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Heat semigroup and singular PDEs

. BAILLEULl and F. BERNICOTH]

(with an Appendix by F. Bernicot & D. Frey)

ABSTRACT. We provide in this work a semigroup approach to the study of singular PDEs, in
the line of the paracontrolled approach developed recently by Gubinelli, Imkeller and Perkowski.
Starting from a heat semigroup, we develop a functional calculus and introduce a paraproduct
based on the semigroup, for which commutator estimates and Schauder estimates are proved,
together with their paracontrolled extensions. This machinery allows us to investigate singular
PDEs in potentially unbounded Riemannian manifolds under mild geometric conditions. As an
illustration, we study the generalized parabolic Anderson model equation and prove, under mild
geometric conditions, its well-posed character in Holders spaces, in small time on a potentially
unbounded 2-dimensional Riemannian manifold, for an equation driven by a coloured noise, and
for all times for the linear parabolic Anderson model equation in 2-dimensional unbounded man-
ifolds. This machinery can be extended to an even more singular setting and deal with Sobolev
spaces rather than Holder spaces.
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Introduction

1.1. State of the art Following the recent breakthrough of Hairer [32] and Gubinelli, Imkeller,
Perkowski [29], there has been recently a tremendous activity in the
study of parabolic singular partial differential equations (PDEs), such as the KPZ equation

(0 — 02)u = (9su)” + &,
the stochastic quantization equation
(0 — A)u = —ud + €,
or the Parabolic Anderson Model equation
(0 — A)u =F(u)¢

in all of which & stands for a space or space-time white noise. Each of these equations involves,
under the form of a product, a term which does not make sense a priori, given the expected
regularity of the solution in terms of the regularity of the noise £. Hairer’s theory of regularity
structures is built on the insights of earlier works [33] 37, [34] on (1+ 1)-dimensional space-time
problems where he used the framework of rough paths theory, under the form of Gubinelli’s
controlled paths, to make sense of previously ill-posed singular PDEs and give a meaningful
solution theory. Rough paths theory was used in this approach as a framework for studying
the properties in the 1-dimensional space variable of potential solutions. However, the very
notion of a rough path is intimately linked with the 1-dimensional time axis that parametrizes
paths.

To by-pass this barrier, both the theory of regularity structures and the paracontrolled
approach developed in [29] take as a departure point the fact that, like in rough paths theory,
to make sense of the equation, one needs to enrich the noise £ into a finite collection of
objects/distributions, and that one should try and describe the potential solution of a singular
PDE in terms of that enriched noise. The latter depends on the equation under study and
plays in the theory of regularity structures the role plaid by polynomials in the usual C* world
to give local descriptions of functions under the form of Taylor expansions at every space-time
point. The description of a solution in the paracontrolled approach is of a different nature and
rests on a global comparison with the solution to a linear equation ((at — A)u = &, in the
above examples) via the use of Bony’s paraproduct. In both approaches, the use of an ansatz
for the solution space allows for fixed point arguments to give a robust solution theory where
the solution becomes a continuous function of all the parameters of the problem.

So far, both theories have only been formulated and tested on some singular PDEs on the
torus, to the exception of the works [59] 60] on singular perturbations of the Navier-Stokes
equation on R?, and the forthcoming work [36] on the parabolic Anderson model equation in
R3. We introduce in the present work a functional analytic setting in which we are able to
extend the paracontrolled approach of [29] to investigate singular PDEs of the form

(0r + L)u = F(u,§)

for a nonlinear term F(u, &), on potentially unbounded (Riemannian or even sub-Riemannian)
manifolds or graphs. (The change of sign — to + in the operator is irrelevant.) This is a
priori far from obvious as the main analytic tool used in the paracontrolled approach in the
torus involves some tools from Fourier analysis that do not make sense on manifolds or graphs.
We develop to that end a functional calculus adapted to the heat semigroup associated with
the operator ((925 + L), which we use to define a paraproduct enjoying the same regularity
properties as its Euclidean analogue. Such paraproducts adapted to a semigroup, as well as



a paralineariztion theory, have already been studied in recent works [8, 12]. However, the
irregular character of the noises ¢ involved in the above motivating equations requires us
to improve the definition of such paraproducts so as to build a framework where to consider
regularity with a negative exponent; such an extension will be provided here. Building on these
tools, one can set up, as in [29], a framework where to investigate the well-posed character
of a whole class of parabolic singular PDEs. It is especially nice that all the objects in our
framework are defined uniquely in terms of semigroups, unlike the notions of Hélder spaces used
in the theory of regularity structures that involve a metric structure unrelated to the equation
under study. As a by-product, we are able to handle some general classes of operators L whose
treatment seem to be beyond the present-day scope of the theory of regularity structures, as
illustrated in some examples given in section 211

It is unclear presently how one can adapt the different notions and tools of the theory of
regularity structures to extend them to a (Lipschitz) manifold or graph setting, or to other
second order operators (other than the Laplace operator), as well as to work with Sobolev
spaces (instead of Holders spaces). Apart from the very definition of a regularity structure
on a manifold, the existence of the reconstruction operator in this setting seems in particular
challenging, as its proof in R? involves some deep results on wavelets that were not proved
so far to hold true on generic manifolds, not even on all open sets of R%. Their extension to
a non-smooth setting also seems higly non-trivial. So it comes as a good news that one can
use some reasonably elaborate theory of semigroups to implement the alternative machinery
of paracontrolled calculus in that setting; as described below, it also allows us to have much
flexibility on the operator L and also on the geometry of the ambiant space. Roughly speaking,
we could say that the point of view of the theory of regularity structures relies on the metric and
differential properties of the underlying space, while the present extension of the paracontrolled
calculus corresponds to a functional point of view adapted to the operator L involved in the
parabolic singular PDEs. We link here these two sides of the medal by requiring from the
heat semigroup (e~*%);~q to have a kernel together with its gradient, that satisfies pointwise
Gaussian bounds; this describes in some sense the link between the functional calculus and the
ambiant space, with its metric and its differential geometry.

Moreover, we will detail in Appendix B, how this approach can be used in the context of
Sobolev spaces (instead of Holder spaces). From a technical point of view, it is a bit more
difficult since Sobolev spaces involve simultaneously all the frequencies, whereas for Holder
spaces we can work at a fixed frequency scale. We do not know how such extension could also
be implemented through the regularity structure’s theory.

Motivated by this observation, the first part of this work is devoted to a precise study of the
so-called paracontrolled calculus in a very abstract setting, given by a doubling ambiant space,
equipped with a self-adjoint operator —L generating a semigroup with Gaussian bounds for
its kernel and its gradient. A suitable definition of paraproducts is given, and the main rules
of calculus for paracontrolled distributions are described. This general theory is all we need to
study a number of parabolic singular PDEs.

1.2. A generalized parabolic Anderson model As an illustration, we shall study the generalized
parabolic Anderson model equation (gPAM)

Ou+ Lu =F(u) &, u(0) = wo,

on some possibly unbounded 2-dimensional Riemannian manifold M satisfying some mild
geometric conditions. One can take as operator the Laplace-Beltrami operator or some sub-
elliptic diffusion operator; see section 211 for examples. The nonlinearity F is C3, and ¢ stands
above for a coloured Gaussian noise with weight in L? N L> — see definition The following
results involve some Holder spaces C7, with negative exponents v, that are defined in section



in terms only of the semigroup (Pt) i~ generated by —L. We denote by X the solution to
the equation a

X +LX =&,
given by the formula X(¢) := fg P,_5(&)ds. The following theorem is given in more precise
form in theorems [B.1] and B4l There is no need right now to understand precisely what the
'resonant’ term II(X, ¢) below is; together with ¢ it forms the above mentioned enriched noise
that makes the theory so efficient.

Theorem 1.1. Let o € (2,1), an initial data ug € C**, a nonlinearity F € C}, and a time horizon
T > 0 be fixed. Assume that ( € C*2.

(a) Local well-posedness for (gPAM). If the resonant term II(X, () is well-defined as
a continuous function from [0,7] to C®2, then for a small enough time horizon T', the
generalized PAM equation

(1.1) O+ Lu = F(u) ¢, u(0) = ug
has a unique solution in some function space.

(b) Global well-posedness for (PAM). If the resonant term II(X, () is well-defined as a
continuous function from R, to a weighted version of C*~2, then the PAM equation

O+ Lu = u(, u(0) = ug

has a unique global in time solution in some function space.

The implementation of this result in the case where ( is a random Gaussian noise takes the
following form, for a precise version of which we refer to theorem (.71

Theorem 1.2. Let £ stand for a time-independent weighted noise in space, and set £° := P.&,
and X°(t) = [} Py (€°) ds.

(a) The pair (£%, X¢) converges in probability in some space to some extended noise (¢, X),
with ¢ = &, and II(X, ¢) well-defined in the above sense.

(b) Furthermore, if u® stands for the solution of the renormalized equation
(1.2) ou® + Lu® =F(u®) & — ¢ F'(uv°) F(u°), u®(0) = ug

where ¢°(-) := E{H(L_lga,gs)(-)} is a deterministic real-valued function on M, then u®

converges in probability to the solution u of equation (ILI]) associated with ({, X), in some
space whose definition depends on whether or not F is linear.

We have organized our work as follows. Section [2] presents the functional setting in which
our theory is set. The main geometrical assumptions on the geometric background are given
in section Il where examples are given; these assumptions involve the properties of the heat
kernel of the semigroup (e_tL) i~ generated by L. A family of operators is introduced in
section 2, which will play in the sequel the role played by Fourier projectors in the clas-
sical Littlewood-Paley theory. We introduce in section a scale of Holder spaces, defined
uniquely in terms of the semigroup (e_tL) 0" A paraproduct is introduced in section Bl and
is shown in section to enjoy the same continuity properties as its Euclidean analogue. A
crucial commutator estimate between paraproduct and resonant terms is proved in section [3.3]
together with some paralinearization and composition estimates in section B.4l Following [29],
we then introduce in section 1] what plays the role in our setting of paracontrolled distribu-
tions, and prove some fundamental Schauder estimates in section Sections 2 to 4 give us
all the material needed to investigate singular PDEs from the point of view of paracontrolled
distributions. Section [{is dedicated to the proof of theorems [T and



We end this work by an Appendix (Appendix B), jointly written with Dorothee Frey, in
which we aim to explain how we can weaken an assumption of Lipschitz regularity of the
heat kernel (Lip) which we make in the main body of this work, in terms of more geometrical
properties, and show that one can prove results in Sobolev spaces similar to those proved in
the main body of that work in Holder spaces.

We collect here a number of notations that will be used throughout that work.

e For a ball B of radius r and a real A > 0, denote by AB the ball concentric with B
and with radius Ar. Finally, we will use u < v to say that there exists a constant C'
(independent of the important parameters) such that v < Cv and u ~ v to say that
u S vand v < u. We also adopt the non-conventional notation ~, for the classical
gamma function, defined for a > 0 by the formula

> dz
VYa ‘= zle " -3
0 X

the capital letter I" will be used to denote the carré du champ operator of some other
operator.

e For p € [1,00] and every f € LP, the LP-norm (implicitly with respect to the measure
) is denoted by || f||,. For p,q € [1,00] and an operator T acting from L” to L4, we
write ||T']|,—q for its norm.

e For an integer k > 0, we write C,f for the set of functions continuously differentiable
k-times f : R — R, equipped with the norm

1l = 1l + sup |70
1<i<k

[e.e]

2

Functional calculus adapted to the heat semigroup

As announced in the introduction, this section is dedicated to setting the functional frame-
work where we shall set our study. Section 2] sets the geometrical framework needed for what
we want to do, in terms of a semigroup. We introduce in section some operators that will
play the role of "localizers’ in frequency space. These operators are used in section to define
a scale of Holder spaces which will be instrumental in the sequel.

2.1. Heat semigroup on a doubling space Let (M, d) be a locally compact separable metrisable

space, equipped with a Borel measure pu, finite on
compact sets and strictly positive on any non-empty open set. Given a ball B(x,r) of center
2 and radius r, the notation V(x,r) will stand in the sequel for u(B(z,r)). To make things
concrete, the space (M, d) will mainly be for us smooth Riemannian manifold or a (possibly
infinite) metric graph. We shall assume that the metric measure space (M, d, ) satisfies the
following volume doubling property

(VD) V(x,2r) S V(z,r),
for all x € M and positive r, which can be stated equivalently under the form
(2.1) Vi) s (5) Viws),

S

for some positive scaling factor v, for all x € M, and all 0 < s < r; it implies he inequality

Vi) 5 (M) v,

S



for any two points x,y in M and 0 < s < r. (Another easy consequence of the volume doubling
property is that balls with a non-empty intersection and comparable radii have comparable
measures.)

Let also be given a non-negative self-adjoint operator L on L?(M, ) with dense domain
Dy(L) C L?*(M, 11). Denote by £ its associated quadratic form, defined by the formula

E(frg) = /M fLgdn.

on a domain F which contains Dy(L). We shall assume that the Dirichlet form £ is strongly
local and regular; we refer the reader to the books [23] [BI] of Fukushima & co. and Gyrya—
Saloff-Coste for precise definitions and background on Dirichlet forms. These two properties
will be obviously satisfied in the examples we shall work with. It follows from these conditions
that the operator L generates a strongly continuous semigroup (e*tL) 50 of contractions on
L?(M, ;1) which is conservative, in the sense that e /1 = 1, for all ¢ > 0; see e.g. Subsection
2.2.7 in the book [31]. We shall also assume that the semigroup (e*tL) +>o has a kernel, given
for all positive times ¢ by a non-negative measurable real-valued function p; on M x M, such
that

(e f)(z) = /M pe(a,y) f(y) du(y),

for p-almost all = in M, and every f € Dy(L). The kernel p; is called the heat kernel
associated with L. We assume that it satisfies for all 0 < ¢ < 1 and p-almost all z,y, the
following typical upper estimates

pila.y) S . .
VV (@ VOV (5, VD)

Under the volume doubling condition (VDI), the previous estimate self-improves into a Gaussian
upper estimate for the heat kernel and its time derivatives

te d 2
)‘ < exp <_C %) .
VV (@ VOV (5, Vi)
that holds for all integera, all 0 < t < 1, and p-almost every z,y € M; see for instance the
article [25, Theorem 1.1] for the Riemannian case, and the work [I7, Section 4.2] for a metric

measure nlsapace setting. We also assume that the heat kernel satisfies the following Lipschitz
conditio

(UE) (Q?pt(w, Y

d(iﬂ/’;)> \/V(x,\/il)v(y, NG P <_c M) '

It follows classically from the Gaussian estimates (UEl]) and the doubling property that the

heat semigroup (e_tL) 1~ is uniformly bounded on L” (M, ) for every p € [1,00] and strongly
7tL)

W) o)~ )] 5

continuous for p € [1,00). Last, note that (e is, under these conditions, bounded

0<t<1

3 In the regularity structures theory or Euclidean paracontrolled theory, regularity at any order may be
considered because of the implicit use of the very nice differential geometry of the Euclidean space, or the torus.
In our current and far more general framework, since we only have assumptions on the heat kernel and its
gradient, it is natural to expect to be able to quantify regularity of some objects, up until order 1, and not
more. That is why in the different statements proved in the next sections some extra mild conditions on the
regularity exponents will appear, as compared with their Euclidean analogue. Since we aim to work with the
optimal / minimal setting, these new limitations cannot be removed and we are restricted to study regularity
at order at most 1, including negative orders; this is not restrictive as far as applications are concerned.



analytic on LP(M,u), for every 1 < p < 400, which means in particular that the time-

derivatives ((tL)"e ")

0<i<1 are bounded on LP(M, p) uniformly in 0 < ¢ < 1, for every

integer n > 0; see [52].

Here are four representative classes of examples of doubling metric measure spaces and
Dirichlet forms satisfying the above conditions. We emphasize (as it can be seen by the list of
examples) that we have much flexibility in terms of the operator L as well as in terms of the
underlying space (M, d, p).

(a)

Markov chains. Let X be a countable set equipped with a Markov chain, specified
by a symmetric Markov kernel & : X x X — R, and let m be a non-negative function
on X, used to define a measure m on X, with density m with respect to the counting
measure z. Denote by (-, -)m the scalar product on ¢*(m). Consider also for integers
n > 1 the iterated kernel ", defined recursively by k" (x,y) := [ k" Y, 2)k(2,y) u(dz).
Denoting by K the symmetric Markov operator with kernel k, the formula

5(f7g) :% Z kxy(fm _fy)(gx _gy)

z,yeX
1
= Z fx m_x (ga: - Z kxygy>ma:
reX yeX
=(f,Lg),

associated with the non-negative self-adjoint operator

(Lg) (CC) - mix (gm - Z k:vygy) = g(x) - (Kg) (x),

yeX

defines a (strongly local) regular Dirichlet form and allows us to generate the continuous
heat semigroup (e_tL ) 50" (The above sum in z is implicitly restricted to those x for
which m, > 0, so there is no loss of generality in assuming that m > 0. ) The map k

induces a distance d on X by setting

d(z,y) := min {n >1;3z,...,2,, with zg =z, 2, = y and b(ZZ',Zl'+1) >0, for i =0..n — 1},

for y # x. Following Grigor’yan’s result [26], one can give growth conditions on the m-
volume of d-balls that ensure the conservative character of the semigroup generated by
L in ¢?(m). Then it is classical that getting Gaussian upper estimates for the semigroup
(e*tL) 0 18 very closely related to getting discrete-time versions of Gaussian estimates

for the iterated Markov chains (K ")n>1,
their kernels. Usually, given such a discrete framework, one prefers to work with the
discrete-time Markov chains rather than the continuous heat semigroup. To obtain
upper Gaussian estimates and a Lipschitz regularity for the iterated Markov chains
on a graphs is the topic of a huge literature to which we refer the reader; see for
instance by Hebisch and Saloff-Coste [38] for discrete groups and by Ischiwata [41] for
an extension to nilpotent covering graphs and more recently [42] for a perturbation of
these previous results. For example, the regular graphs Z¢ and (Z/NZ)? have heat
semigroups satisfying the Gaussian estimates (UE]) and the Lipschitz property (Lip).
Needless to say, for a (large) finite graph (X, FE), with edge set E, and by, = 1 if
(z,y) € E, and m, = ZyeX bsy, the previous results hold with the graph distance in
the role of d.

and similarly for the Lipschitz regularity of

Second order differential operators on Riemannian manifolds. Let (M, d, i) be
a doubling possibly non-compact complete Riemannian manifold with Ricci curvature



bounded from below. Then the heat semigroup (e‘m) +~p generated by the Riemannian

Laplace operator satisfies both the upper Gaussian estimates (UEl) and the Lipschitz
regularity for small time 0 < ¢ < 1, and for every time ¢ > 0 if the Ricci curvature
is nonnegative; see [56] and [45] for references. Particular examples are every smooth
compact Riemannian manifolds, or unbounded Riemannian manifolds with pinched
negative Ricci curvature, such as hyperbolic spaces.

Even on the Euclidean space R%, we may consider a second order divergence form
operator L. = —div(AV) given by a map A taking values in real symmetric matrices
and satisfying usual ellipticity (or accretivity) condition. Then if A is Hélder continu-
ous, it is known that —L generates a self-adjoint semigroup with (UE]) and (Lip); see
[4]. Similarly, consider an open (and bounded) subset 2 C R? and consider for L, the
self-adjoint Laplace operator associated with (Dirichlet or Neumann) boundary condi-
tions. There is an extensive literature to describe assumptions on € such that (UE])
and are satisfied. The present scope may well be beyond the present scope of
regularity structures, for which the Green function of the operator need to satisfy some
regularity assumptions that were not proven to hold true under a sole Holder continuity
assumption for A, and whose formulation on a manifold is a real problem outside the
real of Lie groups or homogeneous spaces. The theory developed below works in that
relatively minimal setting.

The estimates (UEl) and also hold when working on a convex or C?-regular
bounded subset of the Euclidean space, with L given by Laplace operator with Neumann
boundary conditions; see [58].

