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Introduction

Consider a convex set S in R p+1 + which takes the form

S = {(x, y) ∈ R p+1 + 0 ≤ y ≤ g(x)},
where g is a nonnegative convex function defined on R p + such that g(ax) = ag(x) for all a > 0. Suppose that we have a random sample (X i , Y i ) drawn from a distribution which is supported on S. In this paper, we are interested in estimating the "boundary" function g from the random sample. In particular, we study the asymptotic distribution of the estimator ĝ(x) = max{y > 0 (x, y) ∈ S},

where S is the convex-hull of the rays R i ≡ {(γX i , γY i ) γ ≥ 0} for all sample points (X i , Y i ).

The problem arises in an area of econometrics where one is interested in evaluating the performance of an enterprise in terms of technical efficiency. In this context, X i is the observed input vectors of the ith enterprise, Y i is its observed productivity and S is the production set of technically feasible pairs of input and output. The property that g(ax) = ag(x) for all a > 0, or, equivalently, S = aS for all a > 0, is called "constant returns-to-scale" (CR2S), and the commonly used estimator of S in this case is the CR2Sversion of the data hull analysis (DHA) estimator defined by

S 0 = (x, y) ∈ R p+1 + x ≥ n i=1 γ i X i , y ≤ n i=1
γ i Y i for some γ i ≥ 0, i = 1, . . . , n .

In fact, S 0 given above is nothing else than the smallest convex set containing all the rays R i and the hyperplane {(x, 0) x ∈ R p }. To see this, suppose that (x, y) belongs to S 0 . Then, there exist γ i ≥ 0 such that x ≥ n i=1 γ i X i and y ≤ n i=1 γ i Y i . For these constants γ i , define

γ * i = γ i y n j=1 γ j Y j ≤ γ i for 1 ≤ i ≤ n. Then n i=1 γ * i Y i = y. Since x ≥ n i=1 γ i X i ≥ n i=1 γ * i X i , we have x * ≡ x -n i=1 γ * i X i ≥ 0. This shows (x, y) = n i=1 (γ * i X i , γ * i Y i ) + (x *
, 0). The estimator ĝ defined in [START_REF] Abdous | Extreme behaviour for bivariate elliptical distributions[END_REF] and the one based on S 0 are identical with probability tending to one if the density of (X i , Y i ) is bounded away from zero in a neighborhood of the boundary point (x, g(x)).

The problem that we describe in the first paragraph can be generalized to the case of vector-valued y ∈ R q . This is particularly important in the specific problem that we mention in the above paragraph where productivity is typically measured in several variables. For this, we consider a convex-hull of a convex set A in R p+q + which is given by S ≡ {(x, y) ∈ R p+q + there exists a constant a > 0 such that (ax, ay) ∈ A} ∪ {0}.

The set S is convex and satisfies the CR2S condition aS = S for all a > 0.
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We are interested in estimating the "directional edge" of S in the y-space, defined by λ(x, y) = sup{λ > 0 (x, λy) ∈ S} using a random sample from a density supported on S. In the case where q = 1, the directional edge is linked directly to the boundary function g by the identity g(x) = yλ(x, y). We consider the estimator λ(x, y) = sup{λ > 0 (x, λy) ∈ S},

where S is the convex-hull of the rays R i ≡ {(γX i , γY i ) γ ≥ 0} for all sample points (X i , Y i ).

To date, nonparametric data hull analysis (DHA) estimators have been discussed or applied in more than 1800 articles published in more than 400 journals. DHA estimators are used to estimate various types of productive efficiency of firms in a wide variety of industries as well as governmental agencies, national economies and other decision-making units. The estimators employ linear programming methods.

Typically these DHA estimators are indeed defined in terms of convexhulls of the combinations of inputs × outputs (X i , Y i ) in a sample of firms. The shape of the convex-hull relies on a hypothesis on the shape of the technology defined as the boundary of the set S of technically attainable points in the inputs × outputs space. So far, only the statistical properties of the smallest convex polyhedron enveloping the data points has been considered which corresponds to a situation where the technology presents variable returns-to-scale (VR2S).

VR2S is a flexible assumption, but in many situations the economist assumes that the technology presents CR2S: the first version of the DHA estimator was for this situation. Here the DHA estimator S is defined, as above, after (3), as the smallest convex-hull with a vertex at the origin enveloping the cloud of observed points. The properties of this estimator have not been investigated, yet it was conjectured that one would gain some efficiency in the estimation by imposing the appropriate CR2S structure to the estimator.

In this paper we determine the asymptotic properties of the DHA-CR2S estimator defined in [START_REF] Bali | A conditional extreme value volatility estimator based on high-frequency returns[END_REF], showing that the rate of convergence is better than that of the VR2S estimator. We derive also its asymptotic sampling distribution with a practical way to simulate it. This allows us to define a bias-corrected estimator and to build confidence intervals for the frontier. We compare, in a simulated example, the bias-corrected estimator with the original DHA-CR2S estimator and show its superiority in terms of median squared error.

Convergence rates

In this section we give the first theoretical result, the convergence rate of the estimator λ, as defined in (3), in the general case of p, q ≥ 1. Before presenting the result, we first give two lemmas which will be used in the proof of the first theorem.

