
HAL Id: hal-01110478
https://hal.science/hal-01110478

Submitted on 28 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

A Focused Sequent Calculus Framework for Proof
Search in Pure Type Systems

Stéphane Lengrand, Roy Dyckhoff, James Mckinna

To cite this version:
Stéphane Lengrand, Roy Dyckhoff, James Mckinna. A Focused Sequent Calculus Framework for
Proof Search in Pure Type Systems. Logical Methods in Computer Science, 2011, 7 (1), pp.33.
�10.2168/LMCS-7(1:6)2011�. �hal-01110478�

https://hal.science/hal-01110478
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

A Focused Sequent Calculus Framework for
Proof Search in Pure Type Systems

Stéphane Lengrand1, Roy Dyckho�2 and James McKinna3

1CNRS, École Polytechnique, France. Lengrand@LIX.Polytechnique.fr
2School of Computer Science, University of St Andrews, Scotland. rd@cs.st-andrews.ac.uk

3Radboud University, Nijmegen, The Netherlands. james.mckinna@cs.ru.nl

3rd October 2009

Abstract
Basic proof search tactics in logic and type theory can be seen as the

root-�rst applications of rules in an appropriate sequent calculus, preferably
without the redundancies generated by permutation of rules. This paper ad-
dresses the issues of de�ning such sequent calculi for Pure Type Systems (PTS,
which are based on natural deduction) and then organizing their rules for ef-
fective proof search. First, we introduce the idea of a Pure Type Sequent
Calculus (PTSC) by enriching a permutation-free sequent calculus for propo-
sitional logic due to Herbelin, which is strongly related to natural deduction
and already well adapted to proof-search. Such a PTSC admits a normalisation
procedure, adapted from Herbelin's and de�ned by a system of local rewrite
rules as in cut-elimination, using explicit substitutions. This system satis-
�es the Subject Reduction property and is con�uent. Each PTSC is logically
equivalent to its corresponding PTS, and the former is strongly normalising
i� the latter is. Second, we make the logical rules of PTSC syntax-directed
for proof search, by incorporating the conversion rules as in syntax-directed
presentations of the PTS rules for type checking. Third, we consider an ex-
tension PTSCα of PTSC with explicitly scoped meta-variables, representing
partial proof-terms, and use it to analyse interactive proof construction. This
sets up a framework in which we are able to study proof-search strategies,
type inhabitant enumeration and uni�cation.

keywords: Type theory, PTS, sequent calculus, strong normalisation,
proof-search, interactive proof construction

1

Contents
Introduction 2

1 Syntax and operational semantics of PTSCα 4
1.1 Syntax . 4
1.2 Operational semantics . 5

2 λ-terms and Con�uence 7

3 Typing system and properties 9

4 Correspondence with PTS 12
4.1 Type preservation . 12
4.2 Equivalence of Strong Normalisation 13

5 Proof-search 14

6 Using meta-variables for proof-search 16

7 Example: commutativity of conjunction 21

Conclusion and Further Work 23

A Appendix 27

Introduction
Barendregt's Pure Type Systems (PTS) [Bar92] form a convenient framework for
representing a range of di�erent extensions of the simply-typed λ-calculus, such
as those comprising the Barendregt Cube. System F , System Fω [Gir72], System
λΠ [Daa80, HHP87], and the Calculus of Constructions (CoC) [CH88] are examples
of such systems, on which several major proof assistants are based (e.g. Coq [Coq],
Lego [LP92], and the Edinburgh Logical Framework [HHP87]; Higher-Order Logic
can also be presented as a PTS, but this is not the basis of its principal implemen-
tation [HOL]).

With typed λ-calculus as their basis, such systems are traditionally presented
in natural deduction style, with rules introducing and eliminating logical constants
(aka type constructors). Dowek [Dow93] and Muñoz [Muñ01] show how to perform
proof search in this style, enumerating type inhabitants in such systems.

This however misses out on the advantages of sequent calculus [Gen35] for proof
search. As suggested by Plotkin [Plo87], a Gentzen-style sequent calculus (with left
and right introduction rules) can be used as a basis for proof search in the case of
λΠ [PW91, Pym95] (later extended to any PTS [GR03]). However, the permutations
of inference steps available in a Gentzen-style calculus (such as G3 [Kle52]) introduce
some extra non-determinism in proof search.

Herbelin [Her94, Her95] introduced a permutation-free calculus LJT for intuition-
istic logic, exploiting the focusing ideas of Andreoli [And92], Danos et al [DJS95]
and (ultimately) ideas from Girard's linear logic [Gir87]. Such calculi have been con-
sidered as a basis for proof search in Intuitionistic logic [DP99b], generalising the
uniform proof approach to logic programming (see [MNPS91] for hereditary Harrop
logic). A version with cut rules and proof-terms forms an explicit substitution cal-
culus λ [Her94, DU03] with a strong connection to (call-by-name) β-reduction and
abstract machines such as that of Krivine [Kri].

2

This forms a sequent calculus counterpart to the Curry-Howard correspondence,
on the basis of which type theory can be reformulated with a view to formalising
proof search. This paper (detailing and extending [LDM06]; see also [Len06]) com-
pletes this programme, reformulating PTSs as Pure Type Sequent Calculi (PTSC).
It follows the earlier work in [PD98] that relates λ to proof search in the ΛΠ calcu-
lus [PW91, Pym95].

This gives a secure but simple theoretical basis for the implementation of PTS-
based systems such as Coq [Coq] and Lego [LP92]; these proof assistants fea-
ture interactive proof construction methods using proof search tactics. As noticed
by [McK97], the primitive tactics are in an inexact correspondence with the elim-
ination rules of the underlying natural deduction formalism: while the tactic intro
does correspond to the right-introduction rule for Π-types (whether in natural de-
duction or in sequent calculus), the tactics apply in Coq and Re�ne in Lego, however,
are much closer (in spirit) to the left-introduction rule for Π-types in the focused
sequent calculus LJT (below) than to the Π-elimination rule in natural deduction.
The rule

Γ ⊢⊢⊢ M :A Γ; 〈M/x〉B ⊢⊢⊢ l :C
ΠL

Γ;ΠxA.B ⊢⊢⊢ M ·l :C

types the construct M ·l of λ, representing a list of terms with head M and tail l.
However the aforementioned tactics are also able to postpone the investigation of

the �rst premiss and start investigating the second, which leads to incomplete proof-
terms and uni�cation constraints to be solved. This paper integrates these features
to PTSC using explicitly scoped meta-variables (whereas [McK97] investigated the
use of Lego's local de�nition mechanism [LP92]). This sets up a framework, called
PTSCα, for the analysis and de�nition of interactive proof construction tactics (as
in Coq and Lego), as well as type inhabitant enumeration (see [Dow93, Muñ01]).

Of course, formalising proof-search mechanisms has been investigated, if only
to design tactic languages like Delahaye's Ltac and Lpdt [Del01]. Also noteworthy
here are McBride's and Jojgov's PhD theses [McB00, GJ02], which consider exten-
sions of type theory to admit partial proof objects. Using meta-variables similar to
ours, Jojgov shows how to manage explicitly their progressive instantiation via a
de�nitional mechanism and compares this with Delahaye's Ltac and Lpdt.

While formalising the connections with this line of research remains as future
work, the novelty of our approach here is to use the sequent calculus to bridge
the usual gap (particularly wide for PTS and their implementations) between the
rules de�ning a logic and the rules describing proof search steps. A by-product of
this bridge is ensuring correctness of proof-search, whose output thus need not be
type-checked (which it currently is, in most proof assistants).

One reason why this is possible in our framework is that it can decompose (and
thus account for) some mechanisms that are usually externalised and whose outputs
usually need to be type-checked, like uni�cation (including higher-order [Hue76]).
Indeed, it integrates the fact, �rst exposed in [Dow93], that proof-search and uni�-
cation generalise in type theory to a single process.

While the rules of our framework may not be deterministic enough to be consid-
ered as specifying an algorithm, they are atomic enough to provide an operational
semantics in which algorithms such as above can be speci�ed. They thus provide
a semantics not only for type inhabitation algorithms, but also more generally for
tactic languages, and more originally to uni�cation algorithms.

It is convenient to summarise the relationship between our work and that of our
predecessors as follows:

3

Type Theory Inference rules Proof-terms Meta-variables
[Pym95] λΠ G3 λ System U
[Dow93] CoC NJ λ Existential variables
[PD98] λΠ(Σ) LJT λ NO
[GR03] PTS G3 λ NO
[GJ02] λHOL NJ λ Higher order

This paper PTS LJT λ System PE
As an example, we consider the commutativity of conjunction expressed in (the

PTSCα corresponding to) System F , presented in [LDM06] with no meta-variables.
We show here how meta-variables improve the formalisation of proof-search.

The paper's structure is as follows: Section 1 presents the syntax of PTSCα
and gives the rewrite rules for normalisation. Section 2 connects the syntax with
that of λ-calculus and derives from this connection the con�uence of the PTSCα-
calculus. Section 3 presents a parametric typing system PTSC for ground terms
(i.e. terms with no meta-variables), and states and proves properties such as Subject
Reduction. Section 4 establishes the correspondence between a PTSC and the PTS
with the same parameters; we show type preservation and the strong normalisation
result. Section 5 discusses proof-search in a PTSC. Section 6 introduces the inference
system PTSCα, i.e. with meta-variables, as a way to formalise incomplete proofs and
operationalise proof-search. Section 7 shows the aforementioned example. These
are followed by a conclusion and discussion of directions for further work.

Some ideas and results of this paper (namely Sections 2, 3 and 4, which were
already in [LDM06]) have been formalised and proved in Coq [Sil09]. This was done
using a De Bruijn index representation, as provided by e.g. [Len06].

1 Syntax and operational semantics of PTSCα

1.1 Syntax
We consider an extension (with type annotations) of the proof-term syntax λ of
Herbelin's focused sequent calculus LJT [Her95]. As in λ, Pure Type Sequent Calculi
feature two syntactic categories: that of terms and that of lists.

The syntax of PTSCα depends on a given set S of sorts, written s, s′, . . ., a de-
numerable set X of variables, written x, y, z, . . ., and two denumerable sets of meta-
variables: those for terms, written α, α′, . . ., and those for lists, written β, β′,
These meta-variables come with an intrinsec notion of arity.

De�nition 1 (Terms) The set T of terms (denoted M, N, P, . . . , A, B, . . .) and the
set L of lists (denoted l, l′, . . .) are inductively de�ned as

M, N, P,A, B ::= ΠxA.B | λxA.M | s | x l | M l | 〈M/x〉N | α(M1, . . . ,Mn)
l, l′ ::= [] | M ·l | l@l′ | 〈M/x〉l | β(M1, . . . , Mn)

where n is the arity of α and β.
ΠxA.M , λxA.M , and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in l, thus

de�ning the free variables of a term M (resp. a list l), denoted FV(M) (resp. FV(l)),
as well as α-conversion, issues of which are treated in the usual way. Note that
FV(α(M1, . . . , Mn)) = FV(β(M1, . . . , Mn)) =

⋃n
i=1 FV(Mn), see the discussion on

meta-variables below.
Let A→B denote ΠxA.B when x 6∈ FV(B).
Terms and lists without meta-variables are called ground terms and ground lists,

respectively. (Previously, these were just called terms and lists in [LDM06]).
A term M is closed if FV(M) = ∅.

4

Lists are used to represent sequences of arguments of a function, with the term
x l (resp. M l) representing the application of x (resp. M) to the list of arguments
l. Note that a variable alone is not a term; it has to be applied to a list, possibly
the empty list, denoted []. The list with head M and tail l is denoted M · l, with
a typing rule corresponding to the left-introduction of Π-types (cf. Section 3). The
following �gure shows the generic structure of a λ-term and its representation in λ:

V M1

Mn

λx1

λxp

λx1

λxp

V

M1

[]Mn

Successive applications give rise to the concatenation of lists, denoted l@l′, and
〈M/x〉N and 〈M/x〉l are explicit substitutions, on terms and lists, respectively.
They will be used in two ways: �rst, to instantiate a universally quanti�ed variable,
and second, to describe explicitly the interaction between the constructors in the
normalisation process (given in section 1.2).