Sub-elliptic left invariant diffusions on groups. Let G be a unimodular con-
nected Lie group, endowed with its left-right Haar measure pu. Consider a family
X = {Xy,..., Xy} of left-invariant vector fields on G satisfying Hormander condition.
They define a class of admissible paths 7, characterized by the existence, for each of
them, of measurable functions aq, ..., ax such that one has

k
V() =Y ai(®)X(U(t).
=1

The length of such a curve is defined as

B 1 1 l | , %
= 5/0 (;mz(t)l ) dt,

and the (Carnot-Caratheodory) distance d(z,y) between any two points x,y of G is
defined as the infimum of the lengths of all admissible curves joining x to y. We then
consider the sublaplacian A defined by

k
A= —ZXE.
i=1

Then the operator A generates a heat semigroup satisfying both the upper Gaussian
estimates (UE]) and the Lipschitz regularity for small time ¢ € (0,1); see for
instance Chapter 8 in the book [57]. If the group is nilpotent then it is also globally
doubling [30] and so the heat semigroup satisfies the Gaussian upper bound (UEl) and
enjoys the Lipschitz property for every t > 0; see [55], 50]. Particular examples of
such groups, are stratified Lie groups and so Heisenberg groups. For such Heisenberg-
type Lie groups, a kind of Fourier transform may be defined involving their irreducible



unitary representations, which can be used to define an analog of the Euclidean para-
products / paradifferential calculus, such as done is [24]. We shall see, as a by-product
of the present work, that the structure of heat semigroup is sufficient to construct
similar tools with greater scope.

(d) The general case given by a subelliptic operator is more difficult. Let (M,d,u) be a
complete and smooth connected manifold endowed with a self-adjoint smooth locally
subelliptic diffusion operator L satisfying L1 = 0. Then Baudoin and Garofalo intro-
duced in [7] a property, called “a generalized curvature-dimension inequality”, which
has to be thought as a lower bound on a sub-Riemannian generalization of the Ricci
tensor. Under such a condition, the heat kernel generated by L satisfies (UE]) as well
as (see [49]). We refer the reader to [7] for some examples of such sub-elliptic
settings and the fact that the heat kernel also satisfies in that case some Gaussian lower
bound.

Throughout that work, a point o € M will be fixed, that we shall use to define a class of
test functions, together with its ’dual’ class of distributions.

Definition 2.1. We define a Fréchet space of test functions setting

Soi={f e 2L Var,az €N, |[(1+d(0,)) 2 f|| < oo},
n>0
with
Ifl= sup 1AL+ dlo,)" Lo .

ay,a2€N

A distribution is a continuous linear functional on S,; we write S, for the set of all distributions.

(We point out that the arbitrary choice of point o € M is only relevant in the case of
a unbounded ambiant space M; even in that case, the space S, does not depend on o, for
o ranging inside a bounded subset of M.) Every bounded function defines for instance an
element of S!. Examples of test functions are provided by the p:(z,-), for every fixed z € M
and 0 < ¢t < 1. Indeed for integers a1, ag, the upper bound (UE]) gives

%2 d(z,y)?

Vi v (LT do) e
< "
~V(x, V)

for some positive constants ¢ and ¢’. Note that the heat semigroup acts not only on functions,
but also on distributions, by setting

((e9), f) = (& (<))

for p € S! and f € S,. (We refer the reader to [I5] and [46] for more details on the extension
of the semigroup to distributions.)

1+ d(o,1)™ (Em1(2,) ()| <

—c Ul(ﬂcéy)2

(1+d(o,x))"e

For a linear operator T acting from S, to S., it will be useful below, to denote by Ky its
Schwarz kernel, characterized by the identity

(T(f).g) = / K (e, y) £ (9)g(x) p(dy) ().

giving an integral representation for every f,g € S,.
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2.2. Time derivatives and Carré du champ of the Let us introduce here a family of operators

semigroup that will play the role in our setting of the
Fourier multipliers used in the classical Littlewood-

Paley theory, that localize a function in frequency space. These will be the building blocks

used to define a convenient paraproduct for our needs, as done below in section 3.1

Definition 2.2. Given a fixed positive integer a, set

(2.2) @ = (tL)retF

and

(2.3) PO = g (tL),  where  du(z) = / s B o5
Ya Jz S

for every t > 0.

So we have for instance Pt(l) = e tL and le) = tLe *t. The two families of operators

(Pt(a)) 0 and (an)) 40 are defined so as to have
(2.4) t0, P\ = tLe},(tL) = —7; " Q4"

SO an) = (=1)%%0¢e ', and Pt(a) = pa(tL)e ", for some polynomial p, of degree a — 1, with
pa(0) = 1. The analyticity of the semigroup provides a direct control of the operators Pt(a) and
Q.

Proposition 2.3. For any integer a > 0, operators P ) and Qt have a kernel satisfying Gaussian
estimates (UE]), and the Lipschitz regularity (Lip)); as a consequence, they are bounded in every
LP spaces for p € [1, 00|, uniformly with respect to t € (0,1].

Following the above interpretation of the operators Q@ and P, the following Calderén
reproducing formula provides a decomposition of a function f in LP(M,pu) into a low fre-
quency part and a high frequency part very similar to the Littlewood-Paley decomposition of
a distribution in terms of frequencies; see e.g. [0].

Proposition 2.4 (Calderén reproducing formula). Given p € (1,4+00) and f € LP(M, u), we
have

lim P( f=f inLP(M,u)

=0+
for every positive integer a, and so

(2.5) / QY f = + PO

PROOF — One knows from theorem 3.1 in [20], that the operator L has a bounded H> func-
tional calculus in LP(M, ) under the volume doubling condition on (M,d, 1), and the
assumption that the heat kernel satisfies the upper estimate (UE). Since this implies
in particular sectoriality of L in LP(M, p), Theorem 3.8 in [I§] yields the decomposition
of LP(M,u) into nullspace and range of L. Using this decomposition, the Convergence
Lemma implies for every f € LP(M, u)

a ! a dt a
f:limPt( )f:—/ 0, P, )f—+P1( ()

1/ Q1 Ly PO,

where the limit is taken in LP(M, ) and where we have used identity (2.4]); see e.g. [3]
Theorem D] or [43, Lemma 9. 13]
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We shall also make an extensive use in the sequel of the square-root of L, given by its carré
du champ operator I', defined for all (f,g) € Da(L) x Do(L) as a bilinear operator satisfying
the identity

E(fg) = /M fL(g) dp = /M gL(f)dp = /M I'(f,g)du.
It is also given by the explicit formula
N(f.9) = 5 (L(f9) ~ FL(9) — gL(F)):

we shall write Do(I') C L? for its domain, which contains Dy(L). As a shorthand, we write

L(f) for T'(f, f )% in the sequel, which can be thought as the length of the intrinsic gradient
of f. It follows from the conservative property of L and its non-negative character, that the
bilinear map I' is positive and satisfies the identity

2
[T = /M L(f, f)du= /M FL(f) dp = E(F. f).

According to the Beurling-Deny-Le Jan formula, the carré du champ satisfies a Leibniz rule

(2.6) I'(fg.h) = fT(g,h) + gL (f,h),
for all f,g,h € Dy(T"), and a chain rule
(2.7) L(F(f)) = F'(f) L(f) + F"(/)T(f. f).

for every function F € CZ(R) and every f € Dy(L); the function F(f) is automatically in
Do(L) — see e.g. [23] Section 3.2] and [53] Appendix] for these points.

The following pointwise and LP-estimate for the intrinsic gradient of the semigroup will be
used several times in a crucial way; its proof is given in Appendix [Al It says that the carré
du champ of the semigroup satisfies also some Gaussian pointwise estimates, as given by the
following claim.

Proposition 2.5. The following inequality holds

(2.8) ‘(\/Z ) (e f) (xo exp (—c M) |F ()| dp(y),

=< 1
MV (w0, VAV (3, V)
for every t > 0, every function f € L?, and almost every xy € M. Consequently, we have

sup H (\/EI’) (e*tL . )H < 00,

t>0 p—p

for every p € [1,00]. We may replace the semigroup e~*% in the above equations by any of the
o (a)
perators P, for any a > 0.
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2.3. Holder and Besov spaces through the heat Let us recall as a start that given a parameter
semigroup o € (0,1], a bounded function f € L™ is said
to belong to the Holder space A? if
[f(z) — f(y)l
[ fllae == [[flloc + sup Ao <
0<d(z,y)<1 (x’ y)
Recall on the other hand the definition of the inhomogeneous Besov spaces associated to a
semigroup; they were precisely studied in several works, such as [I5] or [27],to name but a few.
We shall make an extensive use of these spaces.

Definition 2.6. Fix a positive integer a, an exponent p,q € (1,00), and o € R. A distribution
f €8/, is said to belong to the Besov space By, if

- g (a) ||9 dt
sg, = 1ol + ([ oot e 2) " <

This definition of the space does not depend on the integer ¢ > 1, provided a is big enough.

We refer the reader to [15] for details about such spaces and a proof of the fact that they
do not depend on the parameter a used to define them, provided a is sufficiently large with
respect to s. The limiting case p = ¢ = oo leads to the following definition.

Definition 2.7. Let a positive integer a be given. For o € (—o0,2), a distribution f € S/ is said
to belong to the space C? if

1flles = e 2|+ sup [|@if] #7% < oc.
0o 0<t<1 0o
This definition of the space does not depend on the integer a > 1.
We give in Appendix[Ala simple and self-contained proof that the space C? does not depend
on a, and that any two norms || -||¢-, defined with two different values of a, are equivalent. The

following proposition justifies that we call the spaces C° Holder space, for all ¢ < 2, possibly
non-positive.

Proposition 2.8. For o € (0,1), the spaces A? and C” are the same and the two corresponding
norms are equivalent.

We give here a complete proof of this proposition as it provides an elementary illustration of

how the properties of the operators an) are used to make actual computations. This kind
of reasoning and computations will be used repeatedly in the sequel, when working with our

paraproduct. Recall that the operators an) have kernels K 0@ satisfying Gaussian pointwise
t

estimates, by proposition

PROOF — We divide the proof in two steps, by showing successively that A% is continuously
injected in C7?, and that, conversely, C? is continuously injected in A°.

Step 1 — A? — (C?. Note first that since the Holder space A is made up of bounded
functions, it is included in 8. Fix an integer a > 1; then for every ¢ € (0, 1), we have

(Q5) @) = (@7 = @) ) @) = [ Kl 2)(F) = 7)) ld).
For the points z € M, with d(z,z) < \/Z < 1, we have
1£(2) = f(@)] < d(@,2)[|fllas < 5] f]lar
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so that

/d(@z)g\/gKan) (z,2) (f(z) - f(x)) w(dz)

<t fle [ |Kge (o )| ()
< 03| flae

since an) has a kernel satisfying Gaussian pointwise bounds. The same bounds show that

<I1flar ( / P ga><x,z>(d<m,z>w<dz>>

o 1 _ed@? (d(x z))a
e [ ()
s Vicd(z, <1 V(z, V) Vi) M

S 3| flla-

t

'/ K (x,2)(f(2) = f(2))n(d2)
Vi<d(,2)<1

Similarly, we have

K g, 2) (f(2) = £(@)) n(d2)

t

K o (@,2) M(dz)>

< flloe (/Kd( |

e~ fllae
t7]| fllas,

1<d(z,z)
S
S

so it comes that the inequality
(@) @)| < 51 llae
holds uniformly in ¢ € (0, 1), and for every x € M, which proves that || f|lce < || f|lae-

Step 2 —C? — A?. Let f € C? be given. Using the decomposition of the identity provided
by Calderén reproducing formula

1
_ L (1) , dt
f=eti- [ QS

we first deduce that f is bounded, with

< b odt <
[ flloo S N fllce { 1+ ; t2— ) S [Ifllee

Moreover, for any two points z,y, with 0 < d(z,y) < 1, we have
dt

@) = f) = {(“N @) = (EN W} - { / (@D - @) 7}
—{e @) — e} - {(@P D)@ - @) w)
- [H{@Pne - @Ppw) ¥

One can use the Lipschitz regularity of the heat kernel to bound the first term in
the above sum, giving

e Fflx)—e " fy) /\m z,2) —p1(y, 2)| | £ (2)| n(dz)
S d(@,y) || flloo-
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As similar bounds hold for Le~, by analyticity of the heat kernel, the second term admits
a similar upper bound. Let now focus on the third term, using a similar reasoning and

noting that QE =16 Qt/QQt/Z So, for d(z,y) < V/t, we can write

(@@ - @ s [ 1%5; )= Ko :2)| [ K 12)| )
Sd( ‘ <2>fH
QRi/o
<d< ’ )t%\lf\lm-

YoVt
If v/t < d(z,y), then we directly have
(@@ - @71 s||e7]| s tENfle-

Hence,

[{@®nw-@Pnw)e < ( [t i (d%))t%%) Il
< o Ul

since o € (0,1). Consequently, we have obtained

|f(x) = f(y)] S d(z,y)7]| flles
uniformly for every x # y with d(z,y) < 1, so indeed || f|[ac < || f]lce-

>

Our main example of C? distribution, with negative Holder exponent o, will be given by
typical realizations of a (possibly weighted) noise over (M, 1) — see Proposition To prove
that regularity property, it will be convenient to assume that the metric measure space (M, d, i)
has the following property, called Ahlfors regularity. There exists a positive constant ¢; such
that

V(z,1) > e,
for all x € M, which, by the doubling property, implies that we have
(2.9) V(z,r) > err”,

for some positive exponent v, all x € M and all 0 < r < 1. (The constant v is d on a
d-dimensional manifold.) This is a relatively weak assumption that is essentially satisfied in
a Riemannian setting for closed manifolds without boundary and injectivity radius bounded
below by a positive constant. Under that additional assumption, we have the following Besov
embedding, proved in Appendix [Al

Lemma 2.9 (Besov embedding). Given —oo < 0 < 2, and 1 < p < oo, we have the following
continuous embeddings.

Ay

v
P _r

Bg7p<—>B” <—>Boooo:

3

Besov embedding can be used in a very efficient way to investigate the regularity properties
of random Gaussian fields, as will be illustrated in section
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Remark 2.10. Let us point out here that our Holder spaces C7, with o < 0, coincide in the
Euclidean setting with those used by Hairer [32]. Indeed, on the Euclidean space it is known that
to define Besov spaces or Holder spaces through Littlewood-Paley functionals, we may chose any
good Fourier multipliers satisfying suitable conditions; the latter are satisfied by the derivatives
( Ea))t of the heat semigroup. So our spaces correspond to the standard inhomogeneous spaces
defined by any Littlewood-Paley functionals. From wavelet or frame characterization (see for
instance [47] ), we then conclude that our Hélder space coincides with those used in [32] or [36].

Before turning to the definition of our paraproduct, we close this section with two continuity
properties involving the Holder spaces C?, which we shall use in the sequel.

Proposition 2.11. For any 0 € (—00,2), and every integer a > 0, we have
P H < .
|| 5 171l

Proor — We have by construction Pl(a) = (1 +ag L+ -—|—aa_1La*1)e*L, for some coefficients

Qai,...,0q_1. As we have by definition He_LfHOO < \Iflce, and Lfe ™t = Qgg), for ¢ =
1...(a — 1), we see that HL%_LJCHOO < ||fllce, since we have seen above that we can

choose the parameter a in the definition of the Holder space.
>

Proposition 2.12. For 0 € (=00, 1), we have

WD) (1) | S 1l

sup t3
te(0,1]

a)

The same conclusion holds with any of the operators Pt( in the role of et~

PRrROOF — Given t € (0, 1], use Calderén reproducing formula to write
‘(\/_F ~tL g ‘ </ ‘ \fl“ et Q! 1)f ‘_ +‘ \/—P)( 1+t)Lf)‘

We divide the integration interval in the above-right hand side into (0,¢) and [¢, 1] to bound

that term. For s < t, we have e_tLle) = t/25+8 e /2L Qg)t/z’ so we can use Proposition
to get
—tL (1) s ft/2L
|vineen| s vane ] o],
S a
<205 | ler

Similarly for ¢ < s, then e’tLle) = ¢sL/2

t+5/2 Qs/2+t’ and we have

t

Joameenn] < (5) fovrme)

N2 o
s() 53 [ flles.
S

Similar computations give the estimate
| VD) o p)|| < Ve
o0

We conclude by integrating with respect to s € (0, 1), using here the fact that o < 1.

@2t

o0—00
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3

Paraproduct and commutator estimates in Holder spaces

3.1. Paraproducts based on the semigroup Bony’s paraproduct machinery has its roots in the

Littlewood-Paley decomposition of any distribution
f as a sum of smooth functions A; f localized in the frequency space, so a product fg of any
two distributions can formally be decomposed as

(3.1) fa=Y _NifNjg= > AifAjg+ D> AifAjg=: (1) +1I(f,g)
0. li—j|=2 li—j|<1

into a sum of products of two functions oscillating on different scales, and an a priori resonant
term II(f, g). This decomposition draws its usefulness from some relatively elementary a priori
estimates that show that the term (1) above makes sense and is well-controlled under extremely
general conditions, while the resonant term II(f,g) can be shown to define a continuous map
from C® x C? to C*tP, provided o+ > 0. These estimates rely crucially on some properties
inherited from the very definition of the Littlewood-Paley blocks as Fourier projectors. These
properties cannot be grasped so easily in our semigroup setting; however, we shall use the

operators Pt(a),an) and vtI' or (tL)Pt(a) as frequency projectors, with Pt(a) projecting on
frequencies lower than or equal to t_%, and an), VI or (tL)Pt(a) as localizing at frequencies

of order t~2. This will be our main guide in the definition of our paraproduct given below.
This paraproduct will depend on a choice of a positive integer-valued parameter b that can be
tuned on demand in any given problem. To clarify notations, we shall repeatedly use below
the notation f - g for the (usual) product of two functions.

Rather than starting with Bony’s decomposition (B.I]), we take as a starting point Calderon’s
reproducing formula

(3.2)
1
1 ®) (p® pb) \ _ _ ®) ( p®) 4 pb) dt
fg=lim P, (Pt f- P g)f /Otat {Pt (Pt F P g)} =+ AL(fg)
L/~ dt
=/ {Pta:) (Q§b> - pt<b>g) + PO (ptu)) FoQW g) L QW (Pta:) 7 ptu))g)} NN}
where

A(f.g) =P (P f - Pg)
stands for the ’low-frequency part’ of the product of f and g, and where we implicitly make
the necessary assumptions on f and ¢ for the above formula to make sense.

Guided by the above heuristic argument about the role of the operators Pt(a), an), etc. as

frequency projectors, we decompose the terme involving the product of Pt(a) f and Pt(a) g, by
using the definition of the carré du champ operator I’

L(¢1 - ¢2) = L(¢1) 2 + L(¢2) 1 — 20 (1, p2)

and write
ng) <Pt(b)f : Pt(b)9>
= gbil) ((tL)Pt(b)f : Pt(b)g) + ngil) (Pt(b)f : (tL)Pt(b)9> - 2Q§b71)r <\/%Pt(b)f, \/EPt(b)L(])
=: By(f) + By(g) + R(f, 9)-

If one rewrites identity (3.2]) under the form

fo= [ {0 +@+ @} +2a(0)
0
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with obvious notations, this suggest to decompose it as

fo= [ ({0 + BN} + {2+ By} + R(J0)) T+ Ani(fo9)

and to identify the integral of the terms into brackets in the above formula as paraproducts,
and by defining the resonant term as the integral of R(f, g). This is what was done in [12] where
this notion of paraproduct, introduced in [§], was shown to have nice continuity properties in
Holder spaces C%, provided only deals with positive exponents «. Given our needs to deal
with negative exponents, a refinement of this decomposition seems to be needed to get some
continuity properties for negative exponent as well. We thus use the carré du champ formula
in each term (1) and (2), and write

@ = eD)P? (@ V- PVg) + {287 (r) (@ £.B"g) - B (@ V5 - t0)Pg) }
= Ay(f) + 51, 9),
with S(f,g) the sum of the two terms into bracket, and
(2) = As(g) +5(g, f)-

Note that the functions Af(g),S(f,9),... all depend implicitly on time. This decomposition
leads to the following definition.