Lemma 1 For any α, β > 0, it holds that λ(αx, βy) = α β λ(x, y) whenever (αx, βy) ∈ S and (x, y) ∈ S. The same identity holds for λ.

Proof. The lemma follows from the CR2S property (2) since sup{λ > 0 (αx, λβy)

∈ S} = sup λ > 0 x, λβ α y ∈ S .
The following lemma is also derived from the convexity of S and S.

Lemma 2 For all r ∈ [0, 1] and for all (x 1 , y 1 ), (x 2 , y 2 ) ∈ S,

λ[r(x 1 , y 1 ) + (1 -r)(x 2 , y 2 )] ≥ rλ(x 1 , y 1 ) + (1 -r)λ(x 2 , y 2 ).
The same inequality holds for λ.

Our first theorem on the rate of convergence relies on the following assumptions. In what follows, we fix the point in S where we want to estimate λ, and denote it by (x 0 , y 0 ). Throughout the paper, we assume that (X i , Y i ) are independent and identically distributed with a density f supported on S ⊂ R p + × R q + and that (x 0 , y 0 ) is in the interior of S.

(A1) λ(x, y) is twice partially continuously differentiable in a neighborhood of (x 0 , y 0 ).

(A2) The density f of (X, Y) on {(x, y) ∈ S (x, y)-(x 0 , λ(x 0 , y 0 )y 0 ) ≤ ε} for some ε > 0 is bounded away from zero.

Theorem 1 Under the assumptions (A1) and (A2), it follows that λ(x 0 , y 0 )λ(x 0 , y 0 ) = O p (n -2/(p+q) ).

Proof. Put B p (t, r) = {x ∈ R p + xt ≤ r} and consider the balls near x 0 defined as C r = B p (x (r) 0 , h/2), r = 1, . . . , 2p where x (2j-1) 0 = x 0 -he j , x (2j) 0 = x 0 + he j , e j is the unit p-vector with the jth element equal to 1 for j = 1, 2, . . . , p. Similarly, define D s = B q (y (s) 0 , h/2) for s = 1, . . . , 2q. Take h small enough so that C r × D s ⊂ S for all r = 1, . . . , 2p and s = 1, . . . , 2q. For r = 1, . . . , 2p, consider the convex hull of C r ,

C r = {x ∈ R p + ∃a > 0 such that ax ∈ C r }.
Similarly, define D s . Define

(U r , V s ) = arg min (X i ,Y i )∈Cr×Ds λ(X i , Y i ).
Since the number of points in X n falling into S ∩ [C r × D s ] is proportional to nh p+q-2 , we have by assumption (A2),

λ(U r , V s ) = 1 + O p (n -1 h -p-q+2 ), r = 1, . . . , 2p, s = 1, . . . , 2q. (4) 
Let U * r = α r U r and V * s = β s V s for r = 1, . . . , 2p and s = 1, . . . , 2q where α r and β s are positive constants such that U * r ∈ C r and V * s ∈ D s . Then from Lemma 1, (4) and the fact that λ, λ ≥ 1, it holds that for r = 1, . . . , 2p and s = 1, . . . , 2q,

λ(U * r , V * s ) λ(U * r , V * s ) = λ(U r , V s ) λ(U r , V s ) ≥ 1 λ(U r , V s ) = 1 + O p (n -1 h -p-q+2 ), which implies that λ(U * r , V * s ) ≥ λ(U * r , V * s ) + O p (n -1 h -p-q+2
). Since C r and D s are balls surrounding the point (x 0 , y 0 ), there exist scalars w r ≥ 0 and

ω s ≥ 0 such that 2p r=1 w r = 1, 2q s=1 ω s = 1, x 0 = 2p r=1 w r U * r and y 0 = 2q s=1 ω s V * s .
Thus, from the assumption (A1) we have

2p r=1 2q s=1 w r ω s λ(U * r , V * s ) = λ(x 0 , y 0 ) + O p (h 2 )
for all r and s. This, with Lemma 2 and the fact that λ ≥ λ, shows that

λ(x 0 , y 0 ) ≥ λ(x 0 , y 0 ) ≥ 2p r=1 2q s=1 w r ω s λ(U * r , V * s ) ≥ 2p r=1 2q s=1 w r ω s λ(U * r , V * s ) + O p (n -1 h -p-q+2 ) = λ(x 0 , y 0 ) + O p (h 2 ) + O p (n -1 h -p-q+2 ).
Taking h ∼ n -1/(p+q) completes the proof of the theorem.

Remark 1 In the case where S is a convex set in R p+q without having the CR2S property (2), the DHA (data hull analysis) estimator defined as in (3) with S replaced by the convex-hull of (X i , Y i ) is commonly used. In this case, the DHA estimator of λ(x 0 , y 0 ) is known to have n -2/(p+q+1) rate of convergence which is slightly worse than n -2/(p+q) . The CR2S property reduces the "effective" dimension by one.