Among the features that we add to the syntax of λ, our meta-variables can
be seen as higher-order variables. This is quite similar to CRS [Klo80], in that
unknown terms are represented with (meta/higher-order) variables applied to the
series of (term-)variables that could occur freely in those terms, e.g. α(x, y) (or
more formally α(x [], y [])) to represent an unknown term M in which x and y could
occur free. These arguments can later be subject to substitutions, so that α(N,P)
will represent

{

N,P�x,y

}

M . In other words, a meta-variable on its own stands for
something closed, e.g. x.y.M with FV(M) ⊆ {x, y}. This allows us to consider a
simple notion of α-conversion, with λxs.α(x [], y []) = λzs.α(z [], y []). 1

This kind of meta-variable di�ers from that in [Muñ01], which is rather in the
style of ERS [Kha90] where the variables that could occur freely in the unknown
term are not speci�ed explicitly. The drawback of our approach is that we have to
know in advance the free variables that might occur free in the unknown term, but
in a typed setting such as proof search these are actually the variables declared in
the typing environment. Moreover, although specifying explicitly the variables that
could occur free in an unknown term might seem heavy, it actually avoids the usual
(non-)con�uence problems when terms contain meta-variables in the style of ERS.2
The solution in [Muñ01] has the drawback of not simulating β-reduction (although
the reductions reach the expected normal forms).

1.2 Operational semantics
The operational semantics of PTSCα is given by a reduction system presented in
Fig 1, extending (with rules A4,Cα,Dβ) that in [LDM06], and comprising sub-
systems B, x′, xsubst′ and combinations thereof. Side-conditions to avoid variable
capture can be inferred from the reduction rules. Con�uence of the system is proved
in section 2.

We denote by −→G the contextual closure of the reduction relation de�ned
by any system G of rewrite rules (such as B, xsubst′, x′). The transitive closure

1Also, there is no binding mechanism for meta-variables in the syntax of PTSCα, but at the
meta-level there is a natural notion of instantiation, which we present only in section 6. We thus
emphasise the fact that instantiation of meta-variables never occurs during computation; in that
respect, meta-variables really behave like constants or term constructors.

2See the discussion at the end of section 2.

5

B (λxA.M) (N ·l) −→ (〈N/x〉M) l

x'







































































































































































B1 M [] −→ M
B2 (x l) l′ −→ x (l@l′)
B3 (M l) l′ −→ M (l@l′)

A1 (M ·l′)@l −→ M ·(l′@l)
A2 []@l −→ l
A3 (l@l′)@l′′ −→ l@(l′@l′′)
A4 l@[] −→ l

xsubst':































































































C1 〈P/y〉λxA.M −→ λx〈P/y〉A.〈P/y〉M
C2 〈P/y〉(y l) −→ P 〈P/y〉l
C3 〈P/y〉(x l) −→ x 〈P/y〉l if x 6= y
C4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉l
C5 〈P/y〉ΠxA.B −→ Πx〈P/y〉A.〈P/y〉B
C6 〈P/y〉s −→ s

Cα 〈P/y〉α(M1, . . . , Mn) −→ α(〈P/y〉M1, . . . , 〈P/y〉Mn)

D1 〈P/y〉[] −→ []
D2 〈P/y〉(M ·l) −→ (〈P/y〉M)·(〈P/y〉l)
D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)

Dβ 〈P/y〉β(M1, . . . , Mn) −→ β(〈P/y〉M1, . . . , 〈P/y〉Mn)

Figure 1: Reduction Rules

of −→G is denoted by −→+
G , its re�exive and transitive closure is denoted by

−→∗
G , and its symmetric re�exive and transitive closure is denoted by←→∗

G . The
set of strongly normalising elements (those from which no in�nite −→G -reduction
sequence starts) is SNG. When not speci�ed, G is assumed to be the system B, x′
from Fig. 1.

We now show that system x′ is terminating. If we add rule B, then the system
fails to be terminating unless we only consider terms that are typed in a normalising
typing system.

We can encode terms and lists into a �rst-order syntax given by the following
signature:

{⋆/0, i/1, ii/2, cut/2, sub/2} ∪ {tuplen/n | n ∈ N}

We may then equip this signature with the well-founded precedence relation
de�ned by

⋆ ≺ i ≺ ii ≺ tuple0 ≺ . . . ≺ tuplen ≺ tuplen+1 ≺ . . . ≺ cut ≺ sub

The lexicographic path ordering (lpo) induced on the �rst-order terms is also
well-founded (de�nitions and results can be found in [KL80]). The aforementioned
encoding is given in Fig 2.

Theorem 1
• If M −→x′ M ′ then S(M) >lpo S(M ′).

• If l −→x′ l′ then S(l) >lpo S(l′).

Proof: By simultaneous induction on M, l. ¤

6

S(s) = ⋆
S(λxA.M) = ii(S(A),S(M))
S(ΠxA.M) = ii(S(A),S(M))
S(x l) = i(S(l))
S(M l) = cut(S(M),S(l))
S(〈M/x〉N) = sub(S(M),S(N))
S(α(M1, . . . ,Mn)) = tuplen(S(M1), . . . ,S(Mn))
S([]) = ⋆
S(M ·l) = ii(S(M),S(l))
S(l@l′) = ii(S(l),S(l′))
S(〈M/x〉l) = sub(S(M),S(l))
S(β(M1, . . . ,Mn)) = tuplen(S(M1), . . . ,S(Mn))

Figure 2: First-order encoding

Corollary 2 System x′ is terminating (on all terms and lists).

2 λ-terms and Con�uence
In this section we de�ne encodings between the syntax of PTSCα and that of Pure
Type Systems (PTS), i.e. a variant of λ-terms. Since, in the latter, the only reduction
rule (namely, β) is con�uent, we infer from the encodings the con�uence of PTSCα.
The di�culty lies in the encoding of meta-variables.

We brie�y recall the syntax and operational semantics of PTS. The terms have
the following syntax:

t, u, v, T, U, V, . . . ::= x | s | ΠxT .t | λxT .t | t u

which is equipped with the β-reduction rule (λxv.t) u −→β {u�x}t, in which the
substitution is implicit, i.e. is a meta-operation.

In order to interpret the meta-variables of PTSCα, we need to reserve some of
the traditional variables of PTS to the speci�c purpose of encoding meta-variables.
More speci�cally, for each meta-variable α (resp. β) of arity k, we reserve a λ-
calculus variable which we write αk (resp. βk).

B(ΠxA.B) := ΠxB(A).B(B)
B(λxA.M) := λxB(A).B(M)
B(s) := s
B(x l) := {x�z}B

z(l) z fresh
B(M l) :=

{

B(M)�z

}

Bz(l) z fresh
B(〈P/x〉M) :=

{

B(P)�x

}

B(M)
B(α(M1, . . . , Mn)) := αn B(M1) . . .B(Mn)

By([]) := y
By(M ·l) :=

{

y B(M)�z

}

Bz(l) z fresh
By(l@l′) :=

{

By(l)�z

}

Bz(l′) z fresh
By(〈P/x〉l) :=

{

B(P)�x

}

By(l)
By(β(M1, . . . , Mn)) := βn y B(M1) . . .B(Mn)

Figure 3: From a PTSCα to a PTS
Fig. 3 shows the encoding of the syntax of PTSCα into that of PTS. Meta-

variables for terms are encoded naturally, although note that we make their arity
explicit in the encoding. The case of meta-variables for lists is more subtle, since

7

the translation of lists is parameterised by the future head variable. How can we
relate such a variable to a list of terms that is (yet) unknown? We simply give it
as an extra argument (the �rst, in fact) of the encoded meta-variable.

Theorem 3 (Simulation of PTSCα) −→β simulates −→Bx′ through B.

Proof: If M −→B N then B(M)−→∗
β B(N), if l−→B l′ then By(l)−→∗

β By(l′),
if M −→x′ N then B(M) = B(N) and if l −→x′ l′ then By(l) = By(l′), which are
proved by simultaneous induction on the derivation step and case analysis. ¤

A(s) := s
A(ΠxT .U) := ΠxA (T).A(U)
A(λxT .t) := λxA (T).A(t)
A(αk t1 . . . tn) := α(A(t1), . . . ,A(tn)) n ≤ k
A(βk t t1 . . . tn) := Aβ(A (t1),...,A (tn))(t) n ≤ k
A(t) := A[](t) otherwise

Al(α
k t1 . . . tn) := α(A(t1), . . . ,A(tn)) l n ≤ k

Al(β
k t t1 . . . tn) := Aβ(A (t1),...,A (tn))@l(t) n ≤ k

Al(t u) := AA (u)·l(t) otherwise
Al(x) := x l
Al(t) := A(t) l otherwise

Figure 4: From a PTS to a PTSCα

Fig. 4 shows the encoding of the syntax of PTS into that of PTSCα. It is
simply the adaptation to the higher-order case of Prawitz's translation from natural
deduction to sequent calculus [Pra65]: the encoding of an application relies on a
parameterised version of the translation.

Note how we spot the situations which arose from encoded meta-variables, using
the explicitly displayed arity to identify the arguments. Note that the case n < k
never arises from the encoding of a PTSCα-term, but by only requiring n ≤ k
(rather than n = k) we have a total (rather than partial) translation.

In order to prove con�uence, we �rst need the following results:

Lemma 4
1. A(t) is an x′-normal form and, provided that l is x′-normal and if l = [] then

either t = x or t = t1 t2, Al(t) is also x′-normal.

2. If l −→Bx′ l′ then Al(t) −→Bx′ Al′(t).

3. Al′(t) l−→∗x′ Al′@l(t) and A(t) l−→∗x′ Al(t).

4. 〈A(u)/x〉A(t)−→∗x′ A({u�x}t) and 〈A(u)/x〉Al(t)−→
∗x′ A〈A (u)/x〉l({

u�x}t).

Proof: Each of the above points is obtained by straightforward inductions on t.
Note that in order to prove point 4 we need rules A3 and A4. These are not needed
(for simulation of β-reduction and for con�uence) when only ground terms were
concerned. ¤

Theorem 5 (Simulation of PTS)
−→Bx′ (strongly) simulates −→β through A.

Proof: If t −→β u then A(t)−→+Bx′ A(u) and Al(t)−→
+Bx′ Al(u), which are

proved by induction on the derivation step, using Lemma 4.4 for the base case and
Lemma 4, point 3. ¤

8

Now we study the composition of the two encodings:

Lemma 6 Suppose M and l are x′-normal forms.

1. If l = [] implies t = x or t = t1 t2, then Al(t) = A({t�x}B
x(l)) (for any

x /∈ FV(l)).

2. M = A(B(M)).

Proof: By simultaneous induction on l and M . Again, rules A3 and A4 (as well
as Cα and Dβ) are needed for this lemma to capture the notion of normal form
corresponding to the PTS-terms, when meta-variables are present. ¤

Theorem 7

1. B(A(t)) = t

2. M−→∗x′ A(B(M))

Proof:

1. B(A(t)) = t and B(Al(t)) = {t�x}B
x(l) (with x 6= FV(l)) are obtained by

simultaneous induction on t.

2. M−→∗x′ A(B(M)) holds by induction on the longest sequence of x′-reduction
from M (x′ is terminating): by Lemma 6, point 2, it holds if M is an x′-normal
form, and if M −→x′ N then we can apply the induction hypothesis on N
and by Theorem 3 we have the result.

¤

We �nally get con�uence:

Corollary 8 (Con�uence) −→x′ and −→Bx′ are con�uent.

Proof: We use the technique of simulation as for instance in [KL05]: consider
two reduction sequences starting from a term in a PTSC. They can be simulated
through B by β-reductions, and since a PTS is con�uent, we can close the diagram.
Now the lower part of the diagram can be simulated through A back in the PTSC,
which closes the diagram there as well, as shown in Fig. 5 for Bx′. Notice that the
proof of con�uence has nothing to do with typing and does not rely on any result
in section 3 (in fact, we use con�uence in the proof of Subject Reduction in the
Appendix). ¤

Considering meta-variables in the style of CRS [Klo80] avoids the usual problem
of non-con�uence coming from the critical pair between B and C4 which generate
the two terms 〈N/x〉〈P/y〉M and 〈〈N/x〉P/y〉〈N/x〉M . Indeed, with ERS-style
meta-variables these two terms need not reduce to a common term, but with the
CRS-approach, they now can (using the rules Cα and Dβ). Again, note how the
critical pair between B3 and itself (or B2) needs rule A3 in order to be closed, while
it was only there for convenience when all terms were ground.

3 Typing system and properties
Given the set of sorts S, a particular PTSC is speci�ed by a set A ⊆ S2 and a
set R ⊆ S3. We shall see an example in section 4.2. Throughout this section we
consider ground terms only.