Definition 3.1. Given an integer b > 2 and f € USE(O 1 C® and g € J*°, we define their
paraproduct by the formula

Hgb)(f) = %/01 {Ag(f) +Bg(f)} %
— % 01 {(tL)Pt(b) (Ql(tbfl)f . Pt(b)g) + Ql(tbfl) ((tL)Pt(b)f ‘ Pt(b) )} %

The well-posed character of this integral is proved in proposition below. With this
notation, Calderon’s formula becomes

Fo=1P () +1P(g) + 1O (f,9) + A1(f,9)

with the ’low-frequency part’

A(f.g) =P (PP f - Pg)

and the 'resonant term’

1 ! d

1 (f, g) = %/O {S(f,g)+5(g,f)+R(f,g)}7t
1 ! _ _ d
== [ RO (@1 0)R0g) + 2R0r (VEQE V1 ViRYg) ) T

1 [t N _ dt
2 TR0 (P05 @ 0g) 4 2nr (ViRP s VGl )} &
T Jo t

1/t _ dt
- [t (Virl g virlg) .
Mo Jo

Note that we have H(lb)(-) = Id, as a consequence of our choice or renormalizing constant.
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3.2. Paraproduct estimates We prove in this paragraph the basic continuity estimates satisfied
by the maps defined by the low frequency part, the paraproduct
and the resonant term. The low-frequency part is easily bounded.

Proposition 3.2. Fix an integer b > 2. For any «,3 € R and every v > 0 we have for every
feC*and geCP

(3.3) [A-1(f,9)lov S fllcellglles-

Proor — Consider the collection (an)) for a large enough integer a > . Then

0<s<1
QA(f.9) = QWP (P s Py).

Since s < 1, we have an)Pt(b) = ’y;ls“e*SLLaPl(b), with the operator L“Pl(b) bounded on
L°°. We obtain the conclusion from Proposition [Z11] as we have
b b
Qa9 £ 1B 1]l P27l
S s flleallglles -
>

The continuity properties of the paraproduct are given by the following statement; they are
the exact analogue of their classical counterpart, based on Littlewood-Paley decomposition, as
can be found for instance in the textbook [6] of Bahouri, Chemin and Danchin.

Proposition 3.3. Fix an integer b > 2. For any a € (—2,1) and f € C%, we have
e for every g € L™

(3.4) (10|, S gl llco
o for every g € C7 with B <0 and o+ € (—2,1)
(3.5) w2, S lgheslfllea-

Remark 3.4. The range (—2,1) for the reqularity exponent could seem unusual, since in the
standard FEuclidean theory such continuities hold for every a € R. However, as explained
in footnote [3, the restriction o < 1 comes from our optimal / minimal setting where we
only assume gradient estimates on the heat kernel. In another hand, the restriction o > —2
can be explained as follows. In the Fuclidean theory, nice Fourier multipliers can be used to
have a ’perfect’ frequency decomposition and the study of paraproducts mainly relies on the
following rule: the spectrum of the product of two functions is included into the sum of the
two spectrums, which comes from the group structure through the Fourier representation of the
convolution.

In our setting, the frequency decomposition involving the heat semigroup (as in the Calderdn
reproducing formula) is not so perfect and above all, the previous rule on the spectrum does not
hold, at least not in such a ’perfect’ sense. That is why it appears this new limitation o > —2,
which is inherent to the semigroup approach.

PRrROOF — Recall that
1

1
) == [enr? (@ Vs RV)+ @l (1R s V)

Set ¢c:=b—12>1, and given s € (0, 1], consider Qgc)ﬂg(f). For s < t, we use that

S\ ¢ s ¢ _ S\ ¢ _ o) —s
Qgc)(tL)pt(b) _ <Z) (tL)C“Pt(b)e L and Qg)ng 1) _ <Z> ng Lto),, L

dt
T



and for ¢t < s that
Q(c (tL)p(b) SQ(chl)p(b) and Qgc)ng—l) _ éQch)ng_z)-

Hence, with the uniform L°°-boundedness of Q)¢, P; operators, we have

o], = [ St s 0 + Sl

o [ ) et mod] L+ (2

Since f € C* we have

dt

o T

N

L N L

|@s||_+|jenp®s]| s B sl
Moreover, if g € L™ then
b
[P < lglc

and if g € C# with § < 0 then

|p%a] < [ fla0s] 5+ [p0 ],

1
du 8
([ o+ 1) lellos 5 ¢ o

As a consequence, we deduce the following bounds.
o If g € L™ then

oo < ([[(£) %L [ () L) sl ol

S 52 flleallgllso,

since o € (—2,1) and ¢ > 1. This holds for every s > 0 which yields (B4]).
o If g € C° with a + 8 € (=2,1) then

Jesmpan| < ([ (1) %o [ (2) 5 &) irieatales

a+p
S5 7 || flleallglloos
since 2¢ > 1 > a+ > —2. This holds for every s > 0 which yields ([B.5]).

dt
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>

Proposition 3.5. Fix an integer b > 2. For any «, 5 € (—o0, 1) with a+ 3 > 0, for every f € C*

and g € C?, we have the continuity estimate

1,9 ..., S 1 leallglics:
Proor — We recall that
/ P(b )f : (tL)Pt(b)!J) + 2Pt(b)r (\/Engil)f, \/EPt(b)!J)
1
- % —p" (( P -Qg) + 2P (VIR TV 1 ViR )

1 _ dt
+ —/ Qng I)F (\/Ept(b)f’ \/EPt(b)g) -
M Jo

~1% ~[%
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Fix an integer ¢ = b —1 > 1, and consider the function Q‘(f)l'[(b)(f7 g), for every s € (0,1].
It is given by an integral over (0,1), which we split into (I) an integral over (0,s), and
(IT) an integral over (s,1). Since f € C%, the use of Proposition 12| with o < 1, yields
the estimate

5]+ rte ]+ o] [varias)|

+||VIrB5)|| S 1% s

o0

a similar estimate holds with ¢ in place of f, and § in place of . Using the uniform
L*-boundedness of the different approximation operators, we get for the first part

8 a+t dt
Qs (65 %) Wle ol

atB
S5 2 | flleallglics:

where we used the strict inequality o + 5 > 0. For the second part, we observe that for
t > s then

©p, — (3\ o=sLitr e © =1 _ (S\¢ Hletb=1) —sL,
QP (t) e *“(tL)°P, and Q0 (t> b e %",
So we get for the second part

1 at cd
[Pl s ([ o (5)°F) Wles ol

atp
Ss 2 [ flleallglies,

where we used the fact that 2¢ > 2 > a4 .

3.3. Commutator estimates The following commutator estimate gives sense to the difference
of two terms in a framework where none of them makes sense
separately, as it does not fit the conditions put forward in proposition We fix an integer

b > 2 in this section and write II(f, g) for TI®)(f, g), and T, (f) for Hgb)(f).
Proposition 3.6. Consider the a priori unbounded trilinear operator
C(f,g,h) =1 (TP (), h) = g (£, ),
on 8!. Let a, 3,7 be Holder regularity exponents with « € (—=1,1),8 € (0,1) and v € (—o0,1]. If
O<a+p+7y and a+v<0
then, setting § := (v + 5) A 1+, we have
(3.6) |C(f,9:8)|es < I fllea llglles [1Rller

for every f € C* ,g € C” and h € C7; so the commutator defines a trilinear map from C® x C” x C7
to C°.

PROOF — Note first that the paraproduct II,(f) is given, up to a multiplicative constant, by
the sum of two terms of the form

Ao = [ oi(sPa) .
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and the resonant part II(f,g) by the sum of five terms of tone of the following forms

1
(37 R(9)= [ PIT(VirRs Virta) .
or
1
R(f.9) = [ PDPs - Q) .

or

1
dt
R(f0)= [ (@i (t)PEe) T
where the operators
o Oy, Qz are of the form (tL)*~'p(tL)e " with a polynomial function p,
o Py, Pg are of the form p(tL)e*" with a polynomial function p.
(Note also that terms of the for ¢)(¢L) are a posteriori of the form ¢(tL).) So it suffices to
focus on a generic term of the form

and prove the continuity estimate ([B.6]) for it. We focus on the case where R has form
B0, the treatment of the other cases being similar and somewhat easier. We split the
proof of the commutator estimate ([B.6]) for D in two steps, and introduce an intermediate
quantity

S(f.g9.h) = /179,} <P(\/Z7>ff, ViP}h) .Ptg> %
for which we shall prove that Weohave both
(3.8) lgR(f, 1) = S(f,9,B)|es < NI flle= llglles 1Al
and
(3.9) ID(f,9.h) = S(£, 9,15 S [ fllee Ngllen IRllen-

Step 1 — proof of ([B.8]). We first prove a weaker version of the continuity estimate ([B.8]),
under the form of the inequality

(3.10) lgR(f,h) = S(f,9,0)| o S Ifllce llglice IRller-

As a start, remark that we have

(811)  (gR( ) = S(f9,h)) (@) = /0 P! (D(VEP?,VEPER) - (9(a) — Pig) ) (@) 5

for p-almost every x € M. Since g € C?, with 8 € (0, 1), we have

t
1P — glloe < / 10u0lloe
0

@
S
t
ds
< ( /0 sﬂ/2?> lglles S 772 lglics

so we have

|Pig(y) — g(2)| < |Pigly) — 9(w)| + |9(y) — g(=)|
St glles + d(z,y)° glles

< (92 + d(w,9)?) lglles,
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for every z,y € M. Coming back to equation (3.I7]) and using Gaussian pointwise estimates
for the kernel of P?, together with Proposition 212} we have

P (D (VEPE 1 ViPER) - (9(@) — Pug) ) (@)
[ vz (M5 lato) - Pt dut IV (P21) | Vi (PR
[ v (M) (974 e’ dut | o5 3 e sl

The continuity estimate ([B.I0) comes from integrating with respect to time, taking into
account the fact that o + 5+~ > 0.

Let then estimate the regularity of gR(f,h) — S(f,g,h). For x,y € M, with d(z,y) <,
write

(@R, R) — S(f.9.0)) (@) — (9@)R(.B) — S g. )W) () = U + V.
with U defined by the formula

)

/Odu,y)? {P,} (F (VEP2FVIPRR) - (g(x) - Ptg)) (x) — P} (r(\/EPEf, VEPER) - (9(y) — Ptg))@)} %

and V is defined by the formula

/ P (WP NP - (ala) — Prg) ) () — P (DEPEENEPER) - (0(0) - Pis) ) )} .

(@,9)? t

By repeating, the argument used in the proof of ([B.I0), we easily bound U by the quantity

d(z,y)? dt
UZ </0 HlatB+7)/2 ?> Il flicellglles 1Al

S dz,9)°Iflleallglies | -llc--

For the second part, we use

[VI<A+B
with A equal to

/< AP WP P - (90~ P ) )~ PE(P (VPSP - (5(0) — Pig) ) )}

and
! 1 2 3 dt
Bim [ lota) - o) [P (D (VEPELVEPI) ) )| -
d(x,y)?
The last quantity is bounded by

B S diw) lales | ( V@] v Ol

1

S d(z,y)’ ||f||caH9||cM|h||cw/ ¢

d(z,y)

aty dt
2 J—
t
1)
S d(z,y)° ([ flleellglleslhllcr-
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For the quantity A, we use the Lipschitz regularity of the heat kernel to get the
upper bound,

/d(w,y)Q {/M % exp (_cd(x;z) ) lg(z) — Pig(2)] u(dz)} Hﬂr(PEf)HOOH\/EF(PEh) HOO %
: {/<> /, % T (d,2) ) ) e %} I Flesligles IAlc-

1

d(z,y) dt

S ——=OFBEN2 || callglles | Bllcn
</d<m,y>2 i t

S dl@,y) P flleallglles e

where we have used the fact that o+ 8+~ € (0,1). The combination of all the previous
estimates yields

{gR(.W)=S(F.9.0) } (@) = {gR(S0) = S(f.9,1) } ()]
< U+ A+ B S d,y)lIflleallgles | hlic
which concludes the proof of the continuity estimate (B.8]).

Step 2 — proof of ([BJ). Given the collection (Q, := Q&l))

to prove that we have

re(0,1] of operators, we need

(3.12)

Q. (R(AU9).1) - S(Fa.m) || 50772

o0

for every r € (0,1], and where
(3.13)

1 1
RO 1) -S(0.m = [ pir (Vi] [ prei(air-pie) © - mg-p2s} vipin) .

The notation is confusing and we have to be careful: when T acts P,g - P2f, it is thought
to only acts on the variable of P2f (the variable of P,g is frozen). We shall bound above
the absolute value of the I' term in the integral, which is of the form I'(p, q), by I'(p)I'(q)

— recall we write I'(p) for \/T(p,p). Set for that purpose
ar.g) =i ([ pro (@i P © - mapir).
We have for almost every @ € M
Aro)) < Ve ([0l (@2 P20) 1) % - Pgto) 1)

1
< [ VirPeel(@(Piy - o)) % + | Pala) VATIPEPLf)).

where we used the property
1
d
/ 0lQ? = =1d- Py,
0 S
for some P; operator. As in Step 1, the fact that § > 0 implies
Pigly) - Pug(@)| < [P2g(y) — 9(v)| + l9w) — 9(2)]| + |g(x) = Prg()|

S (572 + 0P+ d(e.)”) Iglles S (max(s, )72 + d(w,9)7 ) ligles-
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Moreover, it follows from Lemma [A.5] below, on the composition of Gaussian pointwise

estimates, that the operator v/tT' (Pt > has pointwise Gaussian estimates at the scale

min(s,t)

2 .
; so if one sets 7 := max(s, t), we have
max(s,t) ’ LA

max(s,t) with an extra factor (

G Ptgm)) (@)

<mu)1(((i > {/ et cdz® (T§+d(w,y)") du(y)}HfoHng”CB
( ff( ) 7 5% ||fllcellglles
<m;>1<((?, ))> max(s, ) 5% || fllexllgles-

Integrating in s, and taking into account the fact that o > —1 and o + § < 1, we obtain
for A:(f,g) the estimate

rs\z 5/2 .ay2 45 A% 8/2 /2 45
JAs.9)].. S / (5)F s [ (2)7 59202 2 ViR I lenllco
0 5 : \S s

S | Flleallglcs-

Observe that in the case where o + 8 > 1, we get

1
[4c(f: 9] S 2 flle=llglles,
Coming back to identity ([B.I3]), we have

R(AG.0).0) - Str00)| < [ PH(ats.0) ViE(Pin) L,

and since a + B 4+ > 0, it follows that
([ s dt
|Reatr g1 = str.om| s (] ¢ =) £ leslgls Al
S flleellglies 17ller

Moreover, taking into account that we have Qﬁ”P} = %@t fort>r,and a+5+v <1,
we see that the estimate (3.12]) holds true

|Q0 (R(AU9),1) = S(1g.m) |
<[ HAt<f,g>uooHﬁr(7>fh>Hm%+ [ Sl ol virem)

o dt 1 oy dt
s ([ ey [ L) i gles e

T

dt

o0

[
S 72 ([ flleallglles 1allco-
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3.4. Paralinearization and composition estimates Two ingredients are needed to turn the ma-

chinery of paraproducts into an efficient tool.
To understand how nonlinear functions act on Holder functions C%, with 0 < a < 1, and to
understand how one can compose two paraproducts. The first point is the object of the fol-
lowing analogue of Bony’s classical result on paralinearization [I3], while the second point is
dealt with by theorem 3.8 below.

Theorem 3.7. Let fix an integer b > 2, v € (0, 1), and consider a nonlinearity F € Cj. Then for
every f € C% we have F(f) € C* and

Rp(f) = F(f) =y (f) € €

More precisely

b
[P =10 ()| . S 1Pl (1 + 17112-).
If F' e C’,jl then the remainder term Rp(f) is Lipschitz with respect to f, in so far far as we have
2
[Be(f) = Be(9)]| ez S IFllga (L + 1 llew + llgllee)™ 1f = glle-
PROOF — First using the Leibniz rule for the operator L, we know that for h € C¢ then
L(F(h)) = F'(h)L(h) + F"(R)L(h)*.
Now, since the semigroup is continuous at ¢ = 0, we have
o (0) (b)
F(f) —}g% By F(Pt f)’
SO we can write

1
d
F) == [ SRR ds POR(PO

1
- 0 { P EE" ) + P <Q§b)f . F/(Pt(b)f)>} % - POR(PY ).

Using the relation Q\” = Q""Y(¢L), together with the chain rule
L(F(PY 1)) =F (PO 1) Lr s + 7" (P )T (P ),
we get
O(EEO ) = Q" (a1 F(RP)) + QP (8 (P 1) -0 (PO 1)?).
Note here the identity
PO(QP - F(PY 1)) =) P (@ V- ¥ (B p)) = PP (@ Lk (R )))
— 2P <Q,§b_1)f, FI(Pt(b)f))'

So we have

F(f) =TI 4, () = (@) + (B) + (¢) + (d) + (€) + ()
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with

%/"an @ p s (B (R0 ) = RO )}
(c):= i/ (t ) {th 1) - (FI(Pt(b)f) _Pt(b)(Fl(f))>}%

d_
t

(© = —i/ Pé’”{ P0g L, ”f)}

Yo

__2 () (b=1) p o p®) ;) U
(=== PO (@Y 1 E (P n)

We are now going to control each of these terms in the Holder space C%*.

Step 1 — term (a). Since f € C%, we know that P f € L™, so F(P( )f) is also bounded.
From Proposition 21Tl we get

|@lleze 5 [FEOD| S 1lce

Step 2 — terms (b), (¢). The following quantity appears in these two terms

F/(Pt(b)f) B Pt(b) (F/(f))‘ < |IF'(f H P(b) H
< ¥ Hf—P(be +(F’ P(b (F'(f H
SIFl [ le0sl o+ [ b w2

d
Il ([ S isten+ ([ 2 L) IO

(3.14) St2 B £ llees

we used along the way the characterization of Holder space, for O < 1, given by Proposi-
tion 2.8 to see that

IE e < NE [l o0 1/l

Using this estimate (8I4]), we deduce the following bound. Uniformly for every s € (0, 1),
we have

levw] < ([ e FEO D - PO W) T) I les

dt
N </ tO‘?Jr/ S o —> |E|| N FllEa
0 s

S 4[| L F 1l

(bl

Q(b 1)H /2

oc0—00

< minlsd) -y g yields

HL°°~>L°° ~ max(s,t)"

[®)[za S I1E || 1 1Ee

and a similar inequality holds also for the third term (c).

where we used that HQ
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Step 3 — terms (d), (e) and (f). We quickly sketch the boundedness of each of these
three terms. Using Proposition 2-12] we get a bound uniform in s € (0,1), of the form

o0l ([ aei ] Ve n L F) e

s o dt Ls ,dt
s([e%e [ 1) ez
< F I

Similarly

el ([ on?]_ Vir@t2n)|_|vire )| %)
S (/Osta % + /Sl ;ta %) 1F|| I f1Ee

S ]| IF 112

where we used the Leibniz rule
|V (& (RO 0) | < IF L[V (@ )| s e 7] ol e

For the remaining last term (e), we can still using the Leibniz rule and get

O], < (e + 1) (o]« Ve o))

(e o]

which then yields

CAICTNEY 1 || e )|

s 1
s([eFe [ 3D gz
St IF sl fl12a
By combining the previous estimates, we conclude that we have
[ @Dlg2a + (@) lg2a + 1Al g20 S NFlles 1 llee 1+ [1fllee),

which ends the proof of the estimate of the remainder. The Lipschitz regularity of the
remainder term is proved by very similar arguments which we leave to the reader.

dt

o t

le)Pt(b)

HOO—)OO

>

Let us now examine the composition of two paraproducts. Note that for u € C* and v € CP,

with o € (0,1), 8 € (0,a], we have uv € CP.