Asymptotic distribution

In this section we derive a representation for the asymptotic distribution of the estimator λ defined in [START_REF] Bali | A conditional extreme value volatility estimator based on high-frequency returns[END_REF]. This representation enables one to simulate the asymptotic distribution so that one can correct the bias of the estimator to get an improved version of λ. We work with the case where q = 1 first and then move to the general case where q > 1. The result for the case q = 1 is essential for the generalization to q > 1.

The case where q = 1

We consider the set

S = {(x, y) ∈ A c × R + 0 ≤ y ≤ g(x)},
where g is a nonnegative convex function defined on a convex-hull

A c of a convex set A ⊂ R p + such that g(ax) = ag(x)
for all a > 0, [START_REF] Beirlant | Local polynomial maximum likelihood estimation for pareto-type distributions[END_REF] and that, for all x 1 , x 2 ∈ A c with x 1 = ax 2 for any a > 0,

g αx 1 + (1 -α)x 2 > αg(x 1 ) + (1 -α)g(x 2 ) (6) 
for all α ∈ (0, 1). In this case, λ(x 0 , y 0 ) = g(x 0 )/y 0 so that the problem of estimating λ(x 0 , y 0 ) reduces to that of estimating the function g at x 0 . The estimator of g(x 0 ) that corresponds to λ(x 0 , y 0 ) defined in ( 3) is given by ĝ(x 0 ) = y 0 λ(x 0 , y 0 ) = sup{y (x 0 , y) ∈ S}.

We note that the CR2S condition ( 5) is satisfied, not only by linear functions of the form g(x) = c ⊤ x, but also by those functions

g(x) = c(x r 1 +• • •+x r p ) 1/
r for all positive numbers c and positive integers r.

Define S i by S

⊤ i = (X ⊤ i , Y i ).
Below we describe a canonical transformation T on S such that the transformed data T (S i ) behave, asymptotically, as an i.i.d. sample from a uniform distribution on a region that can be represented by a simple (p-1)-dimensional quadratic function in the transformed space. The reduction of the dimension, by one, for the boundary function is due to the CR2S property [START_REF] Beirlant | Local polynomial maximum likelihood estimation for pareto-type distributions[END_REF]. This is consistent with the dimension reduction as we noted in Remark 1 in the previous section.

The key element in the derivation of the asymptotic distribution of ĝ(x 0 ) is to project the data S i onto a hyperplane which is perpendicular to the vector x 0 and passes through x 0 . The projected points lie under the locus of the function g on the hyperplane, and the estimator ĝ(x 0 ) equals the maximal y such that (x 0 , y) belongs to the convex-hull of the projected points. The asymptotic distribution of the estimator ĝ(x 0 ) is then obtained by analyzing the statistical properties of the convex-hull of the projected points.

Let Q be a p × (p -1) matrix whose columns constitute an orthonormal basis for x ⊥ 0 , the subspace of R p that is perpendicular to the vector x 0 . Think of the transformation

T 1 x → x ⊤ 0 x x 0 , x ⊤ Q ⊤ .
This transformation maps x to a vector which corresponds to x in the new coordinate system where the axes are x 0 and the columns of Q. The first component of T 1 (x) is nothing other than the projection of x onto the space spanned by x 0 , and the vector of the rest components is its orthogonal complement in R p . Thus, the inverse transform T -1

1
is given by

T -1 1 z → z 1 x 0 x 0 + Qz 2 ,
where z ⊤ = (z 1 , z ⊤ 2 ). It would be more convenient to use a transformation that takes x 0 to the origin in the new coordinate system. This can be done by the following transformation:

T 2 x → x ⊤ 0 (x -x 0 ) x 0 , x 0 2 x ⊤ 0 x x ⊤ Q ⊤ .
Scaling by the factor x 0 2 /x ⊤ 0 x is introduced to factor out a common scalar for the inverse map of T 2 . In fact, x 0 2 /x ⊤ 0 x equals the scalar c such that the projection of cx onto the linear span of x 0 equals x 0 itself. Thus

x 0 2 x ⊤ 0 x x = x 0 + Q Q ⊤ x 0 2 x ⊤ 0 x
x so that the inverse transform of T 2 is given by

T -1 2 z → z 1 + x 0 x 0 (x 0 + Qz 2 ).
Note that x ⊤ 0 x > 0 if x = 0 since then x 0 , x > 0. It is easy to see that T 2 (x 0 ) = 0.

Define a (p -1)-dimensional function g * by g * (z 2 ) = g(x 0 + Qz 2 ). For a function ψ, let ψ and ψ denote, respectively, the gradient vector and the Hessian matrix of ψ. Since, for any u ∈ R p-1 ,

u ⊤ g * (z 2 )u = (Qu) ⊤ g(x 0 + Qz 2 )(Qu)
and also (Qu) ⊤ (Qu) = u ⊤ u, it can be seen that g * is convex if g is convex.

In particular, (6) implies the strict convexity of g * . Note that g * does not have the CR2S property (5), however.