9

∗

Bx′
##

GG
GG

GG
GG

G

∗

Bx′
{{wwwwwwww

B

®¶

∗Bx′

»»

B

®¶

B

®¶
∗ Bx′

§§

∗

β
##

GG
GG

GG
GG

G

∗

β
{{wwwwwwww

∗

β
##

GG
GG

GG
GG

G

A

®¶

∗

β
{{wwwwwwww

A

®¶
A

®¶

∗

Bx′
##

GG
GG

GG
GG

G

∗

Bx′
{{ww

ww
ww

ww
w

Figure 5: Con�uence by simulation

De�nition 2 (Environments)

• Environments are lists of pairs from X × T denoted (x : A).

• We de�ne the domain of an environment and the application of a substitution
to an environment as follows:

Dom([]) = [] Dom(Γ, (x : A)) = Dom(Γ), x
〈P/y〉([]) = [] 〈P/y〉(Γ, (x : A)) = 〈P/y〉Γ, (x : 〈P/y〉A)

• It is useful (see Section 6) to de�ne Dom(Γ) as a list, for which the meaning
of x ∈ Dom(Γ) is clear. If M is a set of variables, M ⊆ Dom(Γ) means for
all x ∈ M, x ∈ Dom(Γ). Similarly, Dom(Γ) ∩Dom(∆) is the set {x ∈ X | x ∈
Dom(Γ) ∧ x ∈ Dom(∆)}.
We de�ne the following inclusion relation between environments:
Γ ⊑ ∆ if for all (x : A) ∈ Γ, there is (x : B) ∈ ∆ with A←→∗ B

The inference rules in Fig. 6 inductively de�ne the derivability of three kinds of
statements:

1. context well-formedness, Γ wf,

2. term typing, Γ ⊢⊢⊢ M :A, and

3. list typing, Γ; B ⊢⊢⊢ l :A; here we say that B is in the stoup.

Side-conditions are used, such as (s1, s2, s3) ∈ R, x 6∈ Dom(Γ), A←→∗ B or ∆ ⊑ Γ,
and we use the abbreviation ∆ ⊑ Γ wf for ∆ ⊑ Γ and Γ wf. We freely abuse the
notation in the customary way, by not distinguishing between a statement and its
derivability according to the rules of Fig. 6.

There are three conversion rules convR, conv′R, and convL in order to deal with
the two kinds of statements and, for one of them, convert the type in the stoup. Since
the substitution of a variable in an environment a�ects the rest of the environment
(which could depend on the variable), the two rules for explicit substitutions (Cut2
and Cut4) must have a particular shape that manipulates the environment, if the
PTSC is to satisfy basic required properties like those of a PTS. The lemmas of this
section are proved by induction on typing derivations:

10

empty
[] wf

Γ ⊢⊢⊢ A :s x /∈ Dom(Γ)
extend

Γ, (x :A) wf

Γ wf (s, s′) ∈ A
sorted

Γ ⊢⊢⊢ s :s′

Γ ⊢⊢⊢ A :s1 Γ, (x :A) ⊢⊢⊢ B :s2 (s1, s2, s3) ∈ R
Πwf

Γ ⊢⊢⊢ ΠxA.B :s3

Γ ⊢⊢⊢ ΠxA.B :s Γ, (x :A) ⊢⊢⊢ M :B
ΠR

Γ ⊢⊢⊢ λxA.M :ΠxA.B

Γ; A ⊢⊢⊢ l :B (x :A) ∈ Γ
Selectx

Γ ⊢⊢⊢ x l :B

Γ ⊢⊢⊢ A :s
axiom

Γ; A ⊢⊢⊢ [] :A

Γ ⊢⊢⊢ M :A Γ ⊢⊢⊢ B :s A←→∗ B
convR

Γ ⊢⊢⊢ M :B

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ M :A Γ; 〈M/x〉B ⊢⊢⊢ l :C
ΠL

Γ;ΠxA.B ⊢⊢⊢ M ·l :C

Γ; C ⊢⊢⊢ l :A Γ ⊢⊢⊢ B :s A←→∗ B
conv′R

Γ; C ⊢⊢⊢ l :B

Γ; A ⊢⊢⊢ l :C Γ ⊢⊢⊢ B :s A←→∗ B
convL

Γ; B ⊢⊢⊢ l :C

Γ; C ⊢⊢⊢ l′ :A Γ; A ⊢⊢⊢ l :B
Cut1

Γ; C ⊢⊢⊢ l′@l :B

Γ ⊢⊢⊢ P :A Γ, (x :A), ∆; B ⊢⊢⊢ l :C Γ, 〈P/x〉∆ ⊑ ∆′ wf
Cut2

∆′; 〈P/x〉B ⊢⊢⊢ 〈P/x〉l :〈P/x〉C

Γ ⊢⊢⊢ M :A Γ; A ⊢⊢⊢ l :B
Cut3

Γ ⊢⊢⊢ M l :B

Γ ⊢⊢⊢ P :A Γ, (x :A), ∆ ⊢⊢⊢ M :C Γ, 〈P/x〉∆ ⊑ ∆′ wf
Cut4

∆′ ⊢⊢⊢ 〈P/x〉M :C′

where either (C′ = C ∈ S) or C 6∈ S and C′ = 〈P/x〉C

Figure 6: Typing rules of a PTSC

Lemma 9 (Properties of typing statements) If Γ ⊢⊢⊢ M :A (resp. Γ; B ⊢⊢⊢ l :C)
then FV(M) ⊆ Dom(Γ) (resp. FV(l) ⊆ Dom(Γ)), and the following statements can
be derived with strictly smaller typing derivations:

1. Γ wf

2. Γ ⊢⊢⊢ A :s for some s ∈ S, or A ∈ S
(resp. Γ ⊢⊢⊢ B :s and Γ ⊢⊢⊢ C :s′ for some s, s′ ∈ S)

Corollary 10 (Properties of well-formed environments)

1. If Γ, x : A, ∆ wf then Γ ⊢⊢⊢ A : s for some s ∈ S with x 6∈ Dom(Γ, ∆) and
FV(A) ⊆ Dom(Γ) (and in particular x 6∈ FV(A))

2. If Γ, ∆ wf then Γ wf.

Lemma 11 (Weakening) Suppose Γ, Γ′ wf and Dom(Γ′) ∩ Dom(∆) = ∅.

1. If Γ, ∆ ⊢⊢⊢ M :B then Γ, Γ′, ∆ ⊢⊢⊢ M :B.

2. If Γ, ∆;C ⊢⊢⊢ l :B, then Γ, Γ′, ∆;C ⊢⊢⊢ l :B.

3. If Γ, ∆ wf, then Γ, Γ′,∆ wf.

We can also strengthen the weakening property into the thinning property by induc-
tion on the typing derivation. This allows to weaken the environment, permute it,
and convert the types inside, as long as it remains well-formed:

11

Lemma 12 (Thinning) Suppose Γ ⊑ Γ′ wf and Dom(Γ′) ∩ Dom(∆) = ∅.

1. If Γ, ∆ ⊢⊢⊢ M :B then Γ′, ∆ ⊢⊢⊢ M :B.

2. If Γ, ∆;C ⊢⊢⊢ l :B, then Γ′, ∆;C ⊢⊢⊢ l :B.

3. If Γ, ∆ wf, then Γ′,∆ wf.

Using all of the results above, Subject Reduction can be proved (see the Ap-
pendix).

Theorem 13 (Subject Reduction in a PTSC)
1. If Γ ⊢⊢⊢ M :A and M −→ M ′, then Γ ⊢⊢⊢ M ′ :A

2. If Γ; A ⊢⊢⊢ l :B and l −→ l′, then Γ;A ⊢⊢⊢ l′ :B

4 Correspondence with PTS
4.1 Type preservation
There is a logical correspondence between a PTSC given by the sets S, A and R
and the PTS given by the same sets.

We prove this by showing that (when restricted to ground terms) the encodings
preserve typing.

[] wf
Γ ⊢PTS T :s x /∈ Dom(Γ)

Γ, (x : T) wf
Γ wf (x : T) ∈ Γ

Γ ⊢PTS x :T

Γ wf (s, s′) ∈ A

Γ ⊢PTS s :s′

Γ ⊢PTS U :s1 Γ, (x : U) ⊢PTS T :s2 (s1, s2, s3) ∈ R

Γ ⊢PTS ΠxU .T :s3

Γ ⊢PTS ΠxU .V :s Γ, (x : U) ⊢PTS t :V

Γ ⊢PTS λxU .t :ΠxU .V

Γ ⊢PTS t :ΠxT .U Γ ⊢PTS u :T

Γ ⊢PTS t u :{u�x}U

Γ ⊢PTS t :U Γ ⊢PTS V :s U←→∗
β V

Γ ⊢PTS t :V

Figure 7: Typing rules of a PTS

The terms are typed by the typing rules in Fig. 4.1, which depend on the sets
S, A and R. PTS are con�uent and satisfy the following properties (e.g. [Bar92]):

Theorem 14

1. If Γ ⊢PTS t :u and Γ ⊑ ∆ wf then ∆ ⊢PTS t :u (where the relation ⊑ is de�ned
similarly to that of PTSC, but with β-equivalence).

2. If Γ ⊢PTS t :v and Γ, y : v, ∆ ⊢PTS u :v′

then Γ, {t�y}∆ ⊢PTS {t�y}u :{t�y}v′.

3. If Γ ⊢PTS t :v and t −→β u then Γ ⊢PTS u :v.

12

We now extend the encodings to environments:

A([]) = [] B([]) = []
A(Γ, (x : v)) = A(Γ), (x : A(v)) B(Γ, (x : A)) = B(Γ), (x : B(A))

Now note that the simulations in section 2 imply:

Corollary 15 (Equational theories)
t←→∗

β u if and only if A(t)←→∗ A(u)
M←→∗ N if and only if B(M)←→∗

β B(N)

Preservation of typing is proved by induction on the typing derivations:

Theorem 16 (Preservation of typing 1)

1. If Γ ⊢PTS t :T then A(Γ) ⊢⊢⊢ A(t) :A(T)

2. If (Γ ⊢PTS ti :
{

ti−1�xi−1

}

· · · {t1�x1
}Ti)i=1...n

and A(Γ) ⊢⊢⊢ A(Πx1
T1Πxn

Tn .T) :s
then A(Γ);A(Πx1

T1Πxn
Tn .T) ⊢⊢⊢ A(t1 . . . tn) :A({tn�xn

}· · · {t1�x1
}T)

3. If Γ wf then A(Γ) wf

Theorem 17 (Preservation of typing 2)

1. If Γ ⊢⊢⊢ M :A then B(Γ) ⊢PTS B(M) :B(A)

2. If Γ; B ⊢⊢⊢ l :A then B(Γ), y : B(B) ⊢PTS By(l) :B(A) for any fresh y

3. If Γ wf then B(Γ) wf

4.2 Equivalence of Strong Normalisation
Theorem 18 A PTSC given by the sets S, A, and R is strongly normalising if and
only if the PTS given by the same sets is.

Proof: Assume that the PTSC is strongly normalising, and let us consider a well-
typed t of the corresponding PTS, i.e. Γ ⊢PTS t :T for some Γ, T . By Theorem 16,
A(Γ) ⊢⊢⊢ A(t) : A(T) so A(t) ∈ SN. Now by Theorem 5, any reduction sequence
starting from t maps to a reduction sequence of at least the same length starting
from A(t), but those are �nite.

Now assume that the PTS is strongly normalising and that Γ ⊢⊢⊢ M : A in the
corresponding PTSC. By subject reduction, any N such that M−→∗ N satis�es
Γ ⊢⊢⊢ N :A and any sub-term P (resp. sub-list l) of any such N is also typable. By
Theorem 17, for any such P (resp. l), B(P) (resp. By(l)) is typable in the PTS, so
it is strongly normalising by assumption.

We now re�ne the �rst-order encoding of any such P and l (as de�ned in sec-
tion 1), emulating the technique of Bloo and Geuvers [BG99].