Theorem 3.8. Fix an integer b > 2, a € (0,1), § € (0,a] and consider u € C* and v € CP.
Then for every f € C%, we have

) () - 1) € o

0 (10 ) ~ 18

< «@ «@
cars 5 I fllee llulleslvllcs.
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PROOF — We leave a detailed proof to the reader and we just sketch it, since it is similar and
easier than the proof of Theorem B.7l Following Proposition B3], we know that the two
terms H&b) <H1(,b)( f )) and H&bg (f) belong to C*. The idea is to use the C’-regularity of v to

gain the same regularity in the difference.

Indeed, adopting the notations used above, the paraproduct Hgb)( f) is given, up to a
multiplicative constant, by two terms with the form

Yo o2 1\ dt
1(5.9)= | Qi(Qtr-Plg) T
0
where in Q} and Q? we have at least a term (¢L) to the power 1. Let us focus on this
form. Then we have

dsdt
1(I(f,v).u //Qt (20! (@2f - Plv) - Phu) =
and
vt ds dt
1w = [ [ @l(Qtal (@) - Plun)) S,
0 0 st
where we have used the normalization Hgb) = Id, which means here that I(f,vou) =

1 (I (f, 1),vu). Then using the CP-regularity of v and the fact that Q! involves at least
a power 1 of (tL), one can check that uniformly in s,¢ € (0,1)?, we have

|0t (Qtat (Q2r - Plv) - Plu) — @f (@20l (Q2f) - PHw))||

~ in(s,?)

~

a . § N
max(s,t 52 (s + )2 [ flleallvlics llulle

So integrating in s € (0,1) yields for a+ 8 < 2

[ loi(tel (@r-Plo -piu) - ai(etel (@) -Phw) |

_3
St [ flleallvlles lullea-

Then as previously we check that for every 7 € (0,1) we have
| (1(x(s,0),w) = 1(50m)) |

Umin(r,t) (, dt
S ([ ol e ) el lules

max(7,t)

atf
ST 2 ([fllexllvlles [lullee,

since a + 8 < 2. That allows us to conclude that

HI(I(f,v),u) — I(f,vu)H

< a «
cars < I lleslvlicsllullce
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3.5. Schauder estimates Proposition[B.I0 gives an elementary proof in our setting of a Schauder-
type estimate about the regularizing character of the convolution op-

eration with the operators Ps(b). Its paracontrolled analogue, given in section provides a
crucial ingredient in the study of parabolic singular PDEs, from the point of view of paracon-
tolled distributions.

Definition 3.9. For a € (0,2) and T' > 0, we set

CrC% = {f € L>=(8)), |Ifllcpce == sup Hf(t)Hca < oo}
t€[0,T]

and

1) = £(5)]|
It —s|2

2
C%/ L>* =4 fe L>™(0,T] x M), ][f]]C;/QLw = sslg) < 00

0< s t<T
We then define the space
L4 = CrC* N CeP L™,
Proposition 3.10. Consider an integer b > 0 and 3 € R. For every T > 0 and v € C7CP then
)= f(f Pt(f)sv(s) ds belongs to C7CP+2 with for every t € [0, 7]
[VOlesez 5 A+T) s1p [Jo()lles-

Moreover if —2 < 3 < 0 then we also have

HVHCTB#LOO S HUHCTCB-

PROOF — We consider another integer ¢ > |3|/2 + 1 and a parameter 7 € (0,1]. Then

t
0) = [ QP ds
0

) 10l S (5= ) (=9l

T+t

We have

et 5 (7=

So by integrating, it comes

leow| s {[ (5=) c+i-9fas} s uioe

§T§+1 sup HU(S)HCB'
s€[0,t]

This holds uniformly in 7 € (0, 1] and so one concludes the proof of the first statement
with the global inequality

t
V), < (- )ds o vlle,es S Tllvllopes-
0

For the second statement, we note that for s <t < T we have

V() - v(s) = (P2 - Id) (V< )+ / PO o) dr

t—s
0
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We have
t=s dr

QWV(s) —

0 r

t—s 8 d?“
. < </0 P53t 7) Hv(s)HCg

B
S (t=5) 2"V (9)]| oo
and since § < 0, we also have

/Stpt(bl(v(r)) dr 5/: </tl QW u(r) Ood%JrHbe)(v(r))HQ dr

-

< [ (10l [ A4S )] )ar

<S(t—9)7"" sup [lo(r)]) s,
rel0,t]

LOO

where we used g +1€(0,1).

Corollary 3.11. For a fixed integer b > 0 and « € (0,2), the map

Uﬂwzﬂaﬂmm,

defined on C'C®~2, satisfies
[F]l 2o S A+ T) I flerea=2,

uniformly in T" > 0.

Remark 3.12. Observe that in Proposition [310 the weight (1 +T) can be weakened, up to a
little loss on the regularity exponent. Indeed, the exact same proof allows us for some e € (0, 1)
to prove

Hv(t)HcB+2—2s ST Sl[lp} Hv(s)Hcﬁ

sel0,t
and
[Vllggva-s02,00 S T ol
So
HJle;% ST | fllepea—z+es.

We refer the reader to Proposition[5.3 for a detailed proof of a more difficult statement, where
we show how we can improve the bound (14 T') up to a small loss on the regularity.

4

Paracontrolled calculus

The ideas of paracontrolled calculus, as introduced in [29], have their roots in Gubinelli’s
notion of controlled path [28]. The latter provides an alternative formulation of Lyons’ rough
paths theory that offers a simple approach to the core of the theory, while rephrasing it in a
very useful Banach setting. Let us have here a glimpse at this field, as a guide for what we
shall be doing in this section and the next one. We refer the reader to [2I] for a very nice and
pedagogical introduction to the subject, assuming only here that she/he knows only the very
definition of a (weak geometric) a-Holder rough path, for some % <a< %
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Assume we are given an Rf-valued (weak geometric) a-Holder rough path

X = ((Xt87 th)) 0<s<t<T"?

with Xy € R and Xy € RE @ RY, and a map o € C(Rd,L(R",Rd)). Following Lyons, an

R?-valued path z, is said to solve the rough differential equation

(4.1) dzy = o(zy) X(dt)
if one has
(4.2) 1y — x5 = 0(w) Xys + 0 (ws)0(xs) Xps + O(]t — s]“)

forall 0 < s <t <T, for some constant a > 1. (If X;5 = hy — hs, and X5 = f;(hr —hs) ®dh,,
for some Rf-valued C'* control h, equation (#Z) is nothing but a second order Taylor expansion
for the solution to the controlled differential equation i; = o () iy.) Gubinelli’s crucial remark
was to notice that for a path x, to satisfy equation (£2]), it needs to be controlled by X in the
sense that one has

(43) Tt — Tg :QC;th+O(|t—S|2a),

for some L(R¢, R%)-valued a-Hélder path 2}, here 2/, = o(z). The point of this remark is that,
somewhat conversely, if we are given an L(RY, R%)-valued a-Hélder path z, controlled by X,
then there exists a unique R%valued path y, whose increments satisfy

Yt — Ys = 2s Xts + Z; Xts +O(|t - S|a)’

for some exponent a > 1. With a little bit of abuse, we write f(]. zs X(ds) for that path y, — this
path depends not only on z but rather on (z,2’). This path depends continuously on (z,2’)
and X in the right topologies. Given an R%valued path z, controlled by X, and o sufficiently
regular, the L(RY,R?)-valued path zs := o(x,) is controlled by X, with a control of the size of
(z,2") given in terms of the size of (x,2'). So, for a path x, to solve the rough differential
equation (41]), it is necessary and sufficient that it satisfies

== [ o) Xar),

for all 0 < s <t < T, that is, x, is a fixed point of the continuous map

Te > /0. o(x,) X(dr),

from the space of paths controlled by X to itself. (Note that we indeed need the full rough
path X to define that map, and not just X.) The well-posed character of equation (I]) is
then shown by proving that this map is a contraction if one works on a sufficiently small time
interval.

Our present setting will not differ much from the above description. We aim in the sequel

at solving equations of the form
((915 + A)u =F(u) ,

for some distribution (. Comparing this equation with ([@I]), the role of the rough path will
be played in that setting by a pair X = ((,Z) of distributions, with ¢ in the role of dXj,
with TI(Z, ¢), well-defined, somehow in the role of dX;, and ((925 + A) in the role of %. The
elementary insight that the/a solution u should behave at small space scales as ¢ is turned
into the definition of a distribution controlled by X, as given in definition .1l below, using the
paraproduct as a means of comparison, for writing a first order Taylor expansion of u similar
to identity (£3]). The crucial point of this definition is that one can make sense of the product
F(u) (, in that controlled setting, see theorem [L2] which provides an analogue of the right
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hand side of identity (£2]) defining there o(zs) X(ds). To run formally the above argument,
we shall need to see how controlled distributions are transformed by a nonlinear map; this
is the content of theorem Some problems intrinsically linked with the multidimensional
setting of the problem are dealt with in section [£2] where a version of Schauder theorem is
proved for paracontrolled distributions.

4.1. Paracontrolled distributions We fix throughout that section and the next one an integer
b>2.

Definition 4.1. Let o € (—2,1) and 8 > 0 be given, together with X € C® A pair of
distributions (f, g) € C® x C? is said to be paracontrolled by X if (f,g)* := f — IT) (X) satisfies

(f.9)F e cot?.
In such a case, we write (f,g) € bg(X) and define the norm
1Dz = ([, 9| gars + lglles-
If Y € C* and (h, k) € b3(Y) then we also write
dys ((f.9), (h. k) = llg = Klles + [|(, 9)F = (hek)* -

Note that this choice of norm allows to compare paracontrolled distributions associated with
different model distributions X and Y. Following the terminology of [29], the function g is
called the derivative of f, and the term (f, g)ﬁ7 the remainder; one should think of the
decomposition
F=T0(X) + (f.9)"

as a kind of first order Taylor formula for f, in terms of regularity properties. The notion
of derivative depends of course on which model distribution is used. As a first step towards
completing the above program, the following statement gives an analogue in our setting of
the right hand side of identity (@3] defining o(z,) X(ds) in the rough paths context. It is
motivated by the following simple regularity analysis based on propositions and 3.0 giving

regularity conditions for the well-posed character of terms if the form i (v) or I® (u,v).
Given f € C* and v € C7, with 0 < a < 1 and v < 0, we have from Calderon’s identity the
formal identity

fo=10 ) + TP(f) + TO(f,v),

where the only term that is potentially undefined is the diagonal term H(b)( f,v). If however,
f is controlled by X, with derivative g € C?, we can write

0 (f,v) = 1 (P (X),v) + T ((f, 9, v),
with I1(®) <H§b) (X), v) well-defined if o + 8+ v > 0. So, writing

1O (1P (X),0) = C(X, g,0) + g1 (X, v),

we finally see that the only undefined term in the above a priori decomposition of fv is the term
m® (X,v), in that controlled setting. The following theorem turns that elementary regularity
analysis into a constructive recipe for defining fv.

Theorem 4.2. Fix an integer b > 1. Let a € (0,1), 8 € (0,a] and v < 0 be such that
a+p+ve€(0,1), a+v<0<p.
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Llet X € C% v € C7, p € C* be such that there exist sequences of smooth functions
(X")n>0’ (U")n>0 converging to X and v, in C% and C” respectively, with the property that

1I®)(X,,,v,) converges to p in C*t7. Then the application
b
(fr9) v = 1P () + TV (F) + TO((£, 9)F,v) + C(X,g,v) + gp
defines a trilinear operator which satisfies

44 (5.9 0 = IO)gurr S 9l 0x {leller + 1XTem oller + pllcass }-

So ((f,9)-v, f) € b (v). Furthermore, this operation is locally Lipschitz in the sense that we have,
with obvious notations where Y, w, g have the same role as X, v, p respectively,

|((r.90- v p) = () )

S Car {dyy ((£:9): (s 1) + 11X = Yllea + [[o = wlle + Ilp = alleass }

where () is a positive constant with polynomial growth in

M = max { X few, [olless [plleas 1Y llews ey, lalleno, [[(F: ) s ey 1o )y -

By definition of the commutator, we note that if v is smooth and v = H®)(f, g) then
gI1®) (u, v) is well-defined, by Proposition B35, and a simple computation yields
(f’ g) ‘U= f’U.

So this new operation allows us to extend, in some specific situations, the pointwise mul-
tiplication between a function and a distribution.

” "

PrROOF — Let (f,g) € bg(X), with f, X € C®, g € C? and (f,g)* € C*P. Let us examine each
terms of

(£,9)-v =17 () + TP () + TO (£, 9)%,v) + C(X, g,0) + gp.

By Proposition B3, we have Hgfb) (v) € C7 and Hq(,b)( f) € C*t7. Proposition yields
that H(b)((f, g9)F,v) € CotPH7. Applying Proposition with a + v < 0, implies that

C(X,g,v) € C%, with 6 = min(a + f3,1). Since a +~ < 8, then gp € C*T7. Each of these
terms belong also in C” and (£4) holds since a < 1.

We let the reader check the Lipschitz inequality for this operation, in terms of (f,g), X,
v and p.
>

Combining the above fact with the paralinearization formula, we are able to study the action
of a nonlinearity on paracontrolled distributions, giving us the equivalent of the elementary
fact that, in the above classical controlled setting for rough differential equations, the image by
some map o of a path (x,2’) controlled by some reference rough path X is again controlled by
X, and has a size given in terms of the size of (x,2’), under reasonnable regularity conditions
on o.

Theorem 4.3. Let o € (0,1) and 8 € (0,a]. Let X € C*, (f,g) € b3(X) and F € C{. Then
(F(f),F'(f)g) belons to b3(X), and

|ED.F 0 ) S WFls (04 11070) 5 ) (1 1X20).
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Moreover, this operation is locally Lipschitz in the sense that we have, with the same notations as
above,

dy (BT (1)g), (F(), F'(0)E) ) < Catl[F 20 (s ((F9), () + X = Ve
where C)y is a constant with a polynomial growth in

M = max{HXHca, Y [lc=.

(h, k)HbZ(Y)} :

Proor — Consider f € C% and so F(f) € C* (since F is Lipschitz). We know that F'(f)g € C?,
since F'(f) € C* and g € C”. Using the notations of Theorem B7] we have

b b b
F(f) = TIg0 1)y (X) = TIE0 1 (f) =TI 4y, (X) + Ree(f)
with Rp(f) € C?* C C*H8. Since f = (f,9)* + Hgb)(X), we have

(b) _1® e (b)

(|

with Hg),)(f) ((f.9)%) € " (due to Proposition B3). So
(®) ®) 1y (b) a
F(f) = Mg (X) € T T (X) = Ty, (X) + €27,

Using Theorem B.8] we deduce that

F(f) =TI ), (X) € CoFP,

which concludes the proof of (F(f),F'(f)g) € bg(X). We let the reader to check the
Lipschitz inequality for this operation, in terms of (f,g) and X.
>

4.2, Schauder estimate for paracontrolled The above definition of a paracontrolled distribution
distributions is adapted to a time-independent setting. To deal

with the time-dependent setting needed to handle
the parabolic equations considered in practical examples, we use an adapted notion. Recall
the definition of the space L7 given in definition

Definition 4.4. Let o € R and 3 > 0 be such that o + 3 € (0,2), and fix X € L, for some
T > 0. A pair of distributions (f,g) € LF x Eg is said to be paracontrolled by X if
(f,9)f == f —IO(X) € CreotP nCy* L.
In such a case, we write (f,g) € E§7T(X) and define the norm
H(f’g)Hbi,T = H(f,g)ﬁHCTca-H% + H(fa g)ﬁHCéf/?Loo + H9||l;g

If Y € £$ and (h, k) € L0 (Y), then we also write

dbﬁ ((f7 9)7 (h7 k)) = ”g - k”ﬁéﬁ + H(f7 g)ti - (h7 k)ﬁHCTCO‘+fBﬁC§/2L°°'

o, T

Remark 4.5. We just point out that the previous definition is weaker than the property
(f,9)f € E%Jrﬁ . Indeed in E;”LB the assumed time-regularity is stronger. Unfortunately, as in
[29], we will not be able to solve the fix point (associated to PAM equation) with this stronger
norm, but only with the one defined previously.
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Theorem 4.6. Let 5 € (0,1),a € (0,2 — /) and a fixed positive time horizon 7" be given. For
some v € C7C 2, let X be the solution on [0,T) of

LX =0 +L)X =v
with X‘t:O = 0. Consider g € Eg, h € C7C*tP=2 and fy € C**F, and denote by f the solution

to the initial value problem
Lf=h+1P(v)

with f|_, = fo. Then we have (f.g) € b2 7(X) and

1G9y S Wfolleass + (1 +T) {llgllgo (1 + follgpea—s) + Ihllpearo-s } -

Moreover, the map (v, X, g, h, fo) — (f, g) is locally Lipschitz.

PROOF — Since v € C7C*2 then Corollary BT yields that X € £%. Moreover g € Eg and f
is the solution of

Lf=h+1P(v)

with h € CpC**tP=2 ¢ CpC*? and Hgb) (v) € C7C*2, by Proposition B3} so Corollary
BITyields that f € £$. So it remains us to check that

(4.5) (f,9) == f = IP(X) € CretP nCp/? L.
Let us derive an equation for this quantity:
L(f,9)f = Lf — LOP(X) = h+ 1P (v) — IO (X)
= h+10(£X) — L0 (X) = h+ [£,10] (x).

By definition h € C7C*T8~2. Moreover we have seen that Héb) (v) € C7C*? and similarly
H_t(]b) (X) € CrC* so that EHEJb) (X) € CrC* 2. By studying the difference (which consist
to commute the paraproduct Hgb) with £) with introducing an intermediate time-space

paraproduct, as done in [29, Lemma 5.1] — whose proof can easily be extended to our
setting, we obtain that

I, IV)(X) € Creo P n ey’ L,

where J is the resolution of heat equation (see Corollary BI1]). We invite the reader to
check the Lipschitz inequality for this operation, in terms of v, X, g, h, fo.
>

With this result in hands, we now have all the theoretical apparatus needed to study some
examples of singular parabolic PDEs. We have chosen to illustrate our machinery on what
may be one of the simplest examples of such an equation, the generalized parabolic Anderson
equation, (gPAM), that was already handled in the 2-dimensional torus both by Hairer in [32]
using his theory of regularity structures, and by Gubinelli, Imkeller and Perkowski in [29],
using their Fourier-based paracontrolled approach. This choice is motivated by the fact that
only one (probabilistic) renormalization is needed to implement the paracontrolled machinery,
while further renormalizations are needed in the stochastic quantization or KPZ equations. So
the reader can see in the next section the machinery at work without being overwhelmed by
side probabilistic matters.



36

5

The (generalized) parabolic Anderson Model in dimension 2

This section is devoted to the study in our abstract setting of the (generalized) parabolic
Anderson Model, in dimension 2. The setting is described in Section [2I The space (M,d, u)
is a space of homogeneous type, equipped with a semigroup (e*tL) >0 satisfying the regularity
assumptions (UE) and (Lip). In the next two subsections, we restrict our attention to the
dimension v = 2. Let us insist here on the fact that even in this modest setting, the above
semigroup approach offers some results that seem to be beyond the present scope of the theory
of regularity structures, in so far as we are for instance allowed to work in various underlying
spaces and even in the Euclidean space with operators L of the form diV(AV), with A Hoélder
continuous — see example 2 in section 2] (We are also able to deal with unbounded manifolds
by working with weighted noises; which can also be done with regularity structures in R?, as
testified by the work [35] of Hairer and Labbé on the linear PAM equation in R3, and their
elementary approach [36] to that equation in R2.) The first two subsections are dedicated to
proving some local and global in time well-posedness results, for the deterministic (gPAM) and
(PAM) equations respectively. To turn that machinery into an efficient tool for investigating
stochastic PDEs in which the singular term involves a Gaussian noise, we need to lift this
noise into an enriched distribution; this step requires a probabilistic limit procedure generically
called a renormalization step. It is performed in section (3] in the geometric framework of a
potentially unbounded manifold and a coloured noise.