Next, we introduce a further transformation on the new coordinate system (z, y). This transformation maps the equation y = g * (z 2 ) to a perfect quadratic equation in the further transformed space. Since g * is strictly convex, -g * (0)/2 = Q ⊤ (-g(x 0 )/2)Q is positive definite and symmetric. Thus, there exist an orthogonal matrix P and a diagonal matrix Λ such that -g * (0)/2 = P ΛP ⊤ . The columns of P are the orthonormal eigenvectors, and the diagonal elements of Λ are the eigenvalues of the matrix -g * (0)/2. Let T 3 be a transformation that maps R p to R p defined by

T 3 z → z 1 , n 1/(p+1) z ⊤ 2 P Λ 1/2 ⊤ . (8) 
Note that this transformation does not change z 1 , the first component of z. Also, define a map

T 4 R p × R → R by T 4 (z, y) → n 2/(p+1) y x 0 z 1 + x 0 -g * (0) -ġ * (0) ⊤ z 2 . (9) 
The transformation we apply to the data (X i , Y i ) is now defined by

T (x, y) → T 3 • T 2 (x), T 4 (T 2 (x), y) .
We explain how the equation y = g(x) can be approximated, locally at (x 0 , y 0 ), by a (p -1)-dimensional quadratic function in the new coordinate system transformed by T . Let (v, w) ∈ R p × R represent the new coordinate system obtained by the transformation

T . Write v ⊤ = (v 1 , v ⊤ 2 )
with v 2 being a (p -1)-dimensional vector. Then, the inverse transform of T maps v and w, respectively, to

x = v 1 + x 0 x 0 x 0 + n -1/(p+1) QP Λ -1/2 v 2 , y = v 1 + x 0 x 0 g * (0) + n -1/(p+1) ġ * (0) ⊤ P Λ -1/2 v 2 + n -2/(p+1) w .
Thus, for arbitrary compact sets C 1 ⊂ R p-1 and C 2 ⊂ R, we obtain using the CR2S property (5) that, uniformly for

v 1 ∈ R + , v 2 ∈ C 1 and w ∈ C 2 , y = g(x)
↔ g * (0) + n -1/(p+1) ġ * (0

) ⊤ P Λ -1/2 v 2 + n -2/(p+1) w = g * n -1/(p+1) P Λ -1/2 v 2 ↔ w = -v ⊤ 2 v 2 + o(1)
as n tends to infinity, provided that g * is continuous at 0. Now we give a representation of the limit distribution of ĝ as given in [START_REF] Bi | Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[END_REF]. Define

θ = x 0 ∞ 0 u p f (ux 0 , ug(x 0 )) du, (10) 
κ = θ det(Λ) -1/2 . ( 11 
) Define a set R n (κ) ⊂ R p of points (v 2 , w) such that v 2 ∈ -1 2 κ -1/(p+1) n 1/(p+1) , 1 2 κ -1/(p+1) n 1/(p+1) p-1 , w ∈ -v ⊤ 2 v 2 -κ -2/(p+1) n 2/(p+1) , -v ⊤ 2 v 2 .
The volume of this set in R p equals nκ -1 . Let (V 2i , W i ) be a random sample from the uniform distribution on R n (κ). This random sample can be generated once we know κ. Let Z n (•) be defined as ĝ in [START_REF] Bi | Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[END_REF] with S being replaced by the convex-hull of (V 2i , W i ); that said,

Z n (v 2 ) = sup n i=1 γ i W i v 2 = n i=1 γ i V 2i , n i=1 γ i = 1, γ i ≥ 0, i = 1, . . . , n .
(12) For a small ε > 0, define a set on R p+1 + by

H ε (x 0 ) = u(x 0 + Qz 2 ), u g(x 0 + Qz 2 ) -y u ≥ 0, ( 13 
) z 2 ≤ ε, 0 ≤ y ≤ ε .
In the theorem below and those that follow, we will measure the distance between two distributions by the following modification of the Mallows distance:

d(µ 1 , µ 2 ) = inf Z 1 ,Z 2 {E(Z 1 -Z 2 ) 2 ∧ 1 L(Z 1 ) = µ 1 , L(Z 2 ) = µ 2 }.
Convergence in this metric is equivalent to weak convergence.

Theorem 2 Assume (A1) and (A2). In addition, assume that -g * is positive definite and continuous at 0 and that the density f of (X, Y ) is uniformly continuous on H ε (x 0 ) for an arbitrarily small ε > 0. Let L n1 and L n2 denote the distributions of n 2/(p+1) [ĝ(x 0 ) -g(x 0 )] and Z n (0), respectively. Then, d(L n1 , L n2 ) → 0 as n tend to infinity.

Computation of the distribution of Z n solely depends on knowledge of κ. Thus one can approximate the distribution of ĝ(x 0 ) by estimating κ and then simulating Z n with the estimated κ. The approximation enables one to correct the downward bias of ĝ(x 0 ) and get an improved estimator of g(x 0 ). Estimation of κ and bias-correction for ĝ(x 0 ) will be discussed in Section 4.