Accordingly, we re�ne the �rst-order signature from section 1 by labelling the
symbols cutt(_,_) and subt(_,_) with all strongly normalising terms t of a PTS,
thus generating an in�nite signature. The precedence relation is re�ned as follows

⋆ ≺ i(_) ≺ ii(_,_) ≺ cutt(_,_) ≺ subt(_,_)

but we also set subt(_,_) ≺ cutt′(_,_) whenever t′−→+
β t. The precedence is still

well-founded, so the induced (lpo) is also still well-founded (de�nitions and results
can be found in [KL80]). The re�nement of the encoding is given in Fig 8. An
induction on terms shows that reductions decrease the lpo. ¤

13

T (s) = ⋆
T (λxA.M) = T (ΠxA.M) = ii(T (A), T (M))
T (x l) = i(T (l))
T (M l) = cutB(M l)(T (M), T (l))

T (〈M/x〉N) = subB(〈M/x〉N)(T (M), T (N))
T ([]) = ⋆
T (M ·l) = ii(T (M), T (l))
T (l@l′) = ii(T (l), T (l′))

T (〈M/x〉N) = subB(〈M/x〉l)(T (M), T (l))

Figure 8: First-order encoding

Examples of strongly normalising PTS are the Calculus of
Constructions [CH88], on which the proof-assistant Coq is based [Coq] (but it also
uses inductive types and local de�nitions), as well as all the other systems of Baren-
dregt's Cube, for all of which we now have a corresponding PTSC that can be used
for proof-search.

5 Proof-search
Proof-search considers as inputs an environment Γ and a type A, and the output,
if successful, will be a term M such that Γ ⊢⊢⊢ M :A, moreover one in normal form.
When we search for a list Γ; B ⊢⊢⊢ l : A, the type B in the stoup is also an input.
Henceforth, A will be called simply a goal.

The inference rules now need to be syntax-directed, that is determined by the
shape of the goal (or of the type in the stoup), and the proof-search system (PS,
for short) is then obtained by optimising appeals to the conversion rules, yielding
the presentation given in Fig. 9. The incorporation of the conversion rules into the
other rules is similar to that of the constructive engine in natural deduction [Hue89,
vBJMP94]; however the latter algorithm was designed for type synthesis, for which
the inputs and outputs are not the same as in proof-search, as mentioned in the
introduction.

A←→∗ A′

axiom
Γ;A ⊢PS [] :A′

D−→∗ ΠxA.B Γ ⊢PS M :A Γ; 〈M/x〉B ⊢PS l :C
ΠL

Γ;D ⊢PS M ·l :C

C−→∗ s3 (s1, s2, s3) ∈ R Γ ⊢PS A :s1 Γ, (x : A) ⊢PS B :s2
Πwf

Γ ⊢PS ΠxA.B :C

C−→∗ s′ (s, s′) ∈ A
sorted

Γ ⊢PS s :C

(x : A) ∈ Γ Γ; A ⊢PS l :B
Selectx

Γ ⊢PS x l :B

C−→∗ ΠxA.B Γ, (x : A) ⊢PS M :B
ΠR

Γ ⊢PS λxA.M :C

Figure 9: Rules for Proof-search

Note one small di�erence with [LDM06]: we do not, in rule ΠR, require that A be

14

a normal form. As in [LDM06], soundness and completeness hold, but because of
this di�erence, we get quasi-normal forms rather than normal forms.

De�nition 3 A term (or a list) is a quasi-normal form if all its redexes are within
type annotations of λ-abstractions, e.g. A in λxA.M .

Notice that, as we are searching for (quasi-)normal forms, there are no cut-rules
in PS. However, in PTSC even terms in normal form may need instances of the
cut-rule in their typing derivation. This is because, in contrast to logics where
well-formedness of formulae is pre-supposed (such as �rst-order logic, where cut is
admissible), PTSC checks well-formedness of types. For instance in rule ΠL of PTSC
a type which is not normalised (〈M/x〉B) occurs in the stoup of the third premiss,
so cuts might be needed to type it inside the derivation.

We conjecture that if we modify rule ΠL by now requiring in the stoup of its
third premiss a normal form to which 〈M/x〉B reduces, then any typable normal
form can be typed with a cut-free derivation. However, this would make rule ΠL
more complicated and, more importantly, we do not need such a conjecture to hold
in order to perform proof-search.

In contrast, system PS avoids this problem by obviating such type-checking con-
straints altogether, because types are the input of proof-search, and should therefore
be checked before starting search. This is the spirit of the type-checking proviso in
the following soundness theorem.

PS is sound and complete in the following sense:

Theorem 19

1. (Soundness) Provided Γ ⊢⊢⊢ A : s, if Γ ⊢PS M : A then Γ ⊢⊢⊢ M : A and M is a
quasi-normal form.

2. (Completeness) If Γ ⊢⊢⊢ M :A and M is a quasi-normal form, then Γ ⊢PS M :A.

Proof: Both proofs are done by induction on typing derivations, with similar
statements for lists. For Soundness, the type-checking proviso is veri�ed every
time we need the induction hypothesis. For Completeness, the following lemma
is required (and also proved inductively): assuming A←→∗ A′ and B←→∗ B′, if
Γ ⊢PS M :A then Γ ⊢PS M :A′, and if Γ;B ⊢PS l :A then Γ;B′ ⊢PS l :A′. ¤

Note that neither part of the theorem relies on the unsolved problem of expansion
postponement [vBJMP94, Pol98]. Indeed, as indicated above PS does not check
types. When recovering a full derivation tree from a PS one by the soundness
theorem, expansions and cuts might be introduced at any point, arising from the
derivation of the type-checking proviso.

Basic proof-search can be done in PS simply by

• reducing the goal, or the type in the stoup;

• depending on its shape, trying to apply one of the inference rules bottom-up;
and

• recursively calling the process on the new goals (called sub-goals) correspond-
ing to each premise.

However, some degree of non-determinism is expected in proof search. Such non-
determinism is already present in natural deduction, but the sequent calculus version
conveniently identi�es where it occurs exactly.

There are three potential sources of such non-determinism:

15

• The choice of a variable x for applying rule Selectx, knowing only Γ and B
(this corresponds in natural deduction to the choice of the head-variable of
the proof-term). Not every variable of the environment will work, since the
type in the stoup will eventually have to be uni�ed with the goal, so we still
need backtracking.

• When the goal reduces to a Π-type, there is an overlap between rules ΠR
and Selectx; similarly, when the type in the stoup reduces to a Π-type, there
is an overlap between rules ΠL and axiom. Both overlaps disappear when
Selectx is restricted to the case when the goal does not reduce to a Π-type
(and sequents with stoups never have a goal reducing to a Π-type). This
corresponds to looking only for η-long normal forms in natural deduction.
This restriction also brings the derivations in LJT (and in our PTSC) closer
to the notion of uniform proofs. Further work includes the addition of η to
the notion of conversion in PTSC.

• When the goal reduces to a sort s, three rules can be applied (in contrast to
the �rst two points, this source of non-determinism does not already appear
in the propositional case).

Such classi�cation is often called �don't care� non-determinism in the case of the
choice to apply an invertible rule and �don't know� non-determinism when the choice
identi�es a potential backtracking point.

Don't know non-determinism can be in fact quite constrained by the need to
eventually unify the stoup with the goal, as an example in Section 7 below illustrates.
Indeed, the dependency created by a Π-type forces the searches for proofs of the two
premisses of rule ΠL to be sequentialised in a way that might prove ine�cient: the
proof-term produced for the �rst premiss, selected among others at random, might
well lead to the failure to solve the second premiss, leading to endless backtracking.

Hence, there is much to be gained by postponing the search for a proof of the
�rst premiss and trying to solve the second with incomplete inputs. This might
not terminate with success or failure but will send back constraints that may be
useful in helping to solve the �rst premiss with the correct proof-term. �Helping�
could just be giving some information to orient and speed-up the search for the
right proof-term, but it could well de�ne it completely (saving numerous attempts
with proof-terms that will lead to failure). Unsurprisingly, these constraints are
produced by the axiom rule as uni�cation constraints.

In Coq [Coq], the proof-search tactic apply x can be decomposed into the
bottom-up application of Selectx followed by a series of bottom-up applications of ΠL
and �nally axiom, but it either postpones the solution of sub-goals or automatically
solves them from the uni�cation attempt, often avoiding obvious back-tracking.

In the next section we use the framework with meta-variables we have introduced
to capture this behaviour in an extended sequent calculus.

6 Using meta-variables for proof-search
We now use the meta-variables in PTSCα to delay the solution of sub-goals created
by the application of rules such as ΠL. In this way, the extension from PTSC to
PTSCα supports not only an account of tactics such as apply x of Coq, but also
the speci�cation of algorithms for type inhabitant enumeration and uni�cation. It
provides the search-trees that such algorithms have to explore. Our approach has
two main novelties in comparison with similar approaches (in the setting of natural
deduction) by Dowek [Dow93] and Muñoz [Muñ01].

16

The �rst main novelty is that the search-tree is made of the inference rules
of sequent calculus and its exploration is merely the root-�rst construction of a
derivation tree; this greatly simpli�es the understanding and the description of
what such algorithms do.

The second main novelty is the avoidance of the complex phenomenon known
as r-splitting that features in traditional inhabitation and uni�cation algorithms
(e.g. [Dow93]). In natural deduction, lists of arguments are not �rst-class objects;
hence, when choosing a head variable in the construction of a λ-term, one also
has to anticipate how many arguments it will be applied to (with polymorphism,
there could be in�nitely many choices). This anticipation can require a complex
analysis of the sorting relations during a single search step and result in an in�nitely
branching search-tree whose exploration requires interleaving techniques. This is
avoided by the use of meta-variables for lists of unknown length, which allows the
choice of a head variable without commitment to the number of its arguments.

In contrast to section 4, where we con�ned our attention to ground terms in
a PTSC and their relation to the corresponding PTS, here we consider the full
language of open terms, representing incomplete proofs and partially solved goals.
Correspondingly, (open) environments are now lists of pairs, denoted (x : A), where
x is a variable and A is a (possibly open) term (while ground environments only
feature ground terms). Ground terms and environments are the eventual targets of
successful proof-search, with all meta-variables instantiated. We further consider a
new environment Σ that contains the sub-goals that remain to be proved:

De�nition 4 (Goal environment, constraint, solved constraint, substitution)

• A goal environment Σ is a list of:

� Triples of the form Γ ⊢⊢⊢ α : A, declaring the meta-variable α and called
(term-)goals, where A is an open term and Γ is an open environment.

� 4-tuples of the form Γ;B ⊢⊢⊢ β :A, declaring the meta-variable β and called
(list-)goals, where A and B are open terms and Γ is an open environment.

� Triples of the form A
Γ
= B, called constraints, where Γ is an open envi-

ronment and A and B are open terms.

Goals of a goal environment are required to declare distinct meta-variables.

• A constraint is solved if it is of the form A
Γ
= B where A and B are ground

and A←→∗ B.

• A goal environment is solved if it contains no term or list goals and consists
only of solved constraints.

• A substitution is a �nite function that maps a meta-variable for term (resp.
list), of arity n, to a higher-order term (resp. list) of arity n, that is to say,
a term (resp. list) under a series of n bindings that capture (at least) its free
variables (e.g. x.y.M with FV(M) ⊆ {x, y}).
Such a series of bindings can be provided by a typing environment Γ, e.g.
Dom(Γ).M (which is a useful notation when e.g. Γ ⊢⊢⊢ M :A).

• The application of a substitution to terms and lists is de�ned by induction on
these. Only the base cases are interesting:
If σ(α) = x1 . . . xn.M , then σ(α(N1, . . . , Nn)) is the x′-normal form3 of

〈σ(N1)/x1〉. . . 〈σ(Nn)/xn〉M

3x′ is convergent even on untyped terms, see Theorems 1 and Corollary 8

17

(with the usual capture-avoiding conditions). Similarly, if σ(β) = x1 . . . xn.l,
then σ(β(N1, . . . , Nn)) is the x′-normal form of

〈σ(N1)/x1〉. . . 〈σ(Nn)/xn〉l

The application of a substitution to an environment is the straightforward
extension of the above.

For instance on the example of section 1.1, for an actual term M with
FV(M) = {x, y} and σ(α) = x.y.M , we have that σ(α(N, P)) is the x′-normal
form of 〈σ(N)/x〉〈σ(P)/y〉M .

The reason why we x′-normalise the instantiation of meta-variables is that if M
is already x′-normal then (α 7→ x1 . . . xn.M)(α(y1 [], . . . , yn [])) really is a renaming
of M (and also an x′-normal form). This ensures that only normal forms are output
by our system for proof-search, which we can more easily relate to PS.

