(X)

}
, (1)

and, simplifying but not too strongly, for regression,

EX,Y(Y − ḡ(B)
P

(X))2 = E(Y 2)− 2EX,Y

{
Y ḡ(B)

P
(X)

}
+
{
EX

(
ḡ(B)
P

(X)
)}2

+ VarX
(
ḡ(B)
P

(X)
)
.

(2)

The last step replaces the expectation operator by its empirical counterpart, leading to
match the test error. Replacing Breiman’s bounds by their OOB counterparts give OOB
bounds, whose we want to be upper bounds of test error. Hence, the main task is to
match the parameters of Y , the latter being expected to not drift.

A- In the classification case, let us write the OOB empirical error and the test error
:

PE
∗(B)

oob =
1

n

n∑
i=1

I{
ḡ
(B)
P ,oob (Xi)6=Yi

},

PE
∗

=
1

N − n

N∑
i=n+1

I{
ḡ
(B)
P (Xi)6=Yi

},
where N − n, N > n, is the size of the test sample.
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Proposition 1.
i) Let us suppose that for any randomly chosen training and test samples, large enough,
the first term of the relation (1) sees its empirical counterpart be approximatively equal
in both samples.
ii) Consider the OOB classifier and suppose its correlation ρ, with values of Y in the
training sample, is approximatively equal with the one of the forest classifier with un-
known values of Y in the test sample.

If n, the size of the training sample, and B are large enough and if

iii)

√
V̂arX

(
ḡ

(B)
P (X)

)
−
√

V̂arX

(
ḡ

(B)
P ,oob(X)

)

>

(
1− 2

n

∑n
i=1 I{Yi=1}

)(
1

N−n
∑N

i=n+1 I
{
ḡ
(B)
P (Xi)=1

} − 1
n

∑n
i=1 I

{
ḡ
(B)
P ,oob (Xi)=1

})
2ρ̂

√
V̂ar(Y |Dn)

then, for any test sample of size, large enough, N − n,

PE
∗ ≤ PE

∗(B)

oob .

The claim states that we can found non-asymptotic conditions where the OOB error will
be an upper bound of the test error. It suffices that we have a large enough training
sample (in practice test sample will also be large for real world problems) under the i.i.d.
assumption (required, otherwise the test error could be everywhere). Then the point i)
will hold. For the point ii), one can note that the OOB classifier is a weaker classifier than
the forest one (since it uses less trees) and is a part of the latter. Hence, its correlation
with Y in the training sample will usually be lower or close to the correlation of the forest
classifier with Y in the test sample. The term "approximatively equal" illustrates the fact
that convergence happens, as trees are added, but not monotonically (small oscillations
appear).

B- In the regression case, we have

PE
∗
(ḡ(B)
P ,oob

(X, θ)) =
1

n

n∑
i=1

(
Yi − ḡ(B)

P ,oob
(Xi)

)2
,

PE
∗
(ḡ(B)
P

(X, θ)) =
1

N − n

N∑
i=n+1

(
Yi − ḡ(B)

P
(Xi)

)2
.
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Proposition 2.
i) Let us suppose that for any randomly chosen training and test samples, large enough,
the empirical counterpart of Var(Y ) in the test sample is approximatively equal to the
one in the training sample.
ii) Consider the OOB classifier and suppose its correlation ρ, with values of Y in the
training sample, is approximatively equal with the one of the forest classifier with un-
known values of Y in the test sample.

If n, the size of the training sample, and B are large enough and if

iii)

∣∣∣∣∣ 1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)

∣∣∣∣∣ and V̂ar
X

(ḡ(B)
P

(X)) < V̂ar
X

(ḡ(B)
P ,oob

(X)),

iv)

∣∣∣∣∣∣
(

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)2

−

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)

)2
∣∣∣∣∣∣

> 2ρ̂

√
V̂ar(Y |Dn)

(√
V̂arX(ḡ

(B)

P ,oob
(X))−

√
V̂arX(ḡ

(B)
P (X))

)
+

2

n

n∑
i=1

Yi

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)−

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)
,

then for any test sample of size, large enough, N − n

PE
∗
(ḡ(B)
P

(X)) ≤ PE
∗
(ḡ

(B)

P ,oob
(X)).