Proof of Theorem 2

We first give a geometric description of the estimator ĝ. Consider a hyperplane in R p defined by

P(x 0 ) = {x ∈ R p + x ⊤ 0 (x -x 0 ) = 0}. ( 14 
)
This hyperplane is perpendicular to the vector x 0 and passes through x 0 . Let P i be the point where the ray R i meets the hyperplane P † (x 0 ) ≡ P(x 0 )×R + in R p+1 . It follows that

P i = x 0 2 x ⊤ 0 X i (X i , Y i ). ( 15 
)
Define S(x 0 ) to be the convex-hull of the points P i . We claim that

S(x 0 ) = P † (x 0 ) ∩ S. (16) 
This means that S(x 0 ) is a section of S obtained by cutting S by the hyperplane P † (x 0 ). The fact that S(x 0 ) ⊂ P † (x 0 ) ∩ S follows from convexity of P † (x 0 ) and S. The reverse inclusion also holds. To see this, let (x, y) ∈ P † (x 0 ) ∩ S. Since S is the convex-hull of the rays R i , it follows that there exist γ * i ≥ 0 such that x = n i=1 γ * i X i and y = n i=1 γ * i Y i . Since (x, y) ∈ P † (x 0 ), we have

n i=1 γ * i x ⊤ 0 X i = x 0 2 . ( 17 
)
Let

ξ i = (x ⊤ 0 X i / x 0 2 )γ * i ≥ 0 for 1 ≤ i ≤ n. By (17), n+1 i=1 ξ i = 1
. By (15), we get (x, y) = n i=1 ξ i P i which shows (x, y) ∈ S(x 0 ). Since a≥0 aP † (x 0 ) = R p+1 + , the CR2S property of S and ( 16) thus yield

S = a≥0 a S(x 0 ) = {(ax, ay) (x, y) ∈ S(x 0 ), a ≥ 0}. ( 18 
)
Recall the definition of ĝ in [START_REF] Bi | Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[END_REF]. Also, note that, for x ∈ P(x 0 ), we have (x, y) ∈ S if and only if (x, y) ∈ S(x 0 ). This follows from [START_REF] Daouia | Nadarayas estimates for large quantiles and free disposal support curves[END_REF] and the fact that a = 1 is the only constant a ≥ 0 such that (x, y) ∈ a S(x 0 ) if x ∈ P(x 0 ). This gives

ĝ(x) = sup{y (x, y) ∈ S(x 0 )} if x ∈ P(x 0 ). ( 19 
)
Let Q be the matrix defined in the paragraph that contains the definition of the transformation T 1 early in this section. Since P(x 0

) = {x 0 + Qz 2 ∈ R p + z 2 ∈ R p-1 }, the set, S(x 0 ) ≡ {(x 0 + Qz 2 , y) ∈ A c × R + z 2 ∈ R p-1 , 0 ≤ y ≤ g(x 0 + Qz 2 )}, (20) 
equals the section of S obtained by cutting S by the hyperplane P † (x 0 ); that is, S(x 0 ) = P † (x 0 ) ∩ S. In the new coordinate system (z, y ′ ) ≡ T 2 (x), y x 0 2 /(x ⊤ 0 x) , the set S(x 0 ) in ( 20) can be represented by {0} × S * (x 0 ) where

S * (x 0 ) = {(z 2 , y ′ ) z 2 ∈ R p-1 (x 0 ), 0 ≤ y ′ ≤ g * (z 2 )} ( 21 
)
and R p-1 (x 0 ) denote the set of z 2 such that x 0 +Qz 2 ∈ A c . Also, in that new coordinate system the points P i defined in [START_REF] Daouia | Functional convergence of quantile-type frontiers with application to parametric approximations[END_REF] correspond to (0, P * i ) where

P * i = (Z 2i , Y ′ i ), Z 2i = ( x 0 2 /x ⊤ 0 X i )Q ⊤ X i and Y ′ i = ( x 0 2 /x ⊤ 0 X i )Y i .
Since convex-hulls are equivariant under linear transformations, this means that in the new coordinate system, S(x 0 ) corresponds to {0} × S * (x 0 ) where S * (x 0 ) is the convex-hull of the points

P * i . Now define ĝ * (z 2 ) = ĝ(x 0 + Qz 2 ) on R p-1 (x 0 ). Since (x 0 + Qz 2 , y) ∈ S(x 0 ) is equivalent to (z 2 , y) ∈ S * (x 0 ), it follows from (19) that ĝ * (z 2 ) = sup{y (z 2 , y) ∈ S * (x 0 ), z 2 ∈ R p-1 }. ( 22 
)
Let f denote the density of the original random vector (X, Y ) and f * denote the density of the transformed vector (Z 2 , Y ′ ). The arguments in the preceding paragraph imply that the distribution of ĝ(x 0 ) -g(x 0 ) equals that of ĝ * (0) -g * (0) where ĝ * is the convex-hull estimator of g * constructed from a random sample of size n generated from the density f * . Let κ * = det(Λ) -1/2 f * (0, g * (0)) where Λ is the diagonal matrix with its entries being the eigenvalues of -g * (0)/2. Define Z * n as a version of ĝ * constructed from a random sample from the uniform distribution on R n (κ * ) ⊂ R p where R n is defined immediately after [START_REF] Byström | Extreme value theory and extremely large electricity price changes[END_REF]. Then one can proceed to show that the asymptotic distribution of n 2/(p+1) (ĝ * (0)-g * (0)) is identical to that of Z * n (0) where one uses the transformations T * 3 and T * 4 defined by

T * 3 z 2 → n 1/(p+1) Λ 1/2 P ⊤ z 2 , T * 4 (z 2 , y ′ ) → n 2/(p+1) y ′ -g * (0) -ġ * (0) ⊤ z 2 .
Recalling the definitions of the transformations T 3 and T 4 in ( 8) and ( 9), respectively, T * 3 (z 2 ) equals T 3 (z) without the first component, where

z ⊤ = (z 1 , z ⊤
2 ), and T * 4 (z 2 , y x 0 /(z 1 + x 0 )) = T 4 (z, y). Below, we prove that κ * equals κ defined in [START_REF] Byström | Extreme value theory and extremely large electricity price changes[END_REF] so that Z * n = Z n in distribution which concludes the proof of the theorem.