5.1. Local well-posedness result for generalized PAM  Fix the integer b > 2, which allows us
to consider the corresponding paraprod-
ucts.

Theorem 5.1. Let o € (2,1) be given, and o/ < o be close enough to « to have 2a+a’ —2 > 0;
let also a large enough integer b > 1, and a finite positive time horizon 1" be given. Let also fix
an initial data ug € C?*, and a nonlinearity F € C3. Given ( € C* 2, denote by Z := J(()
the solution of the heat equation defined in Corollary BI1] and assume that the resonant term
1) (Z,¢) is well-defined in C7C*~2. Then the generalized PAM

ou+ Lu = F(u)<7 U(O) = U
has a unique solution (u,u’) € b2 (Z) with «' = F(u), provided T is small enough.

Since, we have established in the previous sections the main estimates of the paracontrolled
calculus, we can this result by following the same proof as in [29], as extended here to our
more abstract setting.

ProOF — Fix a € (2/3,1) with o/ < « (close enough to « such that 2a + o — 2 > 0) and
K,T > 0. The singular perturbation ¢ € C*2 is fixed and Proposition shows that the
resolution of the heat equation Z := J(() is well defined and Z € L. Consider A(T, K),

the set of couple of distributions (u,u’) € C7C* x CrC® such that
(u,u’) € bng(Z)7 H(u,u’)Hba/ <K, 4/'(0)=TF(up) and (u,u')ﬁ(O) = .
? a, T

We define on A(T, K) the map ~r as follows. For (u,u’) € A(T,K), we set yp(u,u’) =
(v,F(u)) with v the solution of

o+ Lo = (F(u), F'(u)u') - ¢, v(0) = uo.
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Then since (u,u’) € bg:T(Z) and Z € L%, Theorem implies that (F(u),F'(u)u') €
b3 (Z) with

| (P, F )

So since we assume that the resonant term II1(®)(Z,¢) € CrC* 2 is well defined, then
Theorem 2] (with v = a — 2) allows us to define (F(u), F'(u)u) - ¢ such that

(), Fu) - ¢ Fw)) € 8857(C)

(since we have o/ +2a — 2 > 0) with

< H (F(u). F'(u)u)

SIFlles (14 ||y u)|[7r ) (1 + 1 X[12, o)
b o

be'(Z)

ey
(Iglicas + 1 ZlereaIClleas + [LO(Z, )|y as)

b3 1 (Z)

We have the decomposition

(F ), F' ) - ¢ = (F(u), g = F'(uu) - € = Ty () + i (€).

Using Theorem [£.6] with the comment following theorem [£.2] and the fact that by definition
F(u)¢ := (F(u),F'(u)v) - ¢, we deduce that the solution v of the equation

v+ Lv = (F(u), F'(u)u) - ¢, v(0) =up
with initial condition ug € C?®, satisfies

(v, F(u) € byp(2),

with H (v,F(u)) H bounded above by

of
o, T

Jaoflan + 77 (1P g 1+ Ieleas) + (P = P/ € = Ty @), )

where € := (a—a’)/2 > 0. At the end, by combining all the previous estimates we conclude
that (v, F(u)) belongs to b (Z) and has a b 1.(Z)-norm bounded above by

Jaalsn + 77 (IF ey (1 -+ I€llees) + IFlly 1+ a2l ) 1+ 1212 )69).

with
(%) := l[¢llca—2 + [[Fllz llullorea lI¢llca—2 + IT(Z, ¢) |0y coa—s.

So then we conclude that for a large enough K and a small enough time 7" then v maps
A(T, K) into A(T, K). Moreover, we also have for (u,u') and (v,v") contained in A(T, K)
that

dyr, () 72 (0,0)) ST° (Jlu = vllg +dy (w1, (v.0)) )

with implicit constants depending only on K, Z and (. So, as ¢ is positive, for a small
enough 7" the map 7 defines a contraction of A(T, K'). We may then apply Picard iteration
theorem to find a unique fixed point of 7. Since it is easy to check (as detailed in [29])
that a solution of (gPAM) has to be in A(T, K) (at least for a small enough T'), this shows
the local in time well-posed character of the equation.

>
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5.2. Global well-posedness result for linear PAM ~ We focus in this subsection on the linear (PAM)

equation and prove a global in time well-posedness
result in that setting. With that aim in mind, we define a weighted (in time) version of the
previous functional spaces of paracontrolled distributions.

Definition 5.2. Given A > 1 and a € (—2,2), set
Ewa:{femeowumwnggeAﬂﬂﬂma<w}

and

2 s = 569)
5;/ L= f € Lloc( ) ”f” a/2Loo ‘= sup ¢ A H o HOO <0
Ogs:;tgl |t — S| 2

We then define the space LS := £,C4 N 5;/2L°° and similarly the space bg A\

Following the reasoning of Theorem 5.1} we aim to obtain in the linear situation some global
in time results. One of the main ingredient used is given by the Schauder estimates, through
Proposition B0 or Corollary BIIl We now give an extension of these estimates with the above
exponentially weighted spaces.

Proposition 5.3. Consider an integer a>0,5¢€(=20)and A > 1. For every € € (0,1) and

v € ExCP the function V(¢ fo s)ds belongs to £,C7+272¢ and satisfies the A-uniform
bounds

IV, cor2—2e S A [vllgycn-
and
Vllggo-2012 o S AT 0llgyco-
Consequently,
IVl ppra-2002 S A5 M0l gy

ProOOF — We adapt the proof of Proposition B.I0land add an extra new argument to consider
the exponential weight in time. So consider another integer b > |/3]|/2+ 1 and a parameter

€ (0,1]. Then
t
0) = [ QUPLu(s)ds
0
Hence,
() p(@) < (1
HQT Ptfsv(s) LS <’7’—|—t—8> HQTth sV ) o

(7)) re 9 O s

T+t—s

So by integrating, it comes

t b
—At|| ) (b) —\(t—s) T _\B/2 —\s
¢ HQT (V(t))Hoo s (/0 ‘ <T+t—8> (T+t °) ds) ssel[lol?t]e HU(S)HOB

t b
—A(t—s T 2
S (/0 ) <7T+t—8> (T—i—t—s)ﬁ/ ds) [vle,cs-



Let us just consider the integral term (temporarily denoted by I). If ¢ < 7 then

t 1— e*)\t
I< 7'5/2/ e M9 4s < 75/27)\ < Tﬁ/2()\t)(17€))\71
0
< Tﬁ/?‘Fl*E)\*E.

If ¢t > 7 then

t t—T b
1< P2 / e NE=8) gs 4 / eW5>< . ) (t —s)??ds
t 0

-7

— AT
S 75/21% i / e M=t — 5 ds
0

1—e 0
S Tﬁ/Qf + 7—5/2-1-1—6)\—5 </ e Tl dw)
0

< B2 1—ey ¢
So in both situations, we deduce that uniformly in A > 1 and ¢ > 0, it comes
QP (V)| s A ol o
and similarly
PV S A Iolleyes-
Consequently, we deduce that for every ¢ > 0

—\ —
e MV )| pprase S A0l et
which yields
[Vllg\coa-22 S A5 |vlleyen-

For the second statement, for s < t we have
t
V() = V() = (RO =10V + [ RO o) ar

= [Taeve L [ RO ar
0 s

,
So
el e (@) dr| _ e gra+1 dr\
e ; Q, V(S)T ~ U, r )€ HV(S)HCB+2
< (t — 5)P/2H 1= A(t=8) g=A(t=s) 1V ||, coo
S (= )PPt = 5)) |V g, 0me2
S (= 8)PPTENTE| |V g, o

39
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and also (since 8 < 0)

/t P [o(r)] dr

s

ef)\t

< /st e N </tlr HQ(TG)U(T)HOO Ci_—T + le(a) [v(r)] HOO> dr
< [ (boles [ 2 E 1Ol ) dr

t 1
dr
< Jlolls, s / e AE) ( / 76/27+1) ar

t
Sl [ e (=24 1) ar

s

SA ullgyen (t = 5)7217,

where we used 3/2 +1 € (0,1). So we conclude to

oo

Vllg@+21/2-¢ oo S A5 0llgc-

>

Theorem 5.4. Let o € (%, 1) be given, and o/ < a be close enough to a to have 2a+a’ —2 > 0;
let also choose a large enough integer b > 1, and fix an initial data ug € C2® with some A > 1.
Assume that ¢ € C®2 and that the resonant term H(b)(Z, () is well-defined in £4,C*~2 where
Z = J(Q) is the solution of the heat equation (0, + L)Z = ¢, with null initial condition. Then if
A is large enough, the linear PAM equation

Ou + Lu = u(, u(0) = ug
has a unique global in time solution (u,u’) € b%,(Z) with v’ = u.
PRrOOF — Consider a € (2/3,1), K and A > 1 parameters (which will be fixed later). Since

¢ € C*~2, Proposition 5.3 implies that Z = J(¢) € L. For some o/ € (0, ) (close enough
to a such that 2a 4+ o/ — 2 > 0), consider the set A(\, K) defined as

{(u,u') € ECY X ECY; (') € b\ (2), (st < K, w/(0) = g, (u,u!)(0) = uo} .

Hbgi/\
We define on A(), K) the map v, as follows: for (u,u’) € A\, K), we set vy (u,u’) = (v, u)
with v the solution of

O+ Lv = (u,u) - ¢, v(0) = up.

Then by the same considerations, as detailed for Theorem [B.]] (with some simplifications
getting around the paralinearization step since here we only consider the linear situation)
and using Proposition instead of Proposition B.I0, we get the following: for (u,u’) €
A(XN, K) then ~,(u,u’) belongs to bg:)\(Z) and satisfies (uniformly in A > 1) with ¢ :=
a—ao >0

(et )l 2y 5 ol + A (Jlulleg (14 [Cllen-z) + 110 e )
with
) = (I¢llea-s + 1 Zllesce Iellea—s + TOZ Oll gyezans ) -

Since € > 0, we deduce that for K and A large enough then v, maps A(\, K) into A(\, K).
Moreover, we also have for (u,u') and (v,v’) contained in A(\, K)

dbgtA <’)’)\(U,, U,/),"}/)\(’U, U/)) g ATE (HU - UHﬁ‘; + dbsz ((U, U,/), (U7 U/)))
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with implicit constants depending only on K, Z and (. So for a large enough A\ > 1 then
v defines a contraction on A(A, K). We may then apply Picard iteration theorem to find
a fixed point of 4, which yields a global (in time) existence and uniqueness of solution.

>

5.3. Renormalization for a weighted noise  We cannot expect to work in the Besov spaces used

above when working in unbounded ambiant spaces
and with a spatial white noise; so weights need to be introduced, with a choice to be made. We
can either put the weight in the Holder spaces and still consider a uniform white noise, or we
can put the weight on the noise and consider a coloured noise with values in unweighted Holder
spaces. The first approach has been recently implemented by Hairer and Labbé in a forthcom-
ing work (see [36]) on the linear (PAM) equation in R3. We chose to work with the second
option here, partly motivated by exploring this unexplored question, partly because it seems
to us that spatial white noise in an unbounded space has more something of a mathematical
abstraction than of a model for real-life phenomena.

Definition 5.5. Let w be an L?(u) weight on M; the noise with weight w is the centered
Gaussian process ¢ indexed by L?(wpu), such that for every continuous function f € L%(wpu) we
have

(5.) B[E()?] = [ Pa)w(an(do).
Let us define the following notation. For t > 0, we denote by G; the Gaussian kernel

Gi(z,y) =

1 _cal(ﬂc,y)2
—¢ t ;
V(z, V1)
it also depends on the positive constant ¢, although we do not mention it in the notation for
convenience. Since, we will have to "commute” in some sense the Gaussian kernels with the
weight w defining the colour of the noise, it seems natural to make the following assumption.

We assume the existence of some implicit constant such that for every t € (0, 1] and every
x,y € M, we have

(5.2) Gi(z,y)w(y) S wl(x) Gilz,y).

Recall the definition of Ahlfors regularity of a measure p on a metric space (M, d), given
in section before the Sobolev embedding theorem 2.9 and quantified in equation (2. In
that setting, it is relatively elementary to use the latter and prove by classical means that a
coloured noise, as defined above, has a realization that takes almost-surely its values in some
Holder space.

Proposition 5.6. Assume that (M, d, 1) is Ahlfors regular and let £ be a noise on M, with weight
w € L' N L™ satisfying the assumption (5.2)). Then, for every o < —75, there exists a version of &,
still denoted by the same symbol, which takes almost surely its values in C°.

Proor — It suffices from general principles and lemma 2.9 to check that the two expectations

B ([l
)= /01”% s %)

are finite for every p > 2. We show how to deal with the second expectation, the first one

and

being easier to treat with similar arguments. Starting from the fact that ( Ea) f ) (z) is, for
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every € M, a Gaussian random variable with covariance the L?(wp)-norm of K o (z,-),
t

the equivalence of Gaussian moments with (5.1]) give the upper bound

oo ] =l )]

S| [ HgleoPutntas

Using the Gaussian bounds for the kernel of an) with property (5.2]) and Ahlfors regularity,
this implies for ¢ € (0,1)

L]

E[|0i1] @)] 5wttt

Hence, it follows

if o< —%. We conclude since w € L' N L>® C L%,
>

Let £ be a coloured noise, with weight w, and define for every s > 0, a function g; : M — R,
by the formula

gs(x)t==IE[II(e*SL£,£)(w)};
so that we formally have
/0 gs(x)ds = E[H(Iflg,g) (x)]
An explicit computation can be used in the case of the torus and the white noise to show

that this integral diverges; see [29]. A similar computation can be done in our setting with

the help of a highly non-trivial estimate on the kernel of the operators le), showing that
the above integral also diverges at almost all points x of M. These facts justifies that we
consider the modified integral (B.3]) below. Even though we shall only use here theorem [£.7] in
a 2-dimensional setting, we prove it in the optimal range of homogeneous dimensions d € [2,4),
for use in forthcoming works. Denote by 9 the function J(§) solution to the linear equation

(0 +A)0 =¢.

Theorem 5.7 (Renormalization). Assume that (M, d, u) is locally Ahlfors regular, with homo-
geneous dimension d = v € [2,4). Consider ¢ a weighted noise with weight w € L' N L satisfying
assumptions (5.2)). For some integer a > 0, set

(5.3) 0090 = | {0 €) (@) - ()} s,

where we recall that gs(x) := E[H(e*SLg,g) (m)] and we write IT for TI(®). Consider one of the
following time functional space F = Cr (for some arbitrary T' < o0) or F = &), for some arbitrary
A > 1. Then for every a € <1 — %,2 — %) and p € (1,00), we have

E[[90€ ez < o0.

Moreover, by considering for ¢ € (0, 1), the regularized versions ¢° := e~¢1¢, and ¢ := =10,
and ¢© := fOOOE [H(e—ngf,g&)] ds, then for every p € [1,00), we have

tim E[[90€ — (I10(9,6%) — ) [ paas] = 0.
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Remarks 5.8. e In particular, if the ambiant space M is bounded (and so of finite mea-
sure) then the constant weight w = 1 satisfies (5.2) and belongs to L' N L. So the
previous results can be applied to white noise.

e In Proposition as well as in Theorem [5.7, we do not need w € L' N L. Indeed,
what is really needed is w € LP for sufficiently large and finite exponent p.

e Consider a fir point o € M, then any weight of the form w(x) = (14 d(z,0))™™ for
M > d/2 satisfies the assumption (52) and belongs to L N L2.

PROOF — By definition of white noise with colour w, we know that if T, 7" are two self-adjoint
operators then for every y,z € M

(5.4 B[ (7€) () (1) 2)] = [ K)o (w.2) w(u)n(du).

Moreover if T and T” are self-adjoint operators, with a kernel pointwisely bounded by
Gaussian kernels at scale t,t' € (0,1]: for almost every x,y € M

{KT(.%',y){ ggt(may) and {KT/(I',:I/)‘ ggt/(way)
then we deduce by (B4]) and Assumption (5.2) that

E[T¢(y)T'¢(2)] = / Ko oty ) Ko (1, 2)eo () po(du) < / Gt ) Gor (11, =) (11) u(dlr)
(5.5) < w(y) / Gu(t, ) G (11, =) pu(ds) S w(y) Gear (v, 2),

where we used Lemma [A5l Fix now an integer b > 2 + % and for r € (0,1] and s > 0, we
define the quantity

1 1 r b r b
A(r, s) ::/ / < ) < )
o Jo r 4t r 4 o
4 dty dts

1
tito 2 _d _
T B B — t t t t —_—
((t1+s)(t2+s)> (s+t1+t2) 2(r+t1 +1t2) 2 oty

We set the function
Esi= H(a) (6_8L§7 §) — Ys,
and we claim that for every r € (0,1], s > 0 and every € M then

(5.6) E ||QVZ()] S AW, s)w(@).

Step 1 — Proof of (G.6). The resonant (or diagonal) part of the paraproduct II(®) is
given by five terms, of the form
1 ' 1 dt 2 ' p oy dt
R (f,9) = ; Py ((LL)PLf - Qug) 7 o R (f,9) = ; P (Qef - (tL)P; g) e
or
1
dt
Re(1.9) = [ Pr (ViR Virke) §
0

where
e P, P} and P? are operators of the form p(tL)e~*" with p a polynomial function;
e Q; is of the form (tL)* 'p(tL)e " with a polynomial function p.
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So both of these operators have a kernel with Gaussian pointwise estimates and we only
have to deal with these three generic quantities.

Let us focus on a term of the first form and study
=R (e, €)(x) —gs(2)  with  gy(a) = E[H1 (e7°"¢,¢) <w>]-

Due to the covariance rule of Gaussian variables, we have for T, U, T, U’ self-adjoint op-
erators (using (5.4)) and every y,z € M

E(TE(W)UEWTE()U'E(2) - E[TEWUEW)|E[T'E(:)U'E(=) )
= E[T¢()T'E(2)[E[UL(y)U'E(2)] + E[TE(y)UE(2)[E[UE(y)TE(2)].

Hence E UQT =5 ( )|2] is equal to

/01 /01 {(Qﬁbml ®QWP,) (E[(tlL)ptllestg(.)(tgL)PtlZe*ng(o)}E[Qtlé(o)gtzg(.)})(Lx)
+ (0P, 8 QUP) (B[ LyPLe e(0) Q0o E[QuE(w) 1o Pl e(w)] ) )} T 22,

where we use the notation f(e,e) for a function of two variables, with (fg)(e, ) standing
for the map (y,z) — f(y,2)g(y,z). Moreover, to shorten notations, we shall use below
the notation dm for the measure p(dy)u(dz) Citll 6?;2 By applying (5.5, it follows

E|[QVEi@)’] S 51+ %

with

N ::/ |Kqop, @ 0)] [Kgorp, (@.2)|w(y)w(z )Gy (9,2) Gryira (. 2) dim
Op, Q) Pry ti+stats 0 e

and

P2 ::/‘KQ(I’)P (x,y)HK ® (x,z)‘w(y) z) LB g +tats(Y 2) Gty a5 (), 2) dm.
rh Q7 Pry ti+sta+s 7 e

Let us first explain how we can estimate the kernel of Qr )73251. Using the notation Py, =
p(t1L)e~ "% for some polynomial function p, it comes

b b
(b) — r 1 —rL 7t1L
QUP, (H %n) ((r+ 3t)L) e Ep(ti Le

b
N (b) 11L
= <7’+ %ﬁ) QT‘+1t p(t L)e 2

so since 7+ 1t; ~ r 414, inltl has a kernel with Gaussian bounds at the scale 7+ 1¢; and
2

p(tlL)e’%tlL at the scale t1, it follows by Lemma [A ] that ng)Ptl has a kernel pointwise

T
r+t1

b
bounded by G,4; with an extra factor < ) . Coming back to estimate the first term
J1. We have the upper bound

b

r? t to
J < - N/ N T 9 T b S 9 b d
1 N/ 0+ ) Grit1(2,Y) Grt, (7, 2) w(y)w(z )t1 Teh s Gty +tats(Y, 2) Gty 41, (Y, 2) dm
2 7“2 b tl tg
5 w(z) (7’ —+ tl)(r + tQ) t1+ sty + SgTthl (1'; y) gT+t2 (:C, Z)gtltherS(yv Z)gtlthz (ya Z) dm,
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where we used Assumption 5.2l Due to Lemma [A.5 with Ahlfors regularity (Z3)), we have

/ gr+t1 (x, y)gT+t2 (m, Z) gtl +to+s (y7 Z) gt1 +to (y7 Z) :U'(dy)lu'(dz)

5 (tl + 1o + 5)*% / gr+t1 (xa y) gr+t2 (x’ Z) gt1+t2 (y, Z) :U’(dy)lu’(dz)

d d
S(ti+ta+s)"2(r+t +t2) 2.