We now introduce this system, called PE for Proof Enumeration, which can be
seen as an extension of PS to open terms.

De�nition 5 (An inference system for proof enumeration)
The inference rules for proof enumeration, presented in Fig. 10, manipulate three
kinds of statement:

• The �rst two are of the form Γ ⊢⊢⊢ M :A ||| Σ and Γ;B ⊢⊢⊢ M :A ||| Σ.

• The third kind of statement is of the form Σ =⇒ σ, where

� Σ is a goal environment.
� σ is a substitution as de�ned above.

In the bottom part of the �gure we use the notational convention that a substi-
tution denoted σΣ has the meta-variables of the goal environment Σ as its domain.

Derivability in PE of the three kinds of statement is denoted Γ ⊢⊢⊢PE M : A | Σ,
Γ;B ⊢⊢⊢PE M :A | Σ and Σ =⇒PE σ.

The sequents Γ ⊢⊢⊢ M :A ||| Σ and Γ;B ⊢⊢⊢ M :A ||| Σ have the same intuitive mean-
ing as the corresponding statements in system PS, but note the extra goal envi-
ronment Σ, which represents the list of sub-goals and constraints that have been
produced by proof-search and that remain to be solved. Thus, the inputs of proof
synthesis are Γ and A (and B for the second kind of statement) and the outputs are
M (or l) and Σ. Statements of PS are in fact particular cases of these statements
with Σ being always solved.

In contrast, in a statement of the form Σ =⇒ σ, Σ is the list of goals to solve,
together with the constraints that the solutions must satisfy. It is the input of proof
synthesis and σ is meant to be its solution, i.e. the output.

Now we prove that PE is sound. For that we need the following notion:

De�nition 6 (Solution) We de�ne the property σ is a solution of a goal environ-
ment Σ, by induction on the length of Σ.

• σ is a solution of [].

• If σ is a solution of Σ and

x1 :σ(A1), . . . , xn :σ(An) ⊢PS (σ(α))(x1 [], . . . , xn []) :σ(A)

then σ is a solution of Σ, (x1 :A1, . . . , xn :An ⊢⊢⊢ α :A).

18

Γ = x1 :A1, . . . , xn :An

Γ; D ⊢⊢⊢PE β(x1 [], . . . , xn []) :C | (Γ; D ⊢⊢⊢ β :C)

Γ; D ⊢⊢⊢PE [] :C | D
Γ
= C

D−→∗
Bx ΠxA.B Γ ⊢⊢⊢PE M :A | Σ1 Γ; 〈M/x〉B ⊢⊢⊢PE l :C | Σ2

Γ; D ⊢⊢⊢PE M ·l :C | Σ1, Σ2

Γ = x1 :A1, . . . , xn :An

Γ ⊢⊢⊢PE α(x1 [], . . . , xn []) :C | (Γ ⊢⊢⊢ α :C)

C−→∗
Bx s (s′, s) ∈ A

Γ ⊢⊢⊢PE s′ :C | []

C−→∗
Bx s (s1, s2, s) ∈ R Γ ⊢⊢⊢PE A :s1 | Σ1 Γ, x :A ⊢⊢⊢PE B :s2 | Σ2

Γ ⊢⊢⊢PE ΠxA.B :C | Σ1, Σ2

(x :A) ∈ Γ Γ; A ⊢⊢⊢PE l :C | Σ′

Γ ⊢⊢⊢PE x l :C | Σ′

C−→∗
Bx ΠxA.B Γ, x :A ⊢⊢⊢PE M :B | Σ′

Γ ⊢⊢⊢PE λxA.M :C | Σ′

Γ; B ⊢⊢⊢PE l :A | Σ′′ Σ, Σ′′, (β 7→ Dom(Γ).l)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ; B ⊢⊢⊢ β :A), Σ′ =⇒PE σΣ, (β 7→ Dom(Γ).σΣ(l)), σΣ′

Γ ⊢⊢⊢PE M :A | Σ′′ Σ, Σ′′, (α 7→ Dom(Γ).M)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ ⊢⊢⊢ α :A), Σ′ =⇒PE σΣ, (α 7→ Dom(Γ).σΣ(M)), σΣ′

Σ is solved

Σ =⇒PE ∅

Figure 10: Proof-term enumeration ⊢⊢⊢PE

• If σ is a solution of Σ and

x1 :σ(A1), . . . , xn :σ(An);σ(B) ⊢PS (σ(β))(x1 [], . . . , xn []) :σ(A)

then σ is a solution of Σ, (x1 :A1, . . . , xn :An; B ⊢⊢⊢ β :A).

• If σ is a solution of Σ and

σ(M)←→∗ σ(N)

then σ is a solution of Σ, M
Γ
= N .

For soundness we also need the following lemma:

19

Lemma 20 Suppose that σ(M) and σ(l) are ground.
1. If M −→Bx′ N then σ(M)−→∗Bx σ(N).
2. If l −→Bx′ l′ then σ(l)−→∗Bx σ(l′).

Proof: By simultaneous induction on the derivation of the reduction step, checking
all rules for the base case of root reduction. ¤

Theorem 21 (Soundness) Suppose σ is a solution of Σ.
1. If Γ ⊢⊢⊢PE M :A | Σ then σ(Γ) ⊢PS σ(M) :σ(A).
2. If Γ; B ⊢⊢⊢PE M :A | Σ then σ(Γ);σ(B) ⊢PS σ(M) :σ(A).

Proof: By induction on derivations. ¤

Corollary 22 If Σ =⇒PE σ then σ is a solution of Σ.
Proof: By induction on the derivation, using Theorem 21. ¤

System PE is complete in the following sense:

Theorem 23 (Completeness)
1. If Γ ⊢PS M :A then Γ ⊢⊢⊢PE M :A | Σ for some solved goal environment Σ.
2. If Γ; B ⊢PS M :A then Γ;B ⊢⊢⊢PE M :A | Σ for some solved Σ.

Proof: By induction on derivations. The rules of PE generalise those of PS. ¤

In fact, the completeness of the full system PE is not surprising, since it is quite
general. In particular, nothing is said about when the process should decide to
abandon the current goal and start working on another one. Hence we should be
interested in completeness of particular strategies dealing with that question. For
instance:

• We can view the system PS as supporting the strategy of eagerly solving
sub-goals as soon as they are created, never delaying them with the sub-goal
environment.

• The algorithm for proof enumeration in [Dow93] would correspond here to the
�lazy� strategy that always abandons the sub-goal generated by rule ΠLPS, but
this in fact enables uni�cation constraints to guide the solution of this sub-
goal later, so in that case laziness is probably more e�cient than eagerness.
This is probably what should be chosen for automated theorem proving.

• Mixtures of the two strategies can also be considered and could be the basis
of interactive theorem proving. Indeed in some cases the user's input might
be more e�cient than the automated algorithm, and rule ΠLPS would be a
good place to ask whether the user has any clue to solve the sub-goal (since
it could help solving the rest of the uni�cation). If he or she has none, then
by default the algorithm might abandon the sub-goal and leave it for later.
In Coq, the tactic apply x does something similar: it tries to automatically
solve the sub-goals that interfere with the uni�cation constraint (leaving the
other ones for later, visible to the user), but, if uni�cation fails, it is always
possible for the user to use the tactic and give explicitly the proof-term to make
it work. However, such an input is not provided in proof synthesis mode and
the user really has to give it fully, since the tactic will fail if uni�cation fails.
In PE, the uni�cation constraint can remain partially solved.

All these behaviours can be simulated in PE, which is therefore a useful frame-
work for the study of proof synthesis strategies in type theory and for comparison
with the work of Jojgov [GJ02], McBride [McB00] and Delahaye [Del01].

20

7 Example: commutativity of conjunction
We now give an example of proof-search (�rst introduced in [LDM06] without the
use of meta-variables).

We consider the PTSC equivalent to System F , i.e. the one given by the sets:
S = {⋆, ¤}, A = {(⋆, ¤)}, and R = {(⋆, ⋆), (¤, ⋆)}

For brevity we omit the types on λ-abstractions, we abbreviate x [] as x for any
variable x and simplify 〈N/x〉P as P when x 6∈ FV(P). We also write A ∧ B for
ΠQ⋆.(A→(B→Q))→Q.

Proof-search in system PS would result in the following derivation:

πB

Γ ⊢PS NB :B

πA

Γ ⊢PS NA :A
axiom

Γ; Q ⊢PS [] :Q
ΠL

Γ;A→Q ⊢PS NA ·[] :Q
ΠL

Γ;B→(A→Q) ⊢PS NB ·NA ·[] :Q
Selecty

Γ ⊢PS y NB ·NA ·[] :Q
=== ΠR
A : ⋆,B : ⋆ ⊢PS λx.λQ.λy.y NB ·NA ·[] : (A ∧ B)→(B ∧ A)

where Γ = A : ⋆,B : ⋆, x : A ∧ B,Q : ⋆, y : B→(A→Q), and πA is the following
derivation (NA = x A·(λx′ .λy′ .x′)·[]):

axiom
Γ; ⋆ ⊢PS [] :⋆

SelectA
Γ ⊢PS A :⋆

axiom
Γ, x′ : A, y′ : B;A ⊢PS [] :A

Selectx′

Γ, x′ : A, y′ : B ⊢PS x′ :A
======================= ΠR
Γ ⊢PS λx′ .λy′ .x′ :A→(B→A)

axiom
Γ;A ⊢PS [] :A

ΠL
Γ; (A→(B→A))→A ⊢PS (λx′ .λy′ .x′)·[] :A

ΠL
Γ;A ∧ B ⊢PS A·(λx′ .λy′ .x′)·[] :A

Selectx
Γ ⊢PS x A·(λx′ .λy′ .x′)·[] :A

and πB is the derivation similar to πA (NB = x B ·(λx′ .λy′ .y′)·[]) with conclusion
Γ ⊢PS x B ·(λx′ .λy′ .y′)·[] :B.

We now reconsider the above example in the light of system PE. It illustrates
the need for delaying the search for a proof of the �rst premiss of rule ΠL. Let
Γ = A : ⋆,B : ⋆, x : A ∧ B, Q : ⋆, y : B→A→Q
αA(Γ) = αA(A,B, x, Q, y)
αB(Γ) = αB(A,B, x, Q, y)
M ′ = λx.λQ.λy.y αB(Γ)·αA(Γ)·[]

Σ = (Γ ⊢⊢⊢ αB :B), (Γ ⊢⊢⊢ αA :A), (Q
Γ
= Q)

We get the PE-derivation below:

Γ ⊢⊢⊢ αB(Γ) :B ||| (Γ ⊢⊢⊢ αB :B)

Γ ⊢⊢⊢ αA(Γ) :A ||| (Γ ⊢⊢⊢ αA :A) Γ; Q ⊢⊢⊢ [] :Q ||| (Q
Γ
= Q)

Γ; A→Q ⊢⊢⊢ αA(Γ)·[] :Q ||| (Γ ⊢⊢⊢ αA :A), (Q
Γ
= Q)

Γ; B→A→Q ⊢⊢⊢ αB(Γ)·αA(Γ)·[] :Q ||| Σ

Γ ⊢⊢⊢ y αB(Γ)·αA(Γ)·[] :Q ||| Σ
===============================
A : ⋆, B : ⋆ ⊢⊢⊢ M ′ : (A ∧ B)→(B ∧ A) ||| Σ

. . .

Σ =⇒ σΣ

(A : ⋆, B : ⋆ ⊢⊢⊢ α : (A ∧ B)→(B ∧ A)) =⇒ (α 7→ σΣ(M ′))

where σΣ = (αB 7→ Dom(Γ).NB , αA 7→ Dom(Γ).NA) is the solution to be obtained
from the right premiss.

21

In the above derivation, we have systematically abandoned the sub-goals and
recorded them for later. The only choice we made was that of the head-variable y,
because it led to the production of the (solved) uni�cation constraint (Q

Γ
= Q).