Let T * denote the transformation that maps (x, y) to (z, y ′ ) = T 2 (x), y x 0 2 /(x ⊤ 0 x) .

Let c(z 1 ) = (z 1 + x 0 )/ x 0 . The joint density of T * (X, Y ) at the point (z, y ′ ) is given by J(z)f (c(z 1 )(x 0 + Qz 2 ), c(z 1 )y ′ ). The density f * (z 2 , y ′ ) is simply the marginalization of this joint density with respect to z 1 so that

f * (z 2 , y ′ ) = ∞ -x 0 J(z)f c(z 1 )(x 0 + Qz 2 ), c(z 1 )y ′ dz 1 . Now, since J(z 1 , 0) = c(z 1 ) p , we obtain f * (0, g * (0)) = ∞ -x 0 c(z 1 ) p f (c(z 1 )x 0 , c(z 1 )g * (0)) dz 1 = θ,
where θ is defined in [START_REF] Byström | Managing extreme risks in tranquil and volatile markets using conditional extreme value theory[END_REF].

To see how well the distribution of n 2/(p+1) {ĝ(x 0 ) -g(x 0 )} is approximated by that of Z n (0), we took a Cobb-Douglas CR2S production function g(x) = x 0.4 1 × x 0.6

size n = 100 and 400 from f (x 1 , x 2 , y) = λx -0.4λ

1 x -0.6λ 2 y λ-1 supported on S = {(x 1 , x 2 , y) 0 ≤ x 1 , x 2 ≤ 1, 0 ≤ y ≤ g(x 1 , x 2 )}. This yielded i.i.d. copies of (X 1 , X 2 , Y ) with X 1 ∼ Uniform[0, 1], X 2 ∼ Uniform[0, 1] and Y = g(X 1 , X 2 )e -V /λ where V ∼ Exp(1).
Theorem 2 excludes the case where g is linear; that is, g(x) = c ⊤ x for some vector c. The latter case needs a different treatment. In the following theorem, we give the limit distribution in this case. To state the theorem, let (V L 2i , W L i ) be a random sample from the uniform distribution on the p-dimensional rectangle,

R L n (θ) = -1 2 θ -1/(p+1) n 1/(p+1) , 1 2 θ -1/(p+1) n 1/(p+1) p-1 (23) × -θ -2/(p+1) n 2/(p+q) , 0 ,
where θ is defined in [START_REF] Byström | Managing extreme risks in tranquil and volatile markets using conditional extreme value theory[END_REF]. The volume of this set in R p equals nθ -1 . Let

Z L n (•) be a version of Z n (•) constructed from (V L 2i , W L i ) replacing (V 2i , W i ).
Theorem 3 Assume (A1) and (A2). Assume further that S = {(x, y) ∈ R p+1 + 0 ≤ y ≤ c ⊤ x} for some constant vector c = 0 and that the density f of (X, Y ) is uniformly continuous on H ε (x 0 ) for an arbitrarily small ε > 0. Let L n1 and L ′ n2 denote the distributions of n 2/(p+1) [ĝ(x 0 )c ⊤ x 0 ] and Z L n (0), respectively. Then d(L n1 , L ′ n2 ) → 0 as n tends to infinity.

Proof. In this case we consider the following transformation:

T L (x, y) → T L 3 • T 2 (x), T L 4 (T 2 (x), y) , (24) 
where T L 3 z → (z 1 , n 1/(p+1) z ⊤ 2 ) ⊤ and

T L 4 (z, y) → n 2/(p+2) x 0 z 1 + x 0 y -c ⊤ x 0 -c ⊤ Qz 2 .
Let (V L , W L ) = T L (X, Y ). Then it can be shown as in the proof of Theorem 2 that the density of (V L 2 , W L ) is given by n -1 θ{1 + o(1)} uniformly for v L 2 and w L in any compact sets of respective dimension. The rest of the proof is the same as that for Theorem 2.

In the special case where p = 1, we can derive the limit distribution explicitly. In this case, the boundary function g is linear and takes the form g(x) = cx for some constant c > 0. The transformation T L in (24) reduces to

T L (x, y) = x -x 0 , n y x x 0 -cx 0 .
The marginal density of W L , where (V L , W L ) = T L (X, Y ), is approximated by the constant n -1 θ uniformly for w L in any compact subset of R -where θ in this case equals x 0 ∞ 0 uf (ux 0 , ucx 0 ) du. According to Theorem 3, the limit distribution of n(ĝ(x 0 )-g(x 0 )) equals the limit distribution of Z L n which is nothing else than max n i=1 W L i in this simplest case where W L i are a random sample from the uniform distribution on [-nθ -1 , 0]. Since -max n i=1 W L i has the exponential distribution with mean θ -1 in the limit, we have

P n g(x 0 ) -ĝ(x 0 ) ≤ w → 1 -exp(-θw)
for all w ≥ 0.