~

Hence,

ngew? [ [

Sw(z)?A(r, s).

~

b
T2

(7“ + tl)(T + tz)

t t dt1 dt
L (st ta) I (r 4 by) T 22

ti1+sty+ s

t1 12

The second term J can be similarly bounded, which concludes the proof of (E6) for =!.
The corresponding term Z? with R? can be estimated in the same way. So it remains us
now to focus on the last and third term with

R3(f.9) = /0 Pur (PL1.PRg) %
and 22 := R3(e71¢, &) () — ¢g3(x). Following the exact same reasoning we have
E(|QV=})") S K+ K
with K7 equal to

1
2

t1ta

m Gt ttots(Ys 2) Gigto (4, 2) dv

1w, @) [ Ko, @ 2) @it

and Ko equal to
thty 2

ITEAYZ A s ’ 1 2+S 9 d .
(t1 + 8)(t2 + 5) Gtit+ta+5(Y, 2) Gt tta+s(y, 2) dv

1w n, @) [Eqpn, @ 2)|owi:)

Following the same computations, gives us that both K7 and K5 are bounded as follows
K+ Ky Sw(x)?A(r, s),

which concludes the proof of (5.6]).

Step 2 — Conclusion. We refer the reader to Lemmal[A.6] for a precise control of quantity
A. Combining (5.6]) with Lemma [A.6] gives

1

61 E[lePze]] sE[l0Pmel] suw (=) et (14105 ()

We then consider
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We refer the reader to Definition [2.0] for the definition of Besov spaces (involving an integer
b). So for all 0 < s < t, it comes

E[HW( = 9066 g, 2}— /0 e /MIE<{Q£”>[19<>£(1?)—1905(8)]12p> pldr)

,
1 o ;
< /O —p(2a-2) /M ( / E<|ng>5(7)(x)|)d7> M(dx)%
1 t L , . w
S HngZ/O F—p(20-2) (/s (T:LT> (rr)” 4 <1 + log (TTH)> d7-> 77“’

where we have used Gaussian hypercontractivity; see [22]. So it comes, by Minkowski
inequality,

E | [90€(0) ~ 90605 2o

1 2p
t 1 p P 2
2 —2p(a—1) r _dp T+ @ E
S llwllsy (/S </0 72 <7’—|—T> (r7)” 2 <1 + log ( . )> . dr | .

We have

[ Y o o) 2

T opla1) (TP 77Pd_ —2p(a—1) dp pdr
5/0 rP (7‘) (r1) / P (r7)” (1+10g( )) .

5 T—Qp(a—l)—dp’

R

since
—2((1—1)—g<0<—2(0z—1)+1—g
which is equivalent to
1- d <a< s g
4 2 4
Observe that this last condltlon is satisfied since d 6 [2,4) and so 1— 1 <a<2-— %l %— %.
Then because of o < 2 — , it yields —(a—1) — & > —1 and so

t 4 2p
B | [996(0) - 008(6) oz | < oty ([ 04 ar)

2 d
S lwllgpls — ¢ =22,

We can then use Kolmogorov’s continuity criterion to deduce that for every T' < oo and
A > 1, we have

R e e

And using Besov embedding (due to Ahlfors regularity ([29]), see Lemma [A.4]), we know
that

ngzi SN 333002 SN BZa 2—d/2p __ CZoz—Q—d/Zp.

d d
So for every p > 1 and every a € (1 — §,2 — §)

[HﬁQSHCTc?a 2- d/zp] +E [Hﬂogug CRa—2- d/2p:| < 00,

which allows us to conclude.
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Step 3 — Second part of the statement. The second part of the statement about the
approximation results can be similarly obtained, we only have to include some additional
factors coming from

- —eL _ c (1) do
Eoe=(1-e by /OQoﬁ

A careful examination shows that in the previous reasoning, £ may be replaced by Qf})g
and the difference involves some extra factors of the type

so oty oty
, or — = .
(s+0)? (o0 +1t1)? (0 +t2)?

In these three situations (by replacing £ with le)g), the same estimates hold with a
quantity Ay (r, s) satisfying (instead of ([A.9)), for n > 0 as small as we want

(5.8) Ap(r,s) S <S - T) (rs) /2 <1 +log (2 ;r 7“)> (min((fn 8)>n .

Then we let the reader to check that since all the conditions on the exponents are “open
conditions”, then the previous reasoning can be reproduced, up to a small loss of regularity.
So with

F.:= 906 — (M0 (9°,6°) — &)

we get for a sufficiently small > 0

2p
d
B2a 2] </ / r—(a=1)—d/2 dT—U>
2p,2p g

e 2pn
S Is = t] a2 ( )

|s —t]

| Fe(t) — Fe(s)||

which allows us to conclude as previously using Besov embedding.
>

PROOF OF THEOREM — Let us fix the (coloured) white noise ¢ and its regularized version
€8 :=e°L¢. As in Theorem 5.7 or Theorem [Z, let us consider the function

& = /OO E [TI(e*L€8,¢%)] ds = E[H(L—lgf,ga)].
0

In order to make appear this term in the equation, we can introduce a suitable correction
term in the regularized problems and we are conducted (as detailed in [29]) to study the
following renormalized PDE

O + Luf = F(u®)E8 — & F' (uf) F(u).

We then follow the exact same approach as for Theorem [5.1] (or Theorem [5.4] for the global
estimates with the spaces £, ), adapted to this modified PDE. So we only detail the required
modification. We cannot use II(?)(X® £%) but we have to replace it by I®) (X &) — &
which belongs to CpC2*~2.

Using the arguments of Theorem (with v = o — 2), it allows us to define the following
“product” for (u,u’) € d¥(X®)

((F(u),F'(u)u') £6> — u'F'(u) € ba 27(C)
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uniformly with respect to e (since an upper bound involves only [|[TI®) (X¢,£5)— ¢ lope2a—2)
with

(), P wpa) - € = T, (6°) = ' F' ()|
<. Few)],

CTCQa72
o I caz 41X orea € a2 + [T (X7, €) — ]|, 202 ) -

Then we conclude as in Theorem [5.1] (or Theorem [5.4]), by using a fixed point theorem.
>

A

Heat kernel and technical estimates

We gather in this Appendix a number of propositions whose proofs were not given in the
course of the paper, so as to keep focused on the most essential aspects of our work. These
proofs are given here.

We start by proving the following pointwise and LP-estimate for the gradient of the heat
semigroup.

Proposition A.1. Assume that (M, d, i) is a doubling space equipped with a semigroup satisfying
(UE) and (Tip). Then for every t > 0, z9 € M and every function f € L? we have

d(m'o,

(A1) |(VD) (e f) (o) )\f )| 1(dy).

< ol

Let us first introduce the following notation: for a function f € Ll20c and a ball B C M, we
write Oscp(f) for the L? oscillation of f on B defined by

1/2
Osca(f) = ( |~ avep(0P du) |

where Avgg(f) = fB f du stands for the average of f on the ball B.
ProOF — Fix the function f € L? and consider g = e7*f. By L2-Caccioppoli inequality (see
Lemma below), we have for every zp and r > 0 that

1 1/2
|
][ I'(g)*dp | < =0scp(m(9) + ][ |Lgl* du| .
B(zo,r) r B(xo,2r)

So if x¢ is a Lebesgue point of I'(g)? and |Lg|? (which is the case for almost every point
xo € M) then taking the limit for r — 0 yields

(A2) I(g)(z0) < liminf  Oscpny an(9) + [Lg(zo)].

r—0 1r

Since (tL)e~*" has a kernel satisfying the Gaussian upper estimates (UE]) (by analyticity),
we deduce that

(A3)  ltLg(wo) < xp (—M> ()] ().

/\/V960 V(y, V1)
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Using Lipschitz regularity for the heat kernel and doubling property, it comes for
x,z € B(xg,2r) with r </t

lg(x) — g(2)| = [e " fx) — e f(2)]

( >/ MV (0, VIV (V) p<‘@) £ @)l p(dy).
360

Hence, uniformly with respect to r € (0, \/_ t) we obtain

1 1 1 d(z,y)?
— Oscp(zy.2r < — exp | —¢c —— dy).
~ O8CB(z0,2r)(9) \/g/M \/V(mo,ﬁ)v(y, 7 p( ; )\f(y)\u( y)

By combining these last inequalities ([A.3]) and (A.4) into ([A.2)), one concludes to ([A.T]).
>

(A4)

Lemma A.2 (Cacciopoli inequality). For every ball B of radius » > 0 and every function

f € Do(L) we have
<][ P(f)Qdu>§ < lochB(f) +r <][ |LfI? du>§ .
B r 2B

Before to check this inequality, let us first recall some consequences of the Gaussian upper
estimates (UE). Under (UE]), we know that a scale-invariant local Sobolev inequality holds,
more precisely

1£12 < 1Bl (1F13 + 72€(F. 1))

for every ball B of radius r > 0, every f € Dy(I") supported in B and for some g > 2. This
inequality was introduced in [5I] and was shown, under (VDI), to be equivalent to (UE]) in
the Riemannian setting. The equivalence was stated in our more general setting in [54]. See
also [I4] for many reformulations of local Sobolev inequalities, an alternative proof of the
equivalence with (UEl), and more references.

Such a local Sobolev inequality also implies a following relative Faber-Krahn inequality (see
for instance [39, Theorem 2.5], as well as [I4, Section 3.3]): for every ball B with a small
enough radius r > 0 , every function f € Dy(I") supported in B then

(A.5) 1£ll2 < rITC)l2-

PrOOF OF LEMMA [A.2] - We refer to [9, Lemma A.1] for such a result for harmonic function:
if u € Dy(L) is harmonic on 2B (which means L(u) = 0 on 2B) then

(A.6) (JQT(U)Z d/L)% S %OSCQB(U)'

Now consider f € Dy(L). By [0, Lemma 4.6], it is known that there exists u € Day(L)
harmonic on 2B such that f —u € D(I') is supported on the ball 2B. By the support
property, it follows

T =0l = [ =i - wda = [(f —wL()an
So using Faber-Krahn inequality (AJ]) we obtain
(A7) If = ulls S 7IT(f = w)lL228)

and so

IPCf = w3 S If = ull L) z22my S IT(F = WLl 228,
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which yields

(A.8) 1T = wll2 S rIL() 2 2)-
Then we split

T2 < I = wllz2 + T (w)ll2 S 7L L228) + 1T (w)l2
and then use (A0) to get

<]€B r(f)? du>% <r <]€B ]L(f)]2du>% + % Oscap ()
ST <]£B |L(f)|2al:“>é + % Oscap(f) + % <]£B |f - u|2al,u>é
Sr <][B |L<f>|2cm)é + 2 Osean(f),

where we used again (A7) and (AZ8) at the last step.
>

We also give a proof of the following basic important fact about the Holder spaces C? defined
in definition 271

Proposition A.3. For 0 < 2, the Holder spaces C? do not depend on the parameter a used
to define them, and the two norms on C° corresponding to two different parameters a,d’, are
equivalent.

PROOF — Given two positive integers a and @', consider the two spaces CJ and C7,, and their
corresponding norms. Fix ¢t € (0,1]. If a’ 2 a, then writing

Q) =2y = 2 QR
and using the fact that the operators ) t?;a) are uniformly bounded on L, we get
- lles, S 1 lleg.

If now @’ < a, write

Q" = /Q Q) = Qi Pl

Qta/)an—a’) = (;)a Qt+s (t _|t_ s)a

et aes] 5 () o],
() 5 1 ley

oae = (3) " i ()

For s <'t, we have

so that for f € CJ

QLY. f

For t < s, we have



51

so that
a’ afa/ t al a
et aend < () [eins
S (5) st 0les
|| < e
Then by integrating (and since a’,a —a’ > 1> §) we have

lo s = ([0 L)t hrtes + ( / (t) % d—) 17 lleg + 1 17 eg

S 2| fllcg,

which concludes the proof that

‘ [e.e]

w | o+

and similarly

I lles, S - lleg-
>

The following lemma provides a useful way of proving that a distribution is Holder; it was
used in sections and to investigate the almost sure regularity properties of white noise
and the renormalized paraproduct dealt with in theorem 5.7l We recall that Besov spaces were
defined in Definition

Lemma A.4. Assume that the metric measure space (M, d, p1) is Ahlfors regular (see ([2.9])), with
exponent v. Then, given —oo < 0 < 2, and 1 < p < 0o, we have the continuous embeddings

v

o—— _v
By, = By < Boodo = Cco r.

PROOF — The first embedding is a direct application of the following fact. For s € (0,1) and
an integer a > 2 then

2 [F a
Q=2 [ @ (3) et ttsa
s/2 13

S

Since the semigroup is uniformly bounded on LP, we get

5 a dt
Jos], = [l %
P s/2 P
and by Holder inequality

(a) - s (a) P dt 1/p< o
ol = ([ o %) 5 w1t

The second embedding comes from the following elementary fact. For ¢ € (0,1), let T" a
linear operator with a kernel, pointwisely bounded by a Gaussian kernel G; at scale t, then
with Ahlfors regularity ([29]), we have

T\ posroe St 2.

So for s € (O, %), applying to T' = an) we obtain since Qgia) = 22“62(3“) ga)

|05 7] 5575 |lets] , <575 E sy o

which proves the embedding By ,, < B;fogo.
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The next three lemmas were used in the proof of the renormalization theorem [B.7]

Lemma A.5. For every t > 0, set G; the Gaussian kernel at scale ¢

1 d(z,y)?
Gi(r,y) = ——me P,

V(z, V1)

where we forget the dependence with respect to the constant c in the notation. Then for s >t > 0
and every xz,z € M, we have

1
[ 6@ty 2) i) £ Gu2) £ A EVCES U Pt

PROOF — By considering that G(-, 2) belongs to L', uniformly in s, we directly obtain that

[ GGyl 5 sup o) 5 s

yeM
Moreover,

exp (—d(z,y)?/s) - exp (—d(y, 2)* /t) < exp (—d(x,y)*/s) - exp (—d(y, 2)*/s)
< exp (—d(z,2)*/(2s)) .

So in the product Gs(z,vy)G:(y, z), we may factorize an exponential decay and so for some
implicit constants, we have

/ Go(2, )G (), 2) duy) < Ga(w, 2).

Lemma A.6. For r € (0,1], s > 0 and d > 2, let us consider the quantity

A(r,s) ::/01/01 <T1t1>b<rlt2>b...

1
1t 2 dty dt
(%) (st +1t2) 2 (r+ty +1) 2 222

t1 4 8)(ta + ) ti ty’

where b > 2 + %l is an integer. Then we have

(A.9) Alrys) < (Sir> (rs)~3 <1+log(8—:r)>.

PROOF — The two variables t1,ts play a symmetric role so we may restrict our attention to
the double integral under the condition t5 < t1. The part A; of the double integral where
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to < t1 < 7 gives

t tit 2 dto dt
o= L (e e
o Jo t1—|—s tz—i-s) to 11
t1 _d _d 8+t1 dty
(t1 +s) 21 2 +lo —
<[ (75) e <t1+s> ( )%
< - %/ t 14 s+t1 dty
~ 0 (tl + S)d/2+1 t1

gr_% s_d/2—<1+log(8+ >s—i—7" -3

r sS+r
s+ <1+log( S )>’

where we usedthe basic inequality

f dts to\? s+t
< ! > (1 + log (—— )>
\/ tQ to + S s+11 S
which can be easﬂy checked by splitting into the two cases t1 < s and s < t1. The second
part Ay of the double integral where to < r <ty is controlled as follows

1

t1ts 2 _d _d dto dt;

t, 2(t —_—

(r.5) // <7”+t1> <(t1+3)(t2+3)> 1t e) ta 11

b 1 1

T ty 2 T 2 s+ 4 —ddty
S 1+log (——) ) (¢ t, 2 —
N/r <t1> <t1+s> <r+ > <+°g( 5 )>(1+8) B

d

S <1+10g( ”)),

where we used Lemma The third and last part Az of the double integral where
r <ty <ty satisfies

t t1to 2 _d d dty dty
e t. 2(t -5 =t
(r:3) // <t1> <t2> ((t1+8)(t2+8)> i) ta t
b 1 1
T ty 2 r 2 d ddtl
< t
N/r (751) <f1+8> <T+5> (t )78 t1

We then use again Lemma [A7] to obtain
Asz(r,s) S

[V

[S]ISH

—(rs)”

Inequality (A29) comes by combining the above three estimates.

Lemma A.7. For every r,t € (0,1) andany 0 < p<e¢

1 P P
/ ! t_5@< 4 e
r \t+s t T \s+r

PROOF — Indeed if r > s then for every ¢ € (r,1) we have t ~ ¢ + s and so

1 P 1
/ ! tig@ </ tfeﬁ ~ L
\t+s P
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Now if s > 7, we split the integral in two terms and we have

1 P s P 1
Loyt (et [
r \t+s t ™), \s t s t

S(3) s (G)
~ \s ~\s

where we used € > Ap.

B

Extension of the theory

Consider as above a doubling metric measure space (M, d, 1) equipped with a heat semigroup
satisfying the upper gaussian estimates (UE]). We aim in this appendix at explaining how one
can get the same conclusions as in the above main body of work

(a) by weakening the Lipschitz regularity assumption on the heat kernel (Lip]), assuming
only some integrated estimates of the gradient of the heat kernel;

(b) by developing the theory of paracontrolled calculus in Sobolev spaces rather than in
Holder spaces. By Sobolev embedding, Sobolev spaces are included in some Holder
spaces, so it will be interesting to understand if starting from an initial data belonging
to some Sobolev space, the solution of renormalized singular PDEs will lives in this same
scale of Sobolev spaces. From a technical point of view, it is a bit more difficult since
Sobolev spaces involve simultaneously all the frequencies, whereas for Holder spaces we
can work at a fixed frequency scale.

We give in section [B.I] the regularity assumptions on the heat kernel under which we shall
work here, and reformulate and extend in section [B.2] the main continuity estimates on the

operators Pt(a), Qta) and I' needed to extend the paraproduct machinery to the present setting.
The latter, together with some crucial commutator estimates in Holder and Sobolev spaces, is
investigated in section [B.3l The last and short section [B.4] describes how these results can be
used to extend the results of section [B] to our optimal regularity setting.

This appendix was written jointly with Dorothee Frey.

B.1. Regularity assumptions Rather than assuming the Lipschitz property (Lip) used above

we shall assume here that the gradient /carré du champ operator
I' satisfies some L7 estimates and the Li-de Giorgi property recalled below in sections [B.1.1]
and [B.1.2l We shall also assume that it satisfies a scale-invariant Poincaré inequality recalled

in section [B.1.3]

B.1.1. LY-estimates of the gradient of the Given ¢g > 2, the following uniform L%-boundedness
semigroup of the gradient (or “carré du champ”) of the semi-
group, was introduced in [2]

(Gpo) §1>1103 H\/%Fe_tLquﬁqo < +o0.