We now continue the proof-search with the right premiss, solving the two sub-
goals (Γ ⊢⊢⊢ αB :B) and (Γ ⊢⊢⊢ αA :A) that have been delayed. For instance, we can
now decide to solve (Γ ⊢⊢⊢ αA :A), which will eventually produce αA 7→ Dom(Γ).NA

with NA = x A·(λx′y′ .x′)·[]:

Γ ⊢⊢⊢ α1(Γ) :⋆ ||| Σ1

Γ′ ⊢⊢⊢ α′
1(Γ

′) :α1(Γ) ||| Σ′
1

============================
Γ ⊢⊢⊢ λx′y′ .α′

1(Γ
′) :A→B→α1(Γ) ||| Σ′

1 Γ; α1(Γ) ⊢⊢⊢ [] :A ||| Σ′′
1

Γ; (A→B→α1(Γ))→α1(Γ) ⊢⊢⊢ (λx′y′ .α′
1(Γ

′))·[] :A ||| Σ′
1, Σ

′′
1

Γ; A ∧ B ⊢⊢⊢ α1(Γ)·(λx′y′ .α′
1(Γ

′))·[] :A ||| Σ1, Σ
′
1, Σ

′′
1

Γ ⊢⊢⊢ x α1(Γ)·(λx′y′ .α′
1(Γ

′))·[] :A ||| Σ1, Σ
′
1, Σ

′′
1

. . .

(Γ ⊢⊢⊢ αB :B), Σ1, Σ
′
1, Σ

′′
1 , (Q

Γ
= Q) =⇒ σ

Σ =⇒ (αB 7→ Dom(Γ).NB , αA 7→ Dom(Γ).x A·(λx′y′ .x′)·[])

where
α1(Γ) = α1(A,B, x,Q, y)
Σ1 = (Γ ⊢⊢⊢ α1 :⋆)
Γ′ = Γ, x′ :A, y′ :B
α′

1(Γ) = α′
1(A,B, x,Q, y, x′, y′)

Σ′
1 = (Γ′ ⊢⊢⊢ α′

1 :α1(Γ))

Σ′′
1 = (α1(Γ)

Γ
= A)

σ = (αB 7→ Dom(Γ).NB , α1 7→ Dom(Γ).A, α′
1 7→ Dom(Γ′).x′)

In the above derivation, we have also abandoned the generated sub-goals. Again
we made one committing choice: that of the head-variable x, which led to the
uni�cation constraint α1(Γ)

Γ
= A. Any other choice of head-variable would have led

to a uni�cation constraint with no solution. Here, this fact (and the subsequent
choice of x) can be mechanically noticed by a simple syntactic check.

We now continue the proof-search with the right premiss. We can decide to solve
(Γ ⊢⊢⊢ αB : B), (Γ ⊢⊢⊢ α1 : ⋆), or (Γ′ ⊢⊢⊢ α′

1 : α1(Γ)). The order in which we solve
(Γ ⊢⊢⊢ αB :B) has little importance (the structure is similar to that of the derivation
above), but clearly we cannot solve (Γ′ ⊢⊢⊢ α′

1 :α1(Γ)) before we know α1(Γ). Hence,
we need to solve (Γ ⊢⊢⊢ α1 :⋆) �rst, which will produce α1 7→ Dom(Γ).A:

Γ; ⋆ ⊢⊢⊢ [] :⋆ ||| ⋆
Γ
= ⋆

Γ ⊢⊢⊢ A [] :⋆ ||| ⋆
Γ
= ⋆

. . .

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (Γ′ ⊢⊢⊢ α′

1 :A), (A
Γ
= A), (Q

Γ
= Q) =⇒ σ′

(Γ ⊢⊢⊢ αB :B), (Γ ⊢⊢⊢ α1 :⋆), (Γ′ ⊢⊢⊢ α′
1 :α1(Γ)), (α1(Γ)

Γ
= A), (Q

Γ
= Q) =⇒ σ

where σ′ = (αB 7→ Dom(Γ).NB , α′
1 7→ Dom(Γ′).x′).

In this derivation we had to inhabit ⋆. This is a fundamental step of the proof,
even when expressed with ground terms (in system PS) as above. Here, having
delayed the solution of sub-goals, we are now able to infer the correct inhabitation,
directly from the uni�cation constraint (α1(Γ)

Γ
= A) which we have generated pre-

viously. Our delaying mechanism thus avoids many situations in which the correct
choice for inhabiting a type has to be guessed in advance, anticipating the implicit
constraints that such a choice will have to satisfy at some point. This is hardly
mechanisable and thus leads to numerous backtrackings.

22

Finally we proceed to the right premiss by solving (Γ′ ⊢⊢⊢ α′
1 :A):

Γ′; A ⊢⊢⊢ [] :A ||| A
Γ
′

= A

Γ′ ⊢⊢⊢ x′ [] :A ||| A
Γ
′

= A

. . .

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (A

Γ
′

= A), (A
Γ
= A), (Q

Γ
= Q) =⇒ (αB(Γ) 7→ NB)

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (Γ′ ⊢⊢⊢ α′

1 :A), (A
Γ
= A), (Q

Γ
= Q) =⇒ σ′

In this derivation we had to inhabit A. Again we made one committing choice:
that of the head-variable x′, which led to the uni�cation constraint A

Γ′

= A. Again,
any other choice of head-variable would have led to obvious failure, a fact which
can be mechanically noticed by a simple syntactic check.

We can then proceed with (Γ ⊢⊢⊢ αB : B), in a way very similar to that of
(Γ ⊢⊢⊢ αA :A). We get eventually NB = x B ·(λx′y′ .y′)·[].

Putting everything together, system PE has produced a proof for commutativity
of conjunction:

A : ⋆,B : ⋆ ⊢⊢⊢ λxQy.y (x B ·(λx′y′ .y′)·[])·(x A·(λx′y′ .x′)·[])·[] : (A ∧ B)→(B ∧ A)

The system has mechanically inferred the relevant choices of the head-variables
structuring the proof-term, by �nite checks and using the uni�cation constraints
generated by delaying the solution of sub-goals.

Conclusion and Further Work
In this paper we have developed a framework that serves as a good theoretical basis
for proof-search in type theory.

Proof-search tactics in natural deduction depart from the simple bottom-up
application of the typing rules, so that their readability and usage become more
complex, as illustrated in proof-assistants such as Coq. Just as in propositional
logic [DP99a], permutation-free sequent calculi can be a useful theoretical approach
to study and design those tactics, in the hope of improving semi-automated reason-
ing.

Following these ideas, we have de�ned a parameterised formalism that gives a
sequent calculus for each PTS. It comprises a syntax, a rewrite system and typing
rules. In contrast to previous work, the syntax of both types and proof-terms of
PTSC is in a sequent-calculus style, thus avoiding the use of implicit or explicit
conversions to natural deduction [GR03, PD98].

A strong correspondence with natural deduction has been established (regarding
both logic and strong normalisation), and we have derived from it the con�uence of
each PTSC. These results and their proofs were formalised in Coq [Sil09]. We can
give as examples the corners of Barendregt's Cube, for which we now have an elegant
theoretical framework for proof-search: We have shown how to deal with conversion
rules so that basic proof-search tactics are simply the root-�rst application of the
typing rules.

These ideas have then been extended, in the calculi PTSCα, by the use of meta-
variables to formalise the notion of incomplete proofs, and their theory has been
studied. The approach di�ers from [Muñ01] both in that we use sequent calculus
rules, which match proof-search tactics, and in that our system can simulate β-
reduction.

We have shown that, in particular, the explicit use of meta-variables avoids the
phenomenon of r-splitting and allows for more �exibility in proof-search, where sub-
goals can be tackled in the order that is most suitable for each situation. Such a
�exibility avoids some of the need for �guess-work� in proof-search, and formalises

23

some mechanisms of proof-search tactics in proof assistants. This approach has
been illustrated by the example of commutativity of conjunction.

Our system does not commit to speci�c proof-search strategies a priori, so that
it can be used as a general framework to investigate these strategies, as discussed
at the end of Section 6. This could re�ect various degrees of user interaction in
proof-search.

Ongoing work includes the incorporation of some of these ideas into the redesign
of the Coq proof engine [Coq]. It also includes the treatment of η-conversion, a
feature that is currently lacking in the PTS-based system Coq. We expect that, by
adding η-expansion to our system, our approach to proof-search can be related to
that of uniform proofs in logic programming.

Further work includes studying direct proofs of strong normalisation (such as
Kikuchi's for propositional logic [Kik04]), and dealing with inductive types such as
those used in Coq. Their speci�c proof-search tactics should also clearly appear in
sequent calculus. Finally, given the importance of sequent calculi for classical logic,
it would be interesting to build classical Pure Type Sequent Calculi.

Acknowledgements The authors are grateful to Delia Kesner, Gilles Dowek,
Hugo Herbelin, Arnaud Spiwack, Vincent Siles, Alex Simpson and David Pym for
their helpful remarks and comments and for pointing out important items of related
literature.

References
[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic.

Journal of Logic and Computation, 2(3):297�347, 1992. 2

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabby, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 2, pages 117�309. Oxford University Press,
1992. 2, 12

[BG99] R. Bloo and H. Geuvers. Explicit substitution: on the edge of strong
normalization. Theoretical Computer Science, 211(1-2):375�395, 1999.
13

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76(2�3):95�120, 1988. 2, 14

[Coq] The Coq Proof Assistant. Available at http://coq.inria.fr/ 2, 3,
14, 16, 24

[Daa80] D. v. Daalen. The Language Theory of Automath. PhD thesis, Eind-
hoven University of Technology, 1980. Automath Technical Report
AUT-073. 2

[Del01] D. Delahaye. Conception de langages pour décrire les preuves et les
automatisations dans les outils d'aide à la preuve: une étude dans le
cadre du système Coq. PhD thesis, Université Pierre et Marie Curie
(Paris 6), 2001. 3, 20

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: sequent calculi
for second order logic based upon dual linear decompositions of classical
implication. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Pro-
ceedings of the Workshop on Advances in Linear Logic, volume 222 of

24

http://coq.inria.fr/

London Math. Society Lecture Note Series, pages 211�224. Cambridge
University Press, 1995. 2

[Dow93] G. Dowek. A complete proof synthesis method for type systems of the
cube. Journal of Logic and Computation, 3(3):287�315, 1993. 2, 3, 4,
16, 17, 20

[DP99a] R. Dyckho� and L. Pinto. Proof search in constructive logics. In Sets
and proofs (Leeds, 1997), pages 53�65. Cambridge University Press,
1999. 23

[DP99b] R. Dyckho� and L. Pinto. Permutability of proofs in intuitionistic
sequent calculi. Theoretical Computer Science, 212(1�2):141�155, 1999.
2

[DU03] R. Dyckho� and C. Urban. Strong normalization of Herbelin's explicit
substitution calculus with substitution propagation. Journal of Logic
and Computation, 13(5):689�706, 2003. 2

[Gen35] G. Gentzen. Investigations into logical deduction. In Gentzen collected
works, pages 68�131. Ed M. E. Szabo, North Holland, (1969), 1935. 2

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l'arithmétique d'ordre supérieur. Thèse d'état, Université Paris 7,
1972. 2

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1�101,
1987. 2

[GJ02] H. Geuvers and G. I. Jojgov. Open proofs and open terms: A basis
for interactive logic. In J. C. Brad�eld, editor, Proceedings of the 11th
Annual Conference of the European Association for Computer Science
Logic (CSL'02), volume 2471 of Lecture Notes in Computer Science,
pages 537�552. Springer-Verlag, September 2002. 3, 4, 20

[GR03] F. Gutiérrez and B. Ruiz. Cut elimination in a class of sequent calculi
for pure type systems. In R. de Queiroz, E. Pimentel, and L. Figueiredo,
editors, Proceedings of the 10th Workshop on Logic, Language, Infor-
mation and Computation (WOLLIC'03), volume 84 of Electronic Notes
in Theoretical Computer Science. Elsevier, August 2003. 2, 4, 23

[Her94] H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style
sequent calculus structure. In L. Pacholski and J. Tiuryn, editors, Com-
puter Science Logic, 8th International Workshop , CSL '94, volume 933
of Lecture Notes in Computer Science, pages 61�75. Springer-Verlag,
September 1994. 2

[Her95] H. Herbelin. Séquents qu'on calcule. Thèse de doctorat, Université
Paris 7, 1995. 2, 4

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning log-
ics. In Proceedings of the 2nd Annual IEEE Symposium on Logic in
Computer Science (LICS'87), pages 194�204. IEEE Computer Society
Press, 1987. 2

[HOL] The HOL system. Available at http://www.cl.cam.ac.uk/research/
hvg/HOL/ 2

25

http://www.cl.cam.ac.uk/research/hvg/HOL/
http://www.cl.cam.ac.uk/research/hvg/HOL/

[Hue76] G. Huet. Résolution d'équations dans les langages d'ordre 1, 2, . . . , ω.
Thèse d'état, Université Paris 7, 1976. 3