The case where q > 1

In this section we extend the results in the previous section to the case where q > 1 and S is a convex-hull of a convex set A in R p+q + . For this we make a canonical transformation on y-space so that the problem for q > 1 is reduced to the case where q = 1. Again we fix the point (x 0 , y 0 ) where we want to estimate the function λ.

Let Γ be a q×(q-1) matrix whose columns form a basis for y ⊥ 0 . Consider a transformation T that maps y

∈ R q + to (u, ω) ∈ R q-1 × R + where u = Γ ⊤ y, ω = y ⊤ 0 y y 0 . (25) 
Then, in the new coordinate system (x, u, ω), the set S can be represented as

S T = (x, u, ω) ∈ R p + × R q-1 × R + x, Γu + ω y 0 y 0 ∈ S . (26) 
Define a (p + q -1)-dimensional function

g T (x, u) ≡ g T (x, u; y 0 ) = sup a > 0 x, Γu + a y 0 y 0 ∈ S .
This is a boundary function in the transformed space such that all points (x, u, ω) in S T lie below the surface represented by the equation ω = g(x, u). Convexity of the function g T follows from the fact that, due to convexity of S,

a 0 ∈ a > 0 x, Γu + a y 0 y 0 ∈ S and a ′ 0 ∈ a ′ > 0 x ′ , Γu ′ + a ′ y 0 y 0 ∈ S ,
together, imply

αa 0 + (1 -α)a ′ 0 ∈ a > 0 αx + (1 -α)x ′ , Γ αu + (1 -α)u ′ + a y 0 y 0 ∈ S .
Theorem 4 Assume (A1) and (A2). In addition, assume that -g * T is positive definite and continuous at 0, and that the density f T given at [START_REF] Ac Davison | Local likelihood smoothing of sample extremes[END_REF] is uniformly continuous on H ε,T (x 0 , 0) for an arbitrarily small ε > 0. Let L n1 and L n2 denote the distributions of n 2/(p+q) [ λ(x 0 , y 0 ) -λ(x 0 , y 0 )] and Z n,T (0 p+q-2 )/ y 0 , respectively. Then, d(L n1 , L n2 ) → 0 as n tends to infinity.

Theorem 4 excludes the case where S = {(x, y) ∈ R p+q + c ⊤ 1 xc ⊤ 2 y ≥ 0} for some constant vectors c 1 , c 2 > 0. Below we treat this case. When q = 1, this corresponds to the case where the boundary function g is linear in x.

We can apply the arguments leading to Theorem 3 with p, c, x 0 and Q being replaced by (p + q -1), c T , (x 0 , 0) and Q T , respectively.

Let R L n,T (θ c T ) be the rectangle defined in ( 23) with θ and p being replaced by θ T and (p+q -1). Define Z L n,T as Z L n using a random sample from the uniform distribution of the (p + q -1)-dimensional rectangle R L n,T (θ T ). By applying the proof of Theorem 3 to c T replacing c, we get the following theorem.

Theorem 5 Assume (A1) and (A2). Assume further that S = {(x, y) ∈ R p+q + c ⊤ 1 xc ⊤ 2 y ≥ 0} for some constant vectors c 1 , c 2 > 0 and that the density f T given at [START_REF] Ac Davison | Local likelihood smoothing of sample extremes[END_REF] is uniformly continuous on H ε,T (x 0 , 0) for an arbitrarily small ε > 0. Let L n1 and L ′ n2 denote the distributions of n 2/(p+q) [ λ(x 0 , y 0 )λ(x 0 , y 0 )] and Z L n,T (0 p+q-2 )/ y 0 , respectively. Then d(L n1 , L ′ n2 ) → 0 as n tends to infinity.

Estimation of κ and κ T

We discuss how to estimate κ as defined in [START_REF] Byström | Extreme value theory and extremely large electricity price changes[END_REF] for the case where q = 1. It is straightforward to extend the methods to the case where q > 1 via the canonical transformation that we introduced in Section 3.2.

Consider the set H ε (x 0 ) ⊂ R p+1 + defined in [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF]. The projection of this set on the x-space is a convex hull around the vector x 0 , and for each direction of the ray x 0 + Qz 2 , determined by z 2 , its section on that direction is also a convex hull of single dimension under the boundary g. For each fixed u ≥ 0, let H ε (u; x 0 ) = u(x 0 + Qz 2 ), y z 2 ≤ ε, g u(x 0 + Qz 2 ) -uε ≤ y ≤ g u(x 0 + Qz 2 ) . This is a section of H ε (x 0 ) obtained by cutting H ε (x 0 ) perpendicular to x 0 at the distance u x 0 from the origin. Its volume in the cutting hyperplane uP † (x 0 ), where P † (x 0 ) is defined between ( 14) and [START_REF] Daouia | Functional convergence of quantile-type frontiers with application to parametric approximations[END_REF] This consideration motivates the following estimator of θ:

θ = x 0 c -1 p-1 n -1 ε -p n i=1 I (X i , Y i ) ∈ H ε (x 0 ) , (29) 
where Ĥε (x 0 ) is the sample version of H ε (x 0 ) with g replaced by ĝ in its definition. Note that, for implementing θ, it is convenient to use the fact,

(X i , Y i ) ∈ Ĥε (x 0 ) ⇔ Z 2i ≤ ε, ĝ * (Z 2i ) -ε ≤ Y ′ i ≤ ĝ * (Z 2i ).
It is straightforward to see that θ is a consistent estimator of θ under the conditions of Theorem 2.