By definition of the carré du champ operator, (G2) holds trivially. It is known in that case
that this global L?-inequality can be improved into localized estimates, via L2-Davies-Gaffney
estimates. For every subset E, F' C M and every t > 0, we have

_d*(B.F)

He_tLHLQ(E)—)LQ(F) + \/%Hre_tLHLQ(E)—)LQ(F) ~ € '
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Assuming the volume doubling condition (VD) and the Gaussian upper bound (UE) for the
heat kernel, one can interpolate the estimate (G, ) with the above L?-Davies-Gaffney estimates
and deduce that (G4) holds for every ¢ € [2,qo]. More precisely, for every subset £, F C M
and every t > 0, the inequality

_ _ . dX(EB.F)
e tLHLq(E)HLq(F)_{_\/EHFB tLHLq(E)HLq(F) SeT

holds for some positive constant ¢;, only depending on ¢ € [2,qp). Following [2, Proposition
1.10], the latter estimate can be reformulated in terms of integral estimates of the gradient of
the heat kernel. Denoting by p; the kernel of e *, we have

VAT el < [V v)]

for p-almost all y € M and all positive times. By interpolation with the L?-Gaffney estimates,
there exists a positive constant ¢ such that

2
c3Gy)

et Fmpt("y)H

(B.1) NG

holds for p-almost all y € M and all positive times.
We refer the reader to [2] for more details about Property (G,) and the link with the
boundedness of the Riesz transform; see also [I1] and references therein for more details.

B.1.2. L4-de Giorgi Property The so-called ”de Giorgi property”, or ”Dirichlet property”, on

the growth of the Dirichlet integral for harmonic functions was
introduced by De Giorgi in [I9], for second order divergence form differential operators on R",
with real coefficients. In de Giorgi’s work, this property prescribes a(n at most) linear growth
rate for the L?-average of gradients of harmonic functions. This property was subsequently
used in many works and in various situations in order to prove Holder regularity for solutions
of inhomogeneous elliptic equations and systems. An L?-version was recently introduced in
[9], and we refer the reader to that work for more details about it.

Definition B.1 (L9-de Giorgi property). Given ¢ € [1,+00) and 6 € (0,1), we say that the
operator I satisfies the inequality if it satisfies the following estimate. For every positive
r < R, every pair of concentric balls B,., Br with radii  and R, respectively, and for every function
f € D, one has

1 0 1
(DGya) (f, wava)” < () {(]{9 ) +RHLfHLoo<BR>}.

We sometimes omit the parameter 6, and write (DG,) if is satisfied for some 6 € (0,1).

(J[ s ’qd"y < (’éfr’)a <J{; T ‘qd’“‘f

for every f € D and 0 < r < R, if the space is doubling, with dimension v, the inequality
(DGg,p) holds for every ¢ > v, with 6 = £ < 1.

As we always have
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B.1.3. Poincaré inequality Last, we shall assume that the carré du champ operator I' satisfies
the following scale-invariant Poincaré inequality

(Py) (ﬁ f- ]{9 fdy 1

zdﬂf,sr(/Br(f)ZdM)%,

for every f € Dy(L) and every ball B of radius . We refer the reader to [9] for a precise study
of the connection between Poincaré inequality, LP-gradient estimates and de Giorgi property.
Let us just point out that if I' satisfies the above Poincaré inequality and the gradient estimate
(Gpy), then there exists a parameter § € (0,1) such that the inequality (DG, ) holds for
every p € [2,pg). Note also that in the first and main part of this work, we assumed an
upper Gaussian pointwise estimates for the gradient of the heat kernel equivalent to (Goo).
This assumption yields the Poincaré inequality (%), the integrated gradient estimate (G, ) for
every qo € [2,00], and also de Giorgi property (DGyq ) for every 6 € (0,1) and every ¢ € [2,00).

Our aim in this appendix will thus be to weaken the (Go,) assumption made above into a
combination of (Gg,) and (DGy), for some exponent ¢g, ¢ and 6.

In the first and main part of this work, the paracontrolled calculus and its application to the
2-dimensional parabolic Anderson model equation was studied under the assumptions (UEI)
and (G ) that the heat kernel and its gradient satisfy pointwise Gaussian upper bounds. The
aim of this section is to weaken the latter condition. Here are examples where the operator
I" satisfies only the properties (), (G4) and (DGy) for some ¢ > 2, and where (Go,) does not
hold.

(a) Conical manifolds. Consider a compact Riemannian manifold N of dimension n—1 >
1, and define M := (0,00) x N as the conical manifold whose basis is N. It is known
that M is a doubling manifold of dimension n which satisfies (UEl). Moreover, as shown
by Li in [44], the operator I' satisfies (G,) if and only if

1 1 2\%2 N\
7<all) = 5‘\/(57) T

where Ay is the first non-vanishing eigenvalue of the Laplace operator on N. As an
example, if we consider N = rS! the circle of radius r > 1, then

2r
N) = .
¢(N) = —
So theorem [B.20] below allows us to solve the PAM equation on M for r sufficiently
close to 1.

-1

(b) Elliptic perturbation of the Laplacien. On the Euclidean space R?, or any non-
compact doubling Riemannian manifold satisfying Poincaré inequality (P2) and the
Gaussian bound (UE]), we may consider a second order divergence form operator L =
—div(AV) given by a map A taking values in real symmetric matrices and satisfying the
usual ellipticity condition. Then if A is Holder continuous, it is known that —L generates
a self-adjoint semigroup with (UE) and Gaussian pointwise bounds for the gradient of
the semigroup (Go); see [4]. In such a case we may apply the results proved in the first
part. Following Auscher’s work [I], we know that the combination of property ([UEI)
with Holder regularity of the heat kernel is stable under L°° perturbation. So fix Ag
a Holder continuous map with values in real symmetric matrices and satisfying usual
ellipticity condition. Then for every ) > 2, and any positive O, there exists a positive
constant ¢ such that for any map A on the state space, with values in the space of
real symmetric matrices, and such that ||A — Ag|lec < €, the operator L = —div(AV)
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satisfies (Gg,) for some go > @, and has de Giorgi property (DGgyg), for 0 = d/q < ©
and some Q < ¢ < qo. In such a situation, we may apply Theorem [B.20 and deduce
that we can solve the PAM equation in such a 2-dimensional context.

(c) Lipschitz domain with Neumann boundary conditions. Similarly, consider an
open and bounded subset Q C R? and consider for L the self-adjoint Laplace operator
associated with Neumann boundary conditions. Then by a change of variable, this
situation is very similar to the previous one: if the boundary is sufficiently close (in a
Lipschitz sense) to a smooth set (at least of regularity C?), then we can solve the PAM
equation.

B.2. Functional calculus and gradient estimates in ~ We start this section by quantifying the lo-
Holder and Sobolev spaces calization properties of the operators Pt(a)

and an), and their gradients, in LP spaces,
before turning to the gradient estimates of the heat semigroup in the intrinsic Hélder and
Sobolev spaces in section [B.2.2

B.2.1. Localization properties of the approximation As we know, for every integer a > 0, the
operators Pt(“) and Q t“) operators Pt(a) and an) have a kernel satis-

fying Gaussian estimates (UE]). The above
regularity assumptions (Gg), (DG), (P2) on the gradient operator actually imply much more.

Lemma B.2. Let p; stands for the kernel of e *% or Pt(a),an) for any integer @ > 1. Under
(DGgp) and (Gg,) with Poincaré inequality (P») for some 2 < ¢ < gqo, we have the following
Holder regularity estimate for the heat kernel. For every n € (0,1 — 6], ¢ > 0 and almost every
x,y,z € M

pe(z, 2) = pe(y, 2)| S <d(x7\/,%y)> V(z, ﬁ)_le_cﬁ_

We only sketch the proof and refer the reader to [9] for details.

PrOOF — We follow the argument of Morrey’s inequality, which relies oscillation estimates to
some gradient bounds. Let ,y € M be Lebesgue points for f = p;(-, z) with d(z,y) < V1,
otherwise there is nothing to be done. Let B;(z) = B(x,2'd(z,y)), for i € N. Note that
for all i € N, B;(z) C Bo(z). By Poincaré’s inequality, this yields

‘f(x) —][BO@) fp| <27 d(x,y) (fBi(x) !Pf\qdu> :

>0
By considering B, ; a ball of radius V't containing both z,v, (DGyg,p) yields

% \/E 0 %
q < vy q _
<J{9i<m> 7 d") < (i) (yif /] du) VAL s

Since f = pi(+, 2), by (Gg,) and (UE) we know that

a z,zQ
A IR O
B Vi

so we can conclude the proof by summing over i, since 6 € (0,1).



58

Under the sole assumption (UE) that the kernels of the operators Pt(a) and an) have Gauss-
ian upper bounds, these operators are bounded in every LP space for p € [1, oo, uniformly with
respect to ¢t € (0,1]. Moreover, for every py,ps € [1,00] and ¢ > 0, they satisfy the following
LP1-LP2 off-diagonal estimates at scale v/t, which quantify the localization properties of these
operators. For every ball By, By of radius v/, and for every function f € LP1(B;), we have

(@) 1/p2 (@) 1/p2 4(By,Bo)? 1/
<][ P, flmdn> +(][ 1Qf flmdn> S et (][ |f|p1du) .
Bo B> By

One can refine this estimate by using off-diagonal estimates, such as done in [10, Lemma 2.5,
Lemma 2.6].

Proposition B.3. Assume (Gg,) for some gy > 2.

(i) For every non-negative integer a and every p € [2,qo), the operators FPt(a) and FQta)
satisfy L2-LP the following off-diagonal estimates at the scale v/¢. For every ball By, By of
radius v/f and every function f € L?(B;), we have

1 1 1

a » a P d(B1.By)? 2

(f, W@ sran) + (£ virr®pan)” e (£ irpan)”
Bo Bo By

It follows in that we have

sup {H(\/Zr) (P .)Hpﬂp + (i) @ .)Hpﬂp} <

>0
for every p € [2,qo).

(i) For every positive real number a and every positive ¢, the operator an) is an integral

)

operator with kernel kﬁa that satisfies the inequality

2 T, —a
(B.2) ‘k:t(a)(x,y)‘ N Vi \/E)A;(y, T <1+ d (t y)>

for all A € [0,1] and p-almost all z,y € M. As a consequence the operator an) satisfies
the following LP!-LP? off-diagonal bounds of order a at scale v/%, for every p1, ps € [1, +00].
Given any balls By, By of radius v/, and any function f € LP! (B1), we have

o otme -\ 72 d(By, By)%\ * m
<][ QP du) §<1+7(Blt32)) (][ Iflpldu> .
Bs B

Besides these localization property in the physical space, the approximation operators an)
satisfy some orthogonality properties, which will be of crucial use in proving the continuity
properties of the paraproduct and resonant operators below, and which can be viewed as an
analog of the Littlewood-Paley theory, as made clear in [I0, Proposition 2.13 and Lemma 2.15].

Lemma B.4. Let a be a positive real number. Set

Qu = (t£)5e 35 = 25Q

)

[SIE SIS

so that an) = @? Assume the Gaussian upper bound (UE]) holds. Let also F': (0, +o00) x M — R
be a measurable function and write Fy(z) for F'(t,z). Then for every p € (1,4c0), one has

too o dt too o dt\ /2
|[Teon | <|([ T ienr )
0 0
p

S
P

)




59

whenever the right hand side has a meaning and is finite. If F' = f does not depend on ¢, we have
the following LP-boundedness of the vertical square function

oo ), dt
[T 1een %] =1
0 P

B.2.2. Gradient estimates in Holder and Sobolev  As said above, we shall now work in the fol-
spaces lowing setting, strictly weaker than the geo-
metrical setting used in the first five sections

of this work.

Regularity assumptions
(i) The metric measure space (M, d, 1) is doubling and the semigroup satisfies the Gaussian
bound (UE).

(ii) The gradient operator I satisfies (Gg,) and (DG, g) for some 2 < ¢ < gy < o0, and the
scale-invariant Poincaré inequality.

If go = ¢ = 2, we require that the L? Davies-Gaffney estimates hold instead of (DG, ). As
we shall see below, one can extend the machinery of paracontrolled calculus to that setting
in Holder and Sobolev spaces. Recall the definition of the spaces A% and C? given in section
The parameter 6 is involved in the property (DGg ). The following embedding is proved
as Proposition 2.8 by using the fact proved in Lemma [B.2] that the heat kernel is Holder
continuous, with exponent 1 — @, instead of its Lipschitz character.

Proposition B.5. For o € (0,1), the space A“ is continuously embedded into C?. If o € (0,1-6),
the two spaces are the same with equivalent norms.

Sobolev spaces are naturally defined in terms of L as follows.

Definition B.6. Fix an exponent p € (1,00), and s € R. A distribution f € S/, is said to belong
to the inhomogeneous Sobolev space W57 if

Fllwes = |0+ L) 27| > fle ], + |+ 2)Ef| < oo

Proposition B.7. For 0 € (—00,1 —60) and f € C?, we have
1

q
sup (f Mre—tLﬂqdu) < 5| fller.

zeM B(z,\/1)

The same conclusion holds with any of the operators Pt(a), with an integer @ > 1, in the role of
—tL
e .

Proor — Consider b > 1, and write

1
Virehf = /0 VIQPehp g Vir et

For s <'t, we have

1

q b q
][ VIrQVe £ du | = (—8 ) ][ VITQE) f|" du
B(zD) s+t B(x,V/7)

5\° () !
S <¥) ZW (]ézB(L\/g) |Q(s+t)/2f|qdu> ?
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where v, are exponentially decreasing coefficients and where we used L9-L¢ off-diagonal
estimates of Te~(st)L/2 (at the scale /s + ¢ ~ v/t) with the relation

Q(b) 9b—(s+t) L/QQ

S+t (s+t)/2"

So we have
1

(]i(x Qe th!qdﬂ) < (1) Zlehnnl.

S

< (2) ¢3 -
< (3) 5 1fler

and we can integrate this inequality on the interval s € (0,¢). For s > ¢, we use Property

(DGygp) to have

(b) —tL 4[4 ! ot (=07 (b) —tL ¢|d ’
|x/FQ ffdp | S VsTQYe " f| du
B(z,\/t § B(z,\/s)

(1-6)/2
+< ) HQbJrl 7thH

N0/
S(4) T s

where we have used ng) = 2bQ$/22 Q(b/ 2 with LI-L9 (resp. L2-L*°) off-diagonal estimates

for FQS;/;) (resp. (sL)QS;/;)), provided b is large enough. This inequality can be then
integrated along s € (¢,1) as soon as § + o < 1.

L (B(z,\/s))

We perform the same analysis for the term \/ZFPl(b)e*tL f, which gives

1

a q
[ pirtcana semn(f_ e
B(z,v1) B(z,1)

1 1-0)/2 ‘ p(b) fthH

L (B(x,1))
SO flleo

The conclusion follows from this inequality since ¢ € (0,1) and 0 < 1 — 0.
>

Proposition B.8. For a € (0,1 —6) and 0 < 20 < 1 — 6 — «, we have uniformly in z € M and
t>0

(. o it < mfonr ]

where M is the Hardy—thtIewood maximal function. The same conclusion holds with any of the
operators Pt(a), with an integer a > 1, in the role of e=** and also by replacing B(x,+/t) by any
bigger ball B(m,K\/E) and the estimates are uniform with respect to K > 1.

PROOF — We write (for a chosen large enough)

\/_ \/—FL a/2 tLLa/2f \/_/ FQ(a 7tLLa/2f

sl— a/2
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For s < t, we then write
a) —tL __ S\ @ (a) —sL (a—9) st (%)
Qg S~ = <Z> t ¢ < > Qt/Q Qt/z

and using L'-L? off-diagonal estimates of the carré du champ of the semigroup, this yields
1

(o vrercsrearan)' < ()l

For t < s we have by (DGgy)

1

<][ ‘\/EFan)etLLamf‘qd,u) 5 <t)(9 1)/2 <][ {\/EFan)etLLa/Qf{qd,u>
B(z,V1) B(z,V/s)

+ ()7 e

Qe

Lo (B(z,V/3))
s\ (0-1)/2+46 o
S (;) M[L Q01| (@),
where we used that Qg (@ e—tL — (s/t)? QS ) with L1-L¢ (resp. L'-L>) off-diagonal
estimates for FQ(a %) (resp. an+1 5)), prov1ded a is large enough.
Hence,

' N 1 0-1)/246  ds
ik < sy _ds / 5\ a/2(0)
(]{3(1«,\/{) ’\/%Fe /! du) ~ [/0 <t) st—a/2 + " <t> gl—a/2 M [L @y f] (z)

< ML) QP 1| (@),

due to a large enough and 26 < 1 — 0 — a. We let the reader check the straightforward
modifications that are required to deal with a bigger ball B(x, K1/t), and that the estimates
are uniform with respect to K > 1.

>

Replacing the L'-L9 off-diagonal estimates by LP-L9 estimates, the same proof as above
leads to the following result.

Proposition B.9. Assume the local Ahlfors regularity. Suppose p € [1,00) and o € (—o0,1 —
0+ %), and f € W*P. Then, uniformly in z € M and ¢ € (0, 1],

q
fo VIR ) S s,
B(z,\/1)

The same conclusion holds with any of the operators Pt(a)

et

, with an integer @ > 1, in the role of

PROOF — As previously, we write
\/_ —tL \/_/ FQ (a) —tLLa/Qf —|—\/_FP —th’

for a a large enough integer. For s < ¢, we then have
1

a a
£ VIQEett e ) < (5) ) s
B(z,\/t) t



62

and for t < s we have by (DGgy)

1 1

¢ s\ (0-1)/2 !
][ |\/£Fan)e_tLLa/2f|q du g (_> ][ ’\/gnga)e—tLLa/Zf‘q d:u'
B(x,V) ¢ B(z,/3)

# ()7 e

s\ (0—-1)/2
< (5 /D ]
S (t) s I fllwee.

For the low frequency part, we have

Lo (B(z,v/5))

q
]1 VATPOe [ dp ) <t e,
B(J:,\/i)

Hence,

1/p
f o Wt
B(z,\/1)

trsya ds L g\ (0-1)/2-v/(2p)  ds
S 2) —— ° (1-6)/2 | ,—v/(2p) §
~ [/0 (t> sl-a/2 +/t <t) gl—a/2 +1 t | f I

St fllwon,

due to a large enough and o <1 — 6 + %.

>

B.3. Paraproduct and commutator estimates in  This subsection is devoted to the statement /
Holder-Sobolev spaces proofs of the main estimates about Paraprod-

ucts and commutators, in the current more
general framework.

B.3.1. Paraproduct estimates We state in this paragraph the basic continuity estimates sat-

isfied by the maps defined by the low frequency part, the para-
product and the resonant terms — see Subsection [B.Ilfor the precise definition of these quantities
and for detailed proofs. The low-frequency part is easily bounded.

Proposition B.10. Fix an integer b > 2. For any o, 5 € R and every v > 0 we have for every
feC*and geCP

(B.3) [A-1(f, 9oy S fllcellglles-

If the space (M,d, ) is locally Alhfors regular, then for every o, 5,7 € R and p € [1,00), we
have for every f € WP and g € WHP

(B4) A1, Do S 1 lwerllglwes

The continuity properties of the paraproduct are given by the following statement.

Proposition B.11. Fix an integer b > 2. For any a € (—=2,1) and f € C®, we have
o for every g € L™

(B.5) |10, S gl e
e for every g € CP with B <0 and a+f € (—2,1)
(b) < o
(B.6) |m2)||...., < lgles e
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The proof is already given for Proposition B3] — and only relies on (UE]) (which is also
assumed here). We then state the analog in Sobolev spaces.