[Hue89] G. Huet. The constructive engine. World Scienti�c Publishing, Com-
memorative Volume for Gift Siromoney, 1989. 14

[Kha90] Z. Khasidashvili. Expression reduction systems. In Proceedings of the
IN Vekua Institute of Applied Mathematics, volume 36, 1990. 5

[Kik04] K. Kikuchi. A direct proof of strong normalization for an extended
Herbelin's calculus. In Y. Kameyama and P. J. Stuckey, editors, Pro-
ceedings of the 7th International Symposium on Functional and Logic
Programming (FLOPS'04), volume 2998 of Lecture Notes in Computer
Science, pages 244�259. Springer-Verlag, April 2004. 24

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path
orderings. 1980. Handwritten paper, University of Illinois. . 6, 13

[KL05] D. Kesner and S. Lengrand. Extending the explicit substitution
paradigm. In J. Giesl, editor, Proceedings of the 16th International Con-
ference on Rewriting Techniques and Applications(RTA'05), volume
3467 of Lecture Notes in Computer Science, pages 407�422. Springer-
Verlag, April 2005. 9

[Kle52] S. C. Kleene. Introduction to Metamathematics, volume 1 of Bibliotheca
Mathematica. North-Holland, 1952. 2

[Klo80] J.-W. Klop. Combinatory Reduction Systems, volume 127 of Mathe-
matical Centre Tracts. CWI, 1980. PhD Thesis. 5,
9

[Kri] J.-L. Krivine. Un interpréteur du λ-calcul. Unpublished note. Available
at http://www.pps.jussieu.fr/~krivine/ 2

[LDM06] S. Lengrand, R. Dyckho�, and J. McKinna. A sequent calculus for
type theory. In Z. Esik, editor, Proceedings of the 15th Annual Confer-
ence of the European Association for Computer Science Logic (CSL'06),
volume 4207 of Lecture Notes in Computer Science, pages 441�455.
Springer-Verlag, September 2006. 3, 4, 5, 14, 15, 21

[Len06] S. Lengrand. Normalisation & Equivalence in Proof Theory & Type
Theory. PhD thesis, Université Paris 7 & University of St Andrews,
2006. 3, 4

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's
Manual. Technical Report ECS-LFCS-92-211, School of Informatics,
University of Edinburgh, 1992. Available at http://www.dcs.ed.ac.
uk/home/lego/html/papers.html 2, 3

[McB00] C. McBride. Dependently Typed Functional Programs and their Proofs.
PhD thesis, Edinburgh University, 2000. 3, 20

[McK97] J. McKinna. A rational reconstruction of LEGO, 1997. CARG Seminar,
Durham University. . 3

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125�157, 1991. 2

26

http://www.pps.jussieu.fr/~krivine/
http://www.dcs.ed.ac.uk/home/lego/html/papers.html
http://www.dcs.ed.ac.uk/home/lego/html/papers.html

[Muñ01] C. Muñoz. Proof-term synthesis on dependent-type systems via explicit
substitutions. Theor. Comput. Sci., 266(1-2):407�440, 2001. 2, 3, 5,
16, 23

[PD98] L. Pinto and R. Dyckho�. Sequent calculi for the normal terms of the
ΛΠ and ΛΠΣ calculi. In D. Galmiche, editor, Proceedings of the CADE-
15 Workshop on Proof Search in Type-Theoretic Languages, volume 17
of Electronic Notes in Theoretical Computer Science. Elsevier, July
1998. 3, 4, 23

[Plo87] G. Plotkin. Towards search spaces for the Edinburgh Logical Frame-
work. In A. Avron, R. Harper, F. Honsell, I. Mason, and G. Plotkin,
editors, Proceedings of the Workshop on General Logic, pages 169�181.
LFCS, Edinburgh University, February 1987. ECS-LFCS-88-52. 2

[Pol98] E. Poll. Expansion Postponement for Normalising Pure Type Systems.
Journal of Functional Programming, 8(1):89�96, 1998. 15

[Pra65] D. Prawitz. Natural deduction. a proof-theoretical study. In Acta
Universitatis Stockholmiensis, volume 3. Almqvist & Wiksell, 1965. 8

[PW91] D. Pym and L. Wallen. Proof-search in the ΛΠ-calculus. In Logical
frameworks, pages 309�340. Cambridge University Press, 1991. 2, 3

[Pym95] D. J. Pym. A note on the proof theory of the ΛΠ-calculus. Studia
Logica, 54(2):1992�30, 1995. 2, 3, 4

[Sil09] V. Silès. Formalisation of pure type sequent calculi, May
2009. Available at http://www.lix.polytechnique.fr/~vsiles/
coq/formalisation.html 4, 23

[vBJMP94] B. van Benthem Jutting, J. McKinna, and R. Pollack. Checking Al-
gorithms for Pure Type Systems. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs, volume 806 of Lecture Notes
in Computer Science. Springer-Verlag, 1994. 14, 15

A Appendix
De�nition 7 We write Γ ⊢⊢⊢⋆ M : A (resp. Γ; B ⊢⊢⊢⋆ l : A) whenever we can derive
Γ ⊢⊢⊢ M :A (resp. Γ;B ⊢⊢⊢ l :A) and the last rule is not a conversion rule.

The following Lemma is easily derived by induction on the typing tree:

Lemma 24 (Generation Lemma)

1. (a) If Γ ⊢⊢⊢PTSC s :C then there is s′ such that Γ ⊢⊢⊢⋆ s :s′ with C←→∗ s′.
(b) If Γ ⊢⊢⊢PTSC ΠxA.B : C then there is s such that Γ ⊢⊢⊢⋆ ΠxA.B : s with

C←→∗ s.
(c) If Γ ⊢⊢⊢PTSC λxA.M :C then

there is B such that C←→∗ ΠxA.B and Γ ⊢⊢⊢⋆ λxA.M :ΠxA.B.
(d) If Γ ⊢⊢⊢PTSC 〈M/x〉N :C then there is C ′ such that Γ ⊢⊢⊢⋆ 〈M/x〉N :C ′ with

C←→∗ C ′.
(e) If M is not of the above forms and Γ ⊢⊢⊢PTSC M :C, then Γ ⊢⊢⊢⋆ M :C.

2. (a) If Γ;B ⊢⊢⊢PTSC [] :C then B←→∗ C.

27

http://www.lix.polytechnique.fr/~vsiles/coq/formalisation.html
http://www.lix.polytechnique.fr/~vsiles/coq/formalisation.html

(b) If Γ;D ⊢⊢⊢PTSC M ·l :C then
there are A, B such that D←→∗ ΠxA.B and Γ;ΠxA.B ⊢⊢⊢⋆ M ·l :C.

(c) If Γ;B ⊢⊢⊢PTSC 〈M/x〉l :C then are B′, C ′ such that
Γ;B′ ⊢⊢⊢⋆ 〈M/x〉l :C ′ with C←→∗ C ′ and B←→∗ B′.

(d) If l is not of the above forms and Γ;D ⊢⊢⊢PTSC l :C then Γ;D ⊢⊢⊢⋆ l :C.

Proof: Straightforward induction on the typing tree. ¤

Remark 25 The following rule is derivable, using a conversion rule:
Γ ⊢⊢⊢PTSC Q :A Γ, (x : A), ∆ ⊢⊢⊢PTSC M :C ∆′ ⊢⊢⊢PTSC 〈Q/x〉C :s Γ, 〈Q/x〉∆ ⊑ ∆′

==
∆′ ⊢⊢⊢PTSC 〈Q/x〉M :〈Q/x〉C

Proving subject reduction relies on the following properties of −→Bx :

Lemma 26

• Two distinct sorts are not convertible.

• A Π-construct is not convertible to a sort.

• ΠxA.B←→∗ ΠxD.E if and only if A←→∗ D and B←→∗ E.

• If y 6∈ FV (P), then M←→∗ 〈N/y〉P .

• 〈M/y〉〈N/x〉P←→∗ 〈〈M/y〉N/x〉〈M/y〉P (provided x 6∈ FV (M)).

Proof: The �rst three properties are a consequence of the con�uence of the
rewrite system (Corollary 8). The last two rely on the fact that the system xsubst
is terminating, so that only the case when P is an xsubst-normal form remains to
be checked, which is done by structural induction. ¤

Using all of the results above, subject reduction can be proved:

Theorem 27 (Subject reduction in a PTSC)
1. If Γ ⊢⊢⊢PTSC M :F and M −→Bx M ′, then Γ ⊢⊢⊢PTSC M ′ :F

2. If Γ; H ⊢⊢⊢PTSC l :F and l −→Bx l′, then Γ;H ⊢⊢⊢PTSC l′ :F

Proof: By simultaneous induction on the typing tree. For every rule, if the
reduction takes place within a sub-term that is typed by one of the premisses of the
rule (e.g. the conversion rules), then we can apply the induction hypothesis on that
premiss. In particular, this takes care of the cases where the last typing rule is a
conversion rule.

So it now su�ces to look at the root reductions. For lack of space we often do
not display some minor premisses in following derivations, but we mention them
before or after. We also drop the subscript PTSC from derivable statements.

B (λxA.N) (P ·l1) −→ (〈P/x〉N) l1

By the Generation Lemma, 1.(c) and 2.(b), there exist B, D, E such that:
Γ ⊢⊢⊢ ΠxA.B :s Γ, x : A ⊢⊢⊢ N :B

Γ ⊢⊢⊢ λxA.N :C

Γ ⊢⊢⊢ P :D Γ; 〈P/x〉E ⊢⊢⊢ l1 :F

Γ; C ⊢⊢⊢ P ·l1 :F

Γ ⊢⊢⊢⋆ (λxA.N) (P ·l1) :F

with ΠxA.B←→∗ C←→∗ ΠxD.E. Hence, A←→∗ D and B←→∗ E.

28

Moreover, Γ ⊢⊢⊢ A :sA, Γ, x : A ⊢⊢⊢ B :sB and Γ wf.
Hence, we get Γ ⊢⊢⊢ 〈P/x〉B :sB , so:

Γ ⊢⊢⊢ P :D

Γ ⊢⊢⊢ P :A Γ, x : A ⊢⊢⊢ N :B

Γ ⊢⊢⊢ 〈P/x〉N :〈P/x〉B

Γ; 〈P/x〉E ⊢⊢⊢ l1 :F

Γ; 〈P/x〉B ⊢⊢⊢ l1 :F

Γ ⊢⊢⊢ (〈P/x〉N l1) :F

with 〈P/x〉B←→∗ 〈P/x〉E.

As A1 (N ·l1)@l2 −→ N ·(l1@l2)

By the Generation Lemma 2.(b), there are A and B such that
H←→∗ ΠxA.B and:

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ N :A Γ; 〈N/x〉B ⊢⊢⊢ l1 :C

Γ; H ⊢⊢⊢ N ·l1 :C Γ; C ⊢⊢⊢ l2 :F

Γ; H ⊢⊢⊢⋆ (N ·l1)@l2 :F

Hence,

Γ ⊢⊢⊢ H :sH

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ N :A

Γ; 〈N/x〉B ⊢⊢⊢ l1 :C Γ; C ⊢⊢⊢ l2 :F

Γ; 〈N/x〉B ⊢⊢⊢ l1@l2 :C

Γ;ΠxA.B ⊢⊢⊢ N ·(l1@l2) :F

Γ; H ⊢⊢⊢ N ·(l1@l2) :F

A2 []@l1 −→ l1
By the Generation Lemma 2.(a), we have A←→∗ H and

Γ; H ⊢⊢⊢ [] :A Γ; A ⊢⊢⊢ l1 :F

Γ; H ⊢⊢⊢⋆ []@l1 :F

Since Γ ⊢⊢⊢ H :sH , we get
Γ; A ⊢⊢⊢ l1 :F

Γ; H ⊢⊢⊢ l1 :F

A3 (l1@l2)@l3 −→ l1@(l2@l3)