For estimating det(Λ), one can apply local polynomial fitting to {(Z 2i , ĝ * (Z 2i ))}. For a small δ > 0, perform a second-order polynomial regression on the set of the points {(Z 2i , ĝ * (Z 2i )) Z 2i ≤ δ, i = 1, 2, . . . , n} ∪ {(0, ĝ * (0)}, to get g * (z) = g0 + g′ 1 z + z ′ g2 z.

Use det(g 2 ) as an estimator of det(Λ). An estimator of κ is then defined by κ = θ det(g 2 ) -1/2 . Using the estimator of κ one can obtain a bias-corrected estimator of the function g * . For this, one generates Z n repeatedly as described at (12) using the estimated κ. Call them Z n,1 , Z n,2 , . . . , Z n,B . A bias-corrected estimator is then defined by ĝ * (0) -n -2/(p+1) Zn,• (0), where Zn,• (0) = B -1 B b=1 Z n,b (0). Also, a 100×(1-α)% confidence interval is given by ĝ * (0) -n -2/(p+1) Z n,(B(1-α/2)) (0), ĝ * (0) -n -2/(p+1) Z n,(Bα/2) (0) , where Z n,(j) (0) are the ordered values Z n,j (0) such that Z n,(1) (0) > Z n,(2) (0) > • • • > Z n,(B) (0).

0 f

 0 , equals v ε (u) = c p-1 u p ε p , where c r denote the volume of the r-dimensional unit ball, that is, c r = π r/2 Γ(r/2+1) with Γ(z) = ∞ 0 t z-1 e -t dt. Thus, as ε → 0 we haveP [(X, Y ) ∈ H ε (x 0 )] = ∞ 0 (x,y)∈Hε(u;x 0 ) f (x, y) dx dy du = ∞ (ux 0 , ug(x 0 ))v ε (u) du {1 + o(1)} = c p-1 ε p ∞ 0 u p f (ux 0 , ug(x 0 )) du {1 + o(1)}.

(p = 2). We generated 5000 random samples of

Also, it has the CR2S property [START_REF] Beirlant | Local polynomial maximum likelihood estimation for pareto-type distributions[END_REF] since S satisfies [START_REF] Aragon | Nonparametric frontier estimation: A conditional quantile-based approach[END_REF]. Furthermore, since (x, y) ∈ S if and only if (x, T (y)) ∈ S T , and T (αy 0 ) = (0 ⊤ , α y 0 ) ⊤ for all α > 0, we obtain

= y 0 sup{λ > 0 (x 0 , T (λy 0 )) ∈ S T } = y 0 λ(x 0 , y 0 ).

Here and below, 0 denotes the (q -1)-dimensional zero vector. Thus the problem of estimating λ(x 0 , y 0 ) using (X i , Y i ) is reduced to that of estimating g T (x 0 , 0) in the transformed space using (X i , T (Y i )). We note that in the proof of Theorem 2 we use only convexity and the CR2S property of g. Thus the theory we developed in the previous section is applicable to g T . Let (U i , Ω i ) = T (Y i ) where U i is the vector of the first (q -1) elements of T (Y i ), and Ω i is the scalar-valued random variable. The joint density of (X i , U i , Ω i ) at the point (x, u, ω) is given by

The constant θ defined in [START_REF] Byström | Managing extreme risks in tranquil and volatile markets using conditional extreme value theory[END_REF] that corresponds to the density f T equals

where the last identity follows from [START_REF] Das | Detecting a conditional extreme value model[END_REF]. The determinant that corresponds to det(Λ) in the definition of κ in ( 11) is det(-Q ⊤ T gT (x 0 , 0)Q T /2) where Q T is a (p + q -1) × (p + q -2) matrix whose columns form an orthonormal basis for (x 0 , 0) ⊥ . Thus we modify the definition of κ as

Recall that the construction of Z n defined in [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF] depends only on κ and p. Define Z n,T as a version of Z n with κ T and (p + q -1) replacing κ and p, respectively. Also, define a (p + q -2)-dimensional function g * T (z 2 ) = g T ((x 0 , 0) + Q T z 2 ), and H ε,T (x 0 , 0) as H ε (x 0 ) at [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF] with (p + q -1), g T , (x 0 , 0) and Q T replacing p, g, x 0 and Q, respectively. Then we have the following theorem for the limit distribution of λ(x 0 , y 0 ) for arbitrary dimensions p, q ≥ 1.