In regression we have to focus on mean and variance of the forest (and OOB) classifier,
with respect to each sample, and thus there is more work to do (in classification the
sample has more effect on the prediction error, in regression it is the model). Here, while
point i) is a consequence of the i.i.d. assumption, point ii) is a convenient assumption
with the same purposes than those discussed in classification. Point iii) is the main ar-
gument for the OOB error to be a bound and relies only on the values of X in training
and test samples. But it is not sufficient since in the relation (2), there is a term which
depends both from Y and ḡ(B)

P
. A simple assumption lead us to state that its empirical

counterpart should be approximatively equal in the training and test samples. Going
further, one may want to restrict measures of approximation for the only target variable.
Hence point iv) ensures that, if itself and point iii) apply, the only reason that leads the
OOB error to not be a bound of the test error is the violation of the i.i.d. assumption.

Proposition 2 can be alleviated by allowing the empirical variance of the OOB classifier
(in the training sample) to be different to the one of the forest classifier in the test sample.
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Proposition 3.
Suppose the conditions i) and ii) of the proposition 2 hold.
If n, the size of the training sample, and B are large enough and if

∣∣∣∣∣ 1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)

∣∣∣∣∣
and∣∣∣∣∣∣
(

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)2

−

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)

)2
∣∣∣∣∣∣

> 2ρ̂

√
V̂ar(Y |Dn)

(√
V̂arX(ḡ

(B)

P ,oob
(X))−

√
V̂arX(ḡ

(B)
P (X))

)
+

2

n

n∑
i=1

Yi

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)−

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)
+
(
V̂ar

X
(ḡ(B)
P

(X))− V̂ar
X

(ḡ(B)
P ,oob

(X))
)
,

then for any test sample of size, large enough, N − n

PE
∗
(ḡ(B)
P

(X)) ≤ PE
∗
(ḡ

(B)

P ,oob
(X)).

6 Discussion
In practice, one may state that the empirical variance of Y can be very different in the
test sample. Then the i.i.d. assumption will no longer hold.

Overriding the i.i.d. case

Let us consider the regression case and suppose we train a Random Uniform Forest,
using an option called output perturbation sampling. This allows to perturb Y , increas-
ing its empirical variance, in the training set and changing (randomly and more or less
strongly) its mean. Let’s illustrate the method below.

For each tree, a new target is sampled from the original one by :
- sampling at random and with replacement all (or a part of) the values of Y in the
training sample,
- computing the mean and the variance of the new sample,
- multiplying the variance by a constant c, c > 1,
- generating new values of the target, using the Gaussian distribution whose the param-
eters are the ones above,
- adjusting the new target to have the same definition domain than the original Y .

This procedure has many consequences and we focus only on a few ones. First, the
Random Uniform Forest grown with these new target variables (one different per tree)
will also converge, because the average correlation between trees residuals will be much

12



lower than the one between the forest classifier with the original data. Variance will
increase, but still slower than the decrease of correlation. Moreover, the test error will be
close or even lower (with post-processing) than the one with the original data. However,
the main consequence is that if the i.i.d. assumption does not hold, the conditions pro-
vided in the proposition will hold whenever the empirical variance of the test set is lower
than the one computed in the training set with the procedure described above. Since we
state that c > 1, if conditions of the proposition are fulfilled, then the empirical variance
in the test set should drift a lot to prevent the OOB error to be a bound.

In practice, one just needs to compute the forest classifier with the original data and
get the forest classifier. Then compute a new forest classifier with the new targets and
get the OOB classifier and error. At last, simply embed this OOB classifier with the
original forest classifier, using the conditions provided in the proposition(s).

Estimating the generalization error and getting upper bounds

One of the greatest interests of Random Forests is the strong link between theory and
practice, arising in a simple manner. All theoretical guarantees and measures can be
assessed by their OOB empirical counterparts without worrying about overfitting or even
optimality. Overfitting could happen as soon as correlation is getting high. While re-
lated to the statistical learning theory, we may see optimality as the expression of offered
guarantees about what can be done at best, depending on the given data and the model
properties. In the case of Random (Uniform) Forests we can get an estimate of PE, the
prediction error. Let us suppose that correlation between trees and bias are low enough.
In classification we get

PE
∗(B)

oob ≤ P̂E∗oob =
ˆ̄ρoob(1− ŝ2

oob)

ŝ2
oob

,

where PE∗(B)

oob is estimated by computing the misclassification rate from the n observa-
tions of the training sample, using B′ = dexp(−1)Be trees and P̂E∗oob is estimated by
computing, from the OOB classifier, the average correlation between trees, ˆ̄ρ, and the
average strength, ŝ.
In regression,