By the Generation Lemma 2.(d),
Γ; H ⊢⊢⊢ l1 :B Γ; B ⊢⊢⊢ l2 :A

Γ; H ⊢⊢⊢⋆ l1@l2 :A Γ; A ⊢⊢⊢ l3 :F

Γ; H ⊢⊢⊢⋆ (l1@l2)@l3 :F

Hence,

Γ; H ⊢⊢⊢ l1 :B

Γ; B ⊢⊢⊢ l2 :A Γ; A ⊢⊢⊢ l3 :F

Γ; B ⊢⊢⊢ l2@l3 :F

Γ; H ⊢⊢⊢ l1@(l2@l3) :F

Bs B1 N [] −→ N

Γ ⊢⊢⊢ N :A Γ; A ⊢⊢⊢ [] :F

Γ ⊢⊢⊢⋆ N [] :F

By the Generation Lemma 2.(a), we have A←→∗ F .
Since Γ ⊢⊢⊢ F :sF , we get

Γ ⊢⊢⊢ N :A

Γ ⊢⊢⊢ N :F

29

B2 (x l1) l2 −→ x (l1@l′)

By the Generation Lemma 1.(e),
Γ; A ⊢⊢⊢ l1 :B (x : A) ∈ Γ

Γ ⊢⊢⊢⋆ x l :B Γ; B ⊢⊢⊢ l2 :F

Γ ⊢⊢⊢⋆ (x l1) l2 :F

Hence,

(x : A) ∈ Γ

Γ; A ⊢⊢⊢ l1 :B Γ; B ⊢⊢⊢ l2 :F

Γ; A ⊢⊢⊢ l1@l2 :F

Γ ⊢⊢⊢ x (l1@l2) :F

B3 (N l1) l2 −→ N (l1@l2)

By the Generation Lemma 1.(e),
Γ ⊢⊢⊢ N :A Γ; A ⊢⊢⊢ l1 :B

Γ ⊢⊢⊢⋆ N l1 :B Γ; B ⊢⊢⊢ l2 :F

Γ ⊢⊢⊢⋆ (N l1) l2 :F

Hence,

Γ ⊢⊢⊢ N :A

Γ; A ⊢⊢⊢ l1 :B Γ; B ⊢⊢⊢ l2 :F

Γ; A ⊢⊢⊢ l1@l2 :F

Γ ⊢⊢⊢ N (l1@l2) :F

Cs We have a redex of the form 〈Q/y〉R typed by:
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆ ⊢⊢⊢ R :F ′ ∆′, 〈Q/y〉∆ ⊑ Γ wf

Γ ⊢⊢⊢⋆ 〈Q/y〉R :F

with either F = F ′ ∈ S or F = 〈Q/y〉F ′.
In the latter case, Γ ⊢⊢⊢ F :sF for some sF ∈ S. We also have Γ wf.
Let us consider each rule:

C1 〈Q/y〉λxA.N −→ λx〈Q/y〉A.〈Q/y〉N

R = λxA.N
By the Generation Lemma 1.(b), there is s3 such that C←→∗ s3 and:

∆′, y : E, ∆ ⊢⊢⊢ A :s1 ∆′, y : E, ∆, x : A ⊢⊢⊢ B :s2

∆′, y : E, ∆ ⊢⊢⊢ ΠxA.B :C ∆′, y : E, ∆, x : A ⊢⊢⊢ N :B

∆′, y : E, ∆ ⊢⊢⊢ λxA.N :F ′

with (s1, s2, s3) ∈ R and F ′ ≡ ΠxA.B. Hence, F ′ 6∈ S, so
F = 〈Q/y〉F ′←→∗ 〈Q/y〉ΠxA.B←→∗ Πx〈Q/y〉A.〈Q/y〉B. We have:

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆ ⊢⊢⊢ A :s1

Γ ⊢⊢⊢ 〈Q/y〉A :s1

Hence, Γ, x : 〈Q/y〉A wf and ∆′, 〈Q/y〉∆, x : 〈Q/y〉A ⊑ Γ, x : 〈Q/y〉A,
so:

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆, x : A ⊢⊢⊢ B :s2

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :s2

so that Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B :s3 and
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆, x : A ⊢⊢⊢ N :B
==============================

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉B

Γ ⊢⊢⊢ λx〈Q/y〉A.〈Q/y〉N :Πx〈Q/y〉A.〈Q/y〉B F←→∗ Πx〈Q/y〉A.〈Q/y〉B

Γ ⊢⊢⊢ λx〈Q/y〉A.〈Q/y〉N :F

30

C2 〈Q/y〉(y l1) −→ Q 〈Q/y〉l1
R = y l1
By the Generation Lemma 1.(e), ∆′, y : E, ∆; E ⊢⊢⊢ l1 : F ′. Now notice
that y 6∈ FV (E), so 〈Q/y〉E←→∗ E and ∆′ ⊢⊢⊢ E :sE . Also, ∆′ ⊑ Γ, so

∆′ ⊢⊢⊢ Q :E
· · · · · · · · · · ·
Γ ⊢⊢⊢ Q :E

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆; E ⊢⊢⊢ l1 :F ′

Γ; 〈Q/y〉E ⊢⊢⊢ 〈Q/y〉l1 :F

∆′ ⊢⊢⊢ E :sE
· · · · · · · · · · · ·
Γ ⊢⊢⊢ E :sE

Γ; E ⊢⊢⊢ 〈Q/y〉l1 :F

Γ ⊢⊢⊢ Q 〈Q/y〉l1 :F

C3 〈Q/y〉(x l1) −→ x 〈Q/y〉l1
R = x l1
By the Generation Lemma 1.(e), ∆′, y : E, ∆; A ⊢⊢⊢ l1 :F ′ with
(x : A) ∈ ∆′,∆. Let B be the type of x in Γ. We have

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆; A ⊢⊢⊢ l1 :F ′

Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l1 :F Γ ⊢⊢⊢ B :sB

Γ; B ⊢⊢⊢ 〈Q/y〉l1 :F

Γ ⊢⊢⊢ x 〈Q/y〉l1 :F

Indeed, if x ∈ Dom(∆) then B←→∗ 〈Q/y〉A, otherwise B←→∗ A with
y 6∈ FV (A), so in both cases B←→∗ 〈Q/y〉A. Besides, Γ wf so Γ ⊢⊢⊢ B :
sB .

C4 〈Q/y〉(N l1) −→ 〈Q/y〉N 〈Q/y〉l1
R = N l1
By the Generation Lemma 1.(e),

∆′, y : E, ∆ ⊢⊢⊢ N :A ∆′, y : E, ∆; A ⊢⊢⊢ l1 :F ′

∆′, y : E, ∆ ⊢⊢⊢⋆ N l1 :F ′

Also, we have
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆ ⊢⊢⊢ A :sA

Γ ⊢⊢⊢ 〈Q/y〉A :sA

Hence,
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆ ⊢⊢⊢ N :A

Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆; A ⊢⊢⊢ l1 :F ′

Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l1 :F

Γ ⊢⊢⊢ 〈Q/y〉N 〈Q/y〉l1 :F

C5 〈Q/y〉ΠxA.B −→ Πx〈Q/y〉A.〈Q/y〉B

R = ΠxA.B
By the Generation Lemma 1.(b), there exist s3 such that F ′←→∗ s3 and:

∆′, y : E, ∆ ⊢⊢⊢ A :s1 ∆′, y : E, ∆, x : A ⊢⊢⊢ B :s2

∆′, y : E, ∆ ⊢⊢⊢ ΠxA.B :F ′

with (s1, s2, s3) ∈ R.
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆ ⊢⊢⊢ A :s1

Γ ⊢⊢⊢ 〈Q/y〉A :s1

Hence, Γ, x : 〈Q/y〉A wf and ∆′, 〈Q/y〉∆, x : 〈Q/y〉A ⊑ Γ, x : 〈Q/y〉A,
so:

∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆, x : A ⊢⊢⊢ B :s2

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :s2

so that Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B : s3. Now if F ′ ∈ S, then F = F ′ = s3

and we are done. Otherwise F = 〈Q/y〉F ′←→∗ 〈Q/y〉s3←→∗ s3, and we
conclude using a conversion rule (because Γ ⊢⊢⊢ F :sF).

31

C6 〈Q/y〉s −→ s

R = s
By the Generation Lemma 1.(a), we get F ′←→∗ s′ for some s′ with
(s, s′) ∈ A. Since Γ wf, we get Γ ⊢⊢⊢ s : s′. If F ′ ∈ S, then F = F ′ = s′

and we are done. Otherwise F = 〈Q/y〉F ′←→∗ 〈Q/y〉s′←→∗ s′ and we
conclude using a conversion rule (because Γ ⊢⊢⊢ F :sF).

Ds We have a redex of the form 〈Q/y〉l1 typed by:
∆′ ⊢⊢⊢ Q :E ∆′, y : E, ∆; H′ ⊢⊢⊢ l1 :F ′ ∆′, 〈Q/y〉∆ ⊑ Γ wf

Γ; H ⊢⊢⊢⋆ 〈Q/y〉l1 :F

with F = 〈Q/y〉F ′ and H = 〈Q/y〉H ′. We also have Γ wf and Γ ⊢⊢⊢ H :sH and
Γ ⊢⊢⊢ F :sF .
Let us consider each rule:

D1 〈Q/y〉[] −→ []

l1 = []
By the Generation Lemma 2.(a), H ′←→∗ F ′, so H←→∗ F .

Γ ⊢⊢⊢ H :sH

Γ; H ⊢⊢⊢ [] :H Γ ⊢⊢⊢ F :sF

H ⊢⊢⊢ [] :F

D2 〈Q/y〉(N ·l2) −→ (〈Q/y〉N)·(〈Q/y〉l2)
l1 = N ·l2
By the Generation Lemma 2.(b), there are A, B such that
H ′←→∗ ΠxA.B and:

∆′, y : E, ∆ ⊢⊢⊢ ΠxA.B :s ∆′, y : E, ∆ ⊢⊢⊢ N :A ∆′, y : E, ∆; 〈N/x〉B ⊢⊢⊢ l2 :F ′

∆′, y : E, ∆;ΠxA.B ⊢⊢⊢⋆ l1 :F ′

From ∆′, y : E, ∆; 〈N/x〉B ⊢⊢⊢ l2 :F ′ we get

Γ; 〈Q/y〉〈N/x〉B ⊢⊢⊢ 〈Q/y〉l2 :F

From ∆′, y : E, ∆ ⊢⊢⊢ N :A we get Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A.
From ∆′, y : E, ∆ ⊢⊢⊢ ΠxA.B : s the Generation Lemma 1.(b) provides
∆′, y : E, ∆ ⊢⊢⊢ A :sA and ∆′, y : E, ∆, x :A ⊢⊢⊢ B :sB . Hence we get

∆′, y : E, ∆ ⊢⊢⊢ A :sA

Γ ⊢⊢⊢ 〈Q/y〉A :sA

and thus Γ, x :〈Q/y〉A wf and then

∆′, y : E, ∆, x :A ⊢⊢⊢ B :sB

Γ, x :〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :sB

From that we get both Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B :s and
Γ ⊢⊢⊢ 〈〈Q/y〉N/x〉〈Q/y〉B :sB .
Note that Πx〈Q/y〉A.〈Q/y〉B←→∗ 〈Q/y〉ΠxA.B←→∗ 〈Q/y〉H ′ = H. We
get

Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A

Γ; 〈Q/y〉〈N/x〉B ⊢⊢⊢ 〈Q/y〉l2 :F

Γ; 〈〈Q/y〉N/x〉〈Q/y〉B ⊢⊢⊢ 〈Q/y〉l2 :F

Γ;Πx〈Q/y〉A.〈Q/y〉B ⊢⊢⊢ (〈Q/y〉N)·(〈Q/y〉l2) :F

Γ; H ⊢⊢⊢ (〈Q/y〉N)·(〈Q/y〉l2) :F

32

D3 〈Q/y〉(l2@l3) −→ (〈Q/y〉l2)@(〈Q/y〉l3)
l1 = l2@l3
By the Generation Lemma 2.(d),

∆′, y : E, ∆; H′ ⊢⊢⊢ l2 :A ∆′, y : E, ∆; A ⊢⊢⊢ l3 :F ′

∆′, y : E, ∆; H′ ⊢⊢⊢⋆ l2@l3 :F ′

Hence,
Γ; H ⊢⊢⊢ 〈Q/y〉l2 :〈Q/y〉A Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l3 :F

Γ; H ⊢⊢⊢ (〈Q/y〉l2)@(〈Q/y〉l3) :F

¤

33

	Introduction
	Syntax and operational semantics of PTSC
	Syntax
	Operational semantics

	-terms and Confluence
	Typing system and properties
	Correspondence with PTS
	Type preservation
	Equivalence of Strong Normalisation

	Proof-search
	Using meta-variables for proof-search
	Example: commutativity of conjunction
	Conclusion and Further Work
	Appendix