PE
∗
(ḡ

(B)

P ,oob
(X)) ≤ P̂E

∗
(ḡ

(B)

P ,oob
(X)) = ˆ̄ρoob

 1

B′

B∑
b=1

√√√√ 1

n

n∑
i=1

(
Yi − g(b)

P (Xi)
)2

I{b∈G− (Xi,B)}

2

,

and

P̂E
∗
(ḡ

(B)

P ,oob
(X)) ≤ ˆ̄ρoobPE

∗
(gP ,oob(X, θ)) = ˆ̄ρoob

{
1

B′

B∑
b=1

(
1

n

n∑
i=1

(
Yi − g(b)

P
(Xi)

)2
I{b∈G− (Xi,B)}

)}
,

where, this time, ˆ̄ρoob is the OOB estimate of the average correlation between trees resid-
uals,
PE

∗
(ḡ

(B)

P ,oob
(X)) is the OOB estimate of the mean squared error of the forest,

P̂E
∗
(ḡ

(B)

P ,oob
(X)) is the OOB estimate of the theoretical prediction error of the forest,

PE
∗
(gP ,oob(X, θ)) is the OOB estimate of the average prediction error of a tree.
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7 Conclusion
In this paper, we tried to constantly maintain links between theory and practice, assessing
the main properties provided by Breiman and deriving simple conditions under which
test error is bounded by the OOB error. These conditions lead to obtain guarantees of
the effectiveness of Random (Uniform) Forests in real world problems. While ensemble
models already have proven their ability to deal with a wide range of datasets, some issues
remain about the good properties of Random Forests. From the results presented in the
paper, one can observe that (low) correlation between trees is the main ingredient. But,
one also observes that correlation is linked with variance, hence having low correlation
and high variance should not lower the prediction error. Moreover variance increases as
correlation is reduced. Then, having a low prediction error implies to decrease correlation
faster than the increase of variance. This is one of the alternatives, the other being to
lower variance for a fixed correlation. For both purposes, studying the OOB error is
essential since it gives all the arguments (unfortunately as outputs) needed to lower the
prediction error : number of trees, variance, correlation and, while discussed only a little
here, hyper-parameters. These ones are, in fact, the core (and the most difficult task)
that leads to improve the forest, modifying its structure and getting new formulations
that should not break the Breiman’s paradigm : increase diversity.

8 Proofs

8.1 Proof of Proposition 1

A bias-variance-covariance decomposition in the case of a binary classification, with values
in {0, 1}, is associated to the test error and given by :

PX,Y

(
ḡ(B)
P

(X) 6= Y
)

= Var(Y ) +
{
EX,Y

(
Y − ḡ(B)

P
(X)

)}2
+ VarX

(
ḡ(B)
P

(X)
)
− 2CovX,Y

(
ḡ(B)
P

(X), Y
)
,

with

Var(Y ) = P(Y = 1)P(Y = 0),{
EX,Y(Y − ḡ(B)

P
(X))

}2
=
{
P(Y = 1)−P(ḡ(B)

P
(X) = 1)

}2
,

VarX(ḡ(B)
P

(X)) = P(ḡ(B)
P

(X) = 0)P(ḡ(B)
P

(X) = 1),

CovX,Y(ḡ(B)
P

(X), Y ) = E
{[
ḡ(B)
P

(X)−P(ḡ(B)
P

(X) = 1)
]

[Y −P(Y = 1)]
}
.

it follows that

Var(Y ) +
{
EX,Y(Y − ḡ(B)

P
(X))

}2

= P(Y = 1)P(Y = 0) + {P(Y = 1)}2 − 2P(Y = 1)P(ḡ(B)
P

(X) = 1) +
{
P(ḡ(B)

P
(X) = 1)

}2

= P(Y = 1)
(
P(Y = 0) + P(Y = 1)− 2P(ḡ(B)

P
(X) = 1)

)
+
{
P(ḡ(B)

P
(X) = 1)

}2

= P(Y = 1)
(
1− 2P(ḡ(B)

P
(X) = 1)

)
+
{
P(ḡ(B)

P
(X) = 1)

}2
,
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and

CovX,Y(ḡ(B)
P

(X), Y )

= E
{
Y ḡ(B)

P
(X)

}
−P(Y = 1)E

{
ḡ(B)
P

(X)
}
−P(ḡ(B)

P
(X) = 1)E {Y }

+ P(ḡ(B)
P

(X) = 1)P(Y = 1)

= E
{
Y ḡ(B)

P
(X)

}
−P(Y = 1)P(ḡ(B)

P
(X) = 1).

One obtains :

PX,Y

(
ḡ(B)
P

(X) 6= Y
)

=P(Y = 1)
(
1− 2P(ḡ(B)

P
(X) = 1)

)
+
{
P(ḡ(B)

P
(X) = 1)

}2
+ P(ḡ(B)

P
(X) = 0)P(ḡ(B)

P
(X) = 1)

− 2
(
E
{
Y ḡ(B)

P
(X)

}
−P(Y = 1)P(ḡ(B)

P
(X) = 1)

)
=P(Y = 1) +

{
P(ḡ(B)

P
(X) = 1)

}2
+ P(ḡ(B)

P
(X) = 0)P(ḡ(B)

P
(X) = 1)− 2E

{
Y ḡ(B)

P
(X)

}
.

Then

PX,Y

(
ḡ(B)
P

(X) 6= Y
)

= P(Y = 1) + P(ḡ(B)
P

(X) = 1)− 2E
{
Y ḡ(B)

P
(X)

}
,

with

E
{
Y ḡ(B)

P
(X)

}
= CovX,Y(ḡ(B)

P
(X), Y ) + E(Y )E(ḡ(B)

P
(X))

= ρ
√
Var(Y )

√
Var(ḡ

(B)
P (X)) + E(Y )E(ḡ(B)

P
(X))

= ρ
√
Var(Y )

√
Var(ḡ

(B)
P (X)) + P(Y = 1)P(ḡ(B)

P
(X) = 1),

where ρ is the correlation coefficient between ḡ(B)
P

(X) and Y . We get :

PX,Y

(
ḡ(B)
P

(X) 6= Y
)

= P(Y = 1) + P(ḡ(B)
P

(X) = 1)(1− 2P(Y = 1))− 2ρ
√

Var(Y )

√
Var(ḡ

(B)
P (X)).

PX,Y

(
ḡ(B)
P

(X) 6= Y
)
−PX,Y

(
ḡ

(B)

P ,oob
(X) 6= Y

)
≤ 0 is equivalent to write :(

P(ḡ(B)
P

(X) = 1)−P(ḡ
(B)

P ,oob
(X) = 1)

)
(1− 2P (Y = 1))

−2
√

Var(Y )

(
ρ

√
Var(ḡ

(B)
P (X))− ρoob

√
Var(ḡ

(B)

P ,oob
(X))

)
≤ 0.

Finally,

PX,Y

(
ḡ(B)
P

(X) 6= Y
)
−PX,Y

(
ḡ

(B)

P ,oob
(X) 6= Y

)
≤ 0 if

ρ

√
Var(ḡ

(B)
P (X))− ρoob

√
Var(ḡ

(B)

P ,oob
(X)) >

(1− 2P (Y = 1))
(
P(ḡ(B)

P
(X) = 1)−P(ḡ

(B)

P ,oob
(X) = 1)

)
2
√

Var(Y )
.

Under the relations i) and ii) of the proposition, we get the relation iii) and for any test
set large enough, PE∗ ≤ PE

∗(B)

oob .�
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8.2 Proof of Proposition 2

We recall that PE∗(ḡ(B)

P ,oob
(X)) is the OOB prediction error computed on the training

sample and corresponds to an estimation of the prediction error (on the test sample)
noted PE∗(ḡ(B)

P
(X)). The prediction error for a Random (Uniform) Forest is given by:

PE(EθgP (X, θ)
P

(X)) = EX,Y (Y − EθgP (X, θ))2 ,

and its decomposition gives :

PE(EθgP (X, θ))

= Var(Y ) + {EX,Y [Y − EθgP (X, θ)]}2 + VarX (EθgP (X, θ))− 2CovX,Y(EθgP (X, θ), Y )

= E(Y 2) + (EX,YEθgP (X, θ))2 − 2EX,YEθgP (X, θ)E(Y ) + VarX (EθgP (X, θ))

− 2CovX,Y(EθgP (X, θ), Y )

= E(Y 2) + (EX,YEθgP (X, θ))2 + VarX (EθgP (X, θ))− 2EX,Y (EθgP (X, θ)Y ) .

For the finite forest (with B trees), we get:

PE∗(ḡ(B)
P

(X)) = E(Y 2)− 2EX,Y

{
Y ḡ(B)

P
(X)

}
+
{
EX

(
ḡ(B)
P

(X)
)}2

+ VarX
(
ḡ(B)
P

(X)
)
.

Having PE∗(ḡ(B)
P

(X))− PE∗(ḡ(B)

P ,oob
(X)) ≤ 0 is equivalent to write

− 2
(
EX,Y

{
Y ḡ(B)

P
(X)

}
− EX,Y

{
Y ḡ

(B)

P ,oob
(X)

})
+

({
EX

(
ḡ(B)
P

(X)
)}2 −

{
EX

(
ḡ

(B)

P ,oob
(X)

)}2
)

+
(
VarX

(
ḡ(B)
P

(X)
)
−VarX

(
ḡ

(B)

P ,oob
(X)

))
≤ 0.

Under the conditions i) to iii) of the proposition, we need to have

−2
(
EX,Y

{
Y ḡ(B)

P
(X)

}
− EX,Y

{
Y ḡ

(B)

P ,oob
(X)

})
< 0.

Since EX,Y

{
Y ḡ(B)

P
(X)

}
= ρ
√

Var(Y )

√
Var(ḡ

(B)
P (X)) + E(Y )E(ḡ(B)

P
(X)) we get

2

(
ρ
√
Var(Y )

√
Var(ḡ

(B)
P (X)) + E(Y )E(ḡ(B)

P
(X))

)
− 2

(
ρ
√
Var(Y )

√
Var(ḡ

(B)

P ,oob
(X)) + E(Y )E(ḡ

(B)

P ,oob
(X))

)
≥ 0

as a sufficient condition. But since we do not want to depend too much on the target
variable (whose unconditional distribution would vary) we have to find a stronger condi-
tion.
First we write the relation above in terms of the training and test samples under condi-
tions i), ii) and iii).
Second, we bound the relation by looking the empirical counterpart of∣∣∣∣{EX

(
ḡ(B)
P

(X)
)}2 −

{
EX

(
ḡ

(B)

P ,oob
(X)

)}2
∣∣∣∣.
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Note that when coming to the estimators, the difference of E(Y 2) in training and test
samples is not 0. That’s why conditions are stated to simplify the problem and treat
it as it is expected in the i.i.d. case. However drift in parameters can be handled (see
Discussion), still holding the proposition.
The empirical counterpart of

− 2ρ
√

Var(Y )

√
Var(ḡ

(B)
P (X))− 2E(Y )E(ḡ(B)

P
(X)) + 2ρ

√
Var(Y )

√
Var(ḡ

(B)

P ,oob
(X))

+ 2E(Y )E(ḡ
(B)

P ,oob
(X))

is given by

I = 2ρ̂

√
V̂ar(Y |Dn)

(√
V̂arX(ḡ

(B)

P ,oob
(X))−

√
V̂arX(ḡ

(B)
P (X))

)
+

2

n

n∑
i=1

Yi

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)−

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)
.

Hence, it suffices, under conditions i), ii) and iii), that∣∣∣∣∣∣
(

1

N − n

N∑
i=n+1

ḡ(B)
P

(Xi)

)2

−

(
1

n

n∑
i=1

ḡ
(B)

P ,oob
(Xi)

)2
∣∣∣∣∣∣ > I

to have PE∗(ḡ(B)
P

(X)) ≤ PE
∗
(ḡ

(B)

P ,oob
(X)).�

8.3 Proof of Proposition 3

Recalling that PE∗(ḡ(B)
P

(X))− PE∗(ḡ(B)

P ,oob
(X)) ≤ 0 leads to write that

− 2
(
EX,Y

{
Y ḡ(B)

P
(X)

}
− EX,Y

{
Y ḡ

(B)

P ,oob
(X)

})
+

({
EX

(
ḡ(B)
P

(X)
)}2 −

{
EX

(
ḡ

(B)

P ,oob
(X)

)}2
)

+
(
VarX

(
ḡ(B)
P

(X)
)
−VarX

(
ḡ

(B)

P ,oob
(X)

))
≤ 0.

With no assumption of the order between VarX

(
ḡ

(B)

P ,oob
(X)

)
and VarX

(
ḡ(B)
P

(X)
)
, it

suffices (following the proof of proposition 2) to fulfill the conditions of the proposition
to get the result.�
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