Proposition B.12. Assume local Alhfors regularity. Fix an integer b > 2 and p € [1,00). For
any a € (—=2,1) and f € WP, we have
o for every g € WPP with % <p<1

(B.7) mO@)| S gl fllwes

Joves
o for every g € WHP with 8 < canda+p5—2€(-21)
(B:3) (TP s S Nl s,

Even if the proof is not very difficult, we give the details here in order to explain how to use
the LP-orthogonality property put forward in Lemma [B.4l

PrROOF — Recall that
1 _ _ dt
) (f) = <tL>P“” (@5 PYg) + Q" ()P s - PVg) T
Vb t

With s = a+ (8 — 5)_ > —2, Lemma [B.4] yields

(-

If 8> v/p (and so s = «) then uniformly with respect to ¢ > 0 we have due to the local
Ahlfors regularity (which allows us to use a Sobolev embedding, see [10, Lemma 10.5])

1/2
2 dt
IO (Hllw-s LUR A

ot~ ng‘ths

p

1] S llglloo S lgllwsn

</0t8 (tL)P, f( >1/2

S I llwsellgllws.,
where we used again Lemma[B.4l If 8 < Z (and so s = a + 8 — Z), then

1F00 < [ 1082 + 1]

5/ Sﬁ/QHng—ﬁ/Q)Lﬁ/ngOO:S—F||gHW,8,p
t

1 _vy/9ds
< (1 s [t ) lgllwss
t

ERAYD)
St gllss

and so

T (F)llwer < 9llvwe.s

p

Qg e

Hence, we conclude with Lemma [B.4] since

(e

S [fllwerllglws.n-

T (Nl S (b- 1>f‘ e

gllws.r
p

1/2
(tL)P f( )
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Proposition B.13. Fix an integer b > 2. For any «, 8 € (—00,1 — ) with a + 3 > 0, for every
f eCand g € CP, we have the continuity estimate

[19¢9)]...., S 1lesllgles-

PrOOF — We only study the most difficult term in the resonant term II( ( f,9), which takes
the form

- - - dt
(B.9) A9y = [ HVT (VIR 1 ir )

Pt(bfl) satisfies L'-L> off-diagonal estimates at order N (N can be chosen arbitrarily large,

since b is an integer) and so
PV (n ( 9—tN ][ Ih|dp | .
‘ t ; 2ZB \/_)

With A = \/ﬁ’Pt(b*l) f- \/ﬁ‘Pt (6-1) g and Holder’s inequality, we deduce that

1/2 1/2
_ _ dt
) S ZQ_ZN/ ][ VAP 2 dp ][ VIR gl du | =
>0 B(z,2V1) B(x,2¢\/%)
We then conclude as previously, with Proposition [B.7.
>

We then give the analog estimate in Sobolev spaces.

Proposition B.14. Assume the local Ahlfors regularity. Fix an integer b > 2 and p € (1,00).
For any a, 8 € (—o0,1 — 0) with a + 3 > 5. forevery f € WP and g € WHP we have the
continuity estimate

b
|19 .9)|| wesmsn S IFlworliglivss.

PROOF — Again, we only study the most difficult term A(f,g) defined in (B.9). With s :=
a+f— % > 0, we have by Lemma [B.4]

(f

Since s > 0, (tL)*/ 2Pt(b_1) satisfies L'-L* off-diagonal estimates at order § (see Proposition

B.3) and so
tL S/QP(b_l) E 2703 7Z hldp | .
‘( )*I7P, ‘ . \/Z)‘ |

>0

s s/2 p(b—1) (b-1) (b-1) \ |2 dt 1/2
()P T (VIR £ VRS Vg) [

s/2
L2 A(f,9)]], S p

p

With h = \/fI’Pt(bfl)f : \/EPt (6-1) g and Holder’s inequality, we deduce that HL%A(JC, Q)H

is bounded by
(B.10)

1
> 2" < / £ (f MF@“‘”N@) <]1
0 B(x,2°/t) B(z,2¢

>0 ,2 \/E)

P

1/2
) dt
VTP Vg du) 7)

Then using Proposition [B.9] with the Ahlfors regularity, we have

1/2
(]{;( azf)‘ﬂfpt(bl)fJ(le‘) SR gl o

p
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By Proposition [B.8], we get

for some 6 > 0. Hence

|

1/2
L2 A(S, g)Hp < llglwsn 327

1
()

>0 0
</o1 ‘M [Q@Laﬂf] ‘2 %>1/2 |

Using the Fefferman-Stein inequality (on the maximal function) with the LP-boundedness
of the square function (see Lemma [B.4]), we deduce that

|48, 9), S L7211, lglhwss S 15 hwes lglhso

By a similar reasoning, we have

HA(f7g)Hp N /01 Hpt(b—l)r (\/Zpt(b_l)f, \/zpt(b_l)g) Hp %

m[ur)2Q f] (2 §5-v/p %) v

p

S llgllwe.»

dt

1
S HgHwa,p/O HM{Q?)LO‘/QJ?}Hpt—l//(2p)tﬁ/2 t

1
dt
S flhwesllhws ([ %)

S I llwerliglwe.s,

where we used that s > 0 and the LP-boundedness of the approximation operators. That
concludes the proof of the estimate

HA(fa g)HWS,p g HfHWOuPHgHV{/B,p-

Since the resonant part II®) can be split into a finite number of terms similar to A(f,9),
we then deduce the Sobolev boundedness of the resonent part.
>

B.3.2. Commutator estimates We now focus on the adaptation of the commutator estimates
given above in Proposition

Proposition B.15. Consider the a priori unbounded trilinear operator
C(fg.h) =10 (P (£),h) = g1 ® (£, 1),

on S/. Let a, 3,7 be Holder regularity exponents with @ € (—1,1 —6),8 € (0,1 — 6) and
v € (—o0,1]. If

O<a+p+7y and a+v<0
then, setting § := (a + 8) A (1 — ) + v, we have

(B.11) 1C(f.9:)les S N fllce llglice IRller

for every f € C* ,g € C? and h € C7; so the commutator defines a trilinear map from C® x C? x C7
to C°.
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PrROOF — We refer to the proof of Proposition for details and we keep the same notations.
So it suffices to focus on a generic term of the form

D(f.g,h) == R(A(f,9),h) — g R(f. )

and prove the continuity estimate (BII) for it. As previously done, we split the proof
of the commutator estimate (BII]) for D in two steps, and introduce an intermediate
quantity

1
S(.g) = [ PH(P(VIPRLVIPER) - Pug) T

for which we shall prove that we have both

(B.12) lgR(f, 1) = S(f,9,1) | s < Ifllee llglles I17ller
and
(B.13) |D(f,9,0) = S(f,9,0)|| s S I flle llglies Rllen-

Step 1 — proof of (B.I2). This part is very similar to Step 1 of Proposition 3.6l so we
only point out the modifications. Using Gaussian pointwise estimates for the kernel of P},
we have for almost every = € M

‘7315< \/_Ptf,\[Pt ) ( (r) — PtQ) ‘<Z —cd? < sup ‘g(:c)—Ptg(yﬂ)
d(

>0 z,y) <26/t

. (ngg(x |Vir (P? )|2du>1/2 (iem’ﬁ)|\/%r(7>§’h)|2du>l/2.

By using the CP-regularity of g as well as Proposition [B.7 to estimate the L? averages, we
get

[PL(P(VEPE £, VEPER) - (9(@) = Pug) ) ()] 5 (D0 e (@) 22207 | | fllea gl e

>0
SN2 fllealgllcs | hller -

Consequently, the continuity estimate (B.12) in L* comes from integrating with respect
to time, taking into account the fact that a + 8+~ > 0.

Then to estimate the regularity of gR(f, h)—S(f,g,h), one can exactly reproduce the same
reasoning as for Proposition by using the Holder regularity of the heat kernel (Lemma
B2), which involves the condition o+ 3+ <1 —6 (since 8 <1 —6 and o+~ < 0).

Step 2 — proof of (BI3). Given the collection (Q, := &1))%(0 I of operators, we need
to prove that we have

(B.14) |@(R(A(f.9).0) = S(£.0.1)|| S
for every r € (0,1], and where
(B.15)

1 1
R(A(f.g).h)~S(f.9.h) = /0 PIT (ﬂ{ /0 PO} (Q2 Phg) © — P2 f} , \/EPfh> dt

We are going to follow the same argument as for Proposition and we only detail the
modifications. So we set

1
At = ir ([ PReL(02r-Ph) % - PP ).
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and using the L'-L> off-diagonal estimates of P}, we then deduce that for almost every
g €M

RA(f.9).1) = S(f.9.1)) (o)

1/2
1o 53 / et (f |At<f,g>|2du> (f w%rP;*hqu)
1’0,25\/2) B(1'072Z\/z)

Using a suitable normalization of the operators fol olozf % = f —P1f for some operator
P1, it yields for every x € M

1
A(f,9)(@) < /0 VPP Q2 (Plg — Pug(@) ) (2) 2 4 |Pg(a) VAT [P2P f] o).

1/2

This quantity will then be integrated on B, := B(xo,Qz\/E), so we first aim to replace
P,g(x) by fB P,gdu. Observe that

Ai(f.9) / VITP}QL(QXf (Plg ]é Ptgdu))(x)%

(B.17) + |Pg(x) —][B Pyg dp| VTP f(x) + |Pog () [VIT[PE P f] ().

As before, we use > 0 and the C? regularity of g to have

(2v4)  llles-

Ptg(l“) - Pgdp| <
By

and uniformly in y € M

So)~f Pgdn| 5 (max(s.0)" + d(zo,)”) gl
B(x0,V1t)

Moreover, it follows from the composition of L? off-diagonal estimates (corresponding to a
L? analog of Lemmal[A5]— Part1, see also [I0, Lemma 2.5]), that the operator v/t <73t2Q§>

satisfies L? off-diagonal estimates at the scale max(s,t) with an extra factor <$;2((i ?)) SO
if one sets 7 := max(s, t), we have with (B.17)

1/2
(f AL(f,g)2 dﬂ)
B(IU,QZ\/E)

1/2
min( —edk ds
/ Z( ) F(ahtir)or (f |Q§f|2du> lglles =
0 max B(wo,2k+0/T) S

k>0
1/2 5
- (f MFPEdeu) (2v4) lglles + 4072 gl e
B(IU,QZ\/E)

1 .
t) a B d o
< 910 / min(s, )\ g gds ]y
~ [0 max(s, t) SETE S [ fllcllgllce

S 2965 | fllealgllcs,

where we used Proposition [B.7] and the fact that « > —1 and a + 8 < 1 — 6 to estimate
the integral over s. Observe that in the case where o+ 5 > 1 — 0, we get

1/2
1-0
(Jé;( M‘At(f’g)’””) < 29F | e lgles-
o,
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Coming back to the identity (B.I6]), with Proposition [B.7] we have

o dt
R(A.9)0) = 50,0 @] € ([ 8072 LY siealgleoale
S I lleellglles 1l
since a + 8 + v > 0, uniformly for every zg € M. We then conclude to

|R(AG9),8) = S(1,9.m)| S I llewlglles Il

Moreover, taking into account that we have Q&”P} = %@t for t > r, we see that the
estimate (B.14) holds true (see thee proof of Proposition [3.6]).
>

We then aim to have a similar commutator estimate in Sobolev spaces.
Proposition B.16. Assume the local Ahlfors regularity. Let «, 3, be regularity exponents and
pe (l,00) withae (-1,1—6),8 € (v/p,1 —0) and v € (—o0,1]. If
2v v
—<a+B+7y and o+ < —
p p
then, setting § := (o + 8 — %) A1+~ —v/p >0 and assume that 20 > 8 — v/p. We have

(B.18) 1C(f. 9. W) |lysp S I lwer Igllwes [Bllwr,

for every f € WP g € WPP and h € WYP; so the commutator defines a trilinear map from
WP x W8P x WP to WP,

We follow the exact same proof as previously, so we keep the same notations and only focus
on the modifications.
PrOOF — Consider a generic term of the form

and prove the continuity estimate (B.I8]) for it. Aiming that, we split into two terms by
introducing the quantity

1
S(tguh)i= [ P (C(ViPR VPR - Pig)

for which we shall prove that we have both

(B.19) |9 R(fi 1) = S(f,9: )| yyse S N1 fllwew gl 1l
and
(BQO) HD(f7g7 h) - S(faga h)Hwé,p SJ HfHWa’p HgHWB’P HhHW“/,p.

Step 1 — proof of (B.I9). We first prove a weaker version of the continuity estimate
(B.19), under the form of the inequality

(B.21) lgR(f,h) = S(f, 9, W], S Ifllwer lgllwen IRlwr.

As previously, we have

B22)  (@R(H) = S(La )@ = [ PLHTVEPELVIP) - (ola) = Pig) () T

t )
for pi-almost every z € M. Since g € CP, with § > v/p then g € W5» c C#~¥/P and so

+(B=v/p)/2

1Prg — glloe S lgllwe.r-
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Hence

(8.23) Pg(w) — 9(a)| < (Vi+d.w)” " gl

for every x,y € M. Coming back to equation (B.22]) and using Gaussian pointwise esti-
mates for the kernel of P}, we have for almost every z € M

[PH(P(VEP2 1 VEPER) - (9l) ~ Prg) ) ()

1/2 1/2
g 15(671//;))/2Hg”VV§JJ Z 67045 (][ |\/¥P(,P3f) ‘2 d:“’) <]Z ‘\/ZP(PE’}L) ‘2 d/j,) .
2 B(z,V/t) 2! B(z,\/t)

>0
So using Propositions and [B.7] we deduce that

P! (D(VEPEEVEPER) - o(x) = Pg) ) @) S M2 F)@) gl s 4027,

Then the continuity estimate (B:2I)) comes from integrating with respect to time, taking
into account the fact that a + 5+ v > 2?”.

Let us then estimate the regularity of F' := gR(f,h) — S(f,g,h). It is known (see [16],
Section 2.1.1],[5 Section 5.2] or [10, Proposition 9.7]) that

[E s S 1 + 1155 (F)lp,
where S5 is the Strichartz functional of index § € (0,1):

. 9 : 1/2
Ss(F)(z) = (/0 P2 (é( | [F(z) — F(y)| d#(?/)) Ci) -

Fix r > 0 and two points z,y € M with d(x,y) < r. Then as previously, we write
F(z) = F(y) = (9(2)R(f.h) = S(f,9,h))(x) = (9@)R(f, h) — S(f.9.1) (1)) (v)
=U+V
with U defined by the formula
/0 P (TP EEPI) - (9() — Pro)) (&) — P (D(VEPEE NP - (9(0) — Pig) ()}
and V by

/ (Pt (TWIPENEPI) - (0(0)  Pig)) (@) — Pi (DO/EPEENEPM) - at) = Prg) )} -

By repeating previous arguments, we easily bound U as follows

2

" dt
s ( / {2 e | MIQE L () + MIQIT L2 1](y)] 7) lglwe.o | hllwr,

0
for some ¢ > 0 satisfying a +¢ < 1 — 0.
For the second part, we use
VI<A+B
with A equal to
! 1 2 3 1 2 3 dt

/ AP (PR sVEPN) - (9(@) - Pg) ) (@) = P (D(VEPZF.VEPR) - (9(2) = Prg) ) () }

and

B = /21 l9(@) = 9(v)| - [P (T (VEPES,VEPR) ) (0)] %'
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The last quantity is bounded (following the same estimates as previously since g € ch—v/v )
by

s-vip ([ fatr—vin/2 pg10© por2 £ &
B<r N MIQ LY f1(y) | lgllwer l[Allwr-

For the quantity A, we combine the previous argument with the Holder regularity of the
heat kernel, Lemma [B.2, to get the upper bound

1 1-6
r . o dt
Az ( [ () el rre ) 7) lollwes I lws

The combination of all the previous estimates yields

[F(x) = F(y)| <|Ul+A+B

( [ M e i) + M L2 1(w)] %)

<

~

0

T < / (%y P MIQYT L 1)) %)

! dt
n < / rBv /Pt r=r/D) 2 \IQWE L2 £(y) 7)] Igllws.llBllwe.
r2

This estimate holds uniformly for every y € B(z,r) and so can be averaged on this ball.
We then conclude by Hardy’s inequality (with § > 0, § <1 — 6 and 8 > v/p) that

2.dt

1/2
—) 19l [llwe.

s < ([ w4

Using Fefferman-Stein’s inequality and the LP-boundedness of the vertical square function
(see Lemma [B4), we then deduce that

[Elwor S NElp + 1S5(E)lp < 1f lwewllgllws.r | Allwae,
which concludes the proof of the continuity estimate (B.19)).
Step 2 — proof of (B.20). We need to prove that we have

(B:24) () = | £ (R(ACF.9).0) = 8(£.9.0)) | S Uflwes lglhws Dallwos

where

(B.25)
1 1
R 0)-S(0.m = [ pir (Vi{ [ prel(air-phe) - pg-Pis ) vipin) .

Using Lemma [B.4] with the L'-L> off-diagonal estimates of P}, we deduce that quantity
() is estimated by

1/2
1 dt
X ([ e (£ wirsEa) %) ]
>0 0 B(xo,zz\/i) B(:L‘(),ZZ\/Z) t
B P
with
' d
At = ir ([ PreL(Q2r - Ph) % - PP ).
0
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Following the reasoning in the previous proof of Proposition [B.I15l by combining with
Proposition [B.8 we can obtain that for almost every zg

1/2
(J[ |A(f,9)1? du) < 2B/ B=2 D2 MIQE (1) £](20) | gl 0
B(x0,2¢V/1)

1O MIQE L (o) gl
Hence, since 2§ > 8 — v/p we obtain

(4) S llglhwso Wil H ([ Mm@z e)

+ 171
p

We then conclude to (B:224) by the Fefferman-Stein inequality and Lemma [B.4]
>

B.3.3. Composition estimates The above continuity estimates are the main estimates used in
the main part of this work to prove the paralinearisation and
composition estimates for paraproduct. We state these results here in Holder and Sobolev
spaces under our relaxed assumptions and leave the reader the task of checking that the proofs
of section [B.4] are easily adapted.
Theorem B.17. Fix an integer b > 2 and a nonlinearity F € C}.
(a) Let a € (0,1 — ) be given. For every f € C%, we have F(f) € C* and

Rie(f) = F(f) = TIY) 1, (f) € C**.
More precisely,
) =08 ). < W (14 1122 ).

If ' € C}, then the remainder term Rp(f) is Lipschitz with respect to f, in so far as we
have

1Be(f) = Br(9)]l g2 S IFlley (1 + 1 llew + llgliea)” [ = gllce.

(b) Fixp € (1,00). For every a € (v/p,1—0) and every f € W*P, we have F(f) € W*P and
Ri(f) = F(f) = TI{) , (f) € W2=v/ee,
More precisely

[P =m0 S IFleg (1-+ 1B

If F' € C}}, then the remainder term Rp(f) is Lipschitz with respect to f.

W2a—v/p,p

Let us now examine the composition of two paraproducts. Note that for u € C* and v € CP,
with o € (0,1), 8 € (0,a], we have uv € CP.

About the composition of paraproducts, Theorem B.8] in Holder spaces still holds since it
only relies on the Gaussian estimate (UE]); its Sobolev counterpart also holds.

Theorem B.18. (a) Fix an integer b > 2, o € (0,1), 5 € (0,«] and consider u € C* and
v € CP. Then for every f € C%, we have

) (1) (1)) - m(f) € ¢t

u v
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with
S N fllea lullce [vlles-

[ () = s

cot+B

(b) Fix an integer b > 2 and p € (1,00). For € (0,1) and 5 € (v/p, o], consider u € WP
and v € WAP. Then for every f € WP, we have

) () (1) ~ TR € wero-2ier
with

|m® () = ()|

sy S Il Tullwes [ollws..

B.3.4. Schauder estimates Proposition gives an elementary proof in our setting of a

Schauder-type estimate about the regularizing character of the con-
volution operation with the operators Ps(b). The same properties hold in our minimal setting
since hey only rely on Gaussian property (UE]) and the semigroup structure, together with a
Sobolev version which we state here without proof as it can be proved along the lines of proof
of proposition (Another approach can be also obtained by interpolating between the
trivial case € = 1 and the limit case ¢ = 0. The latter case € = 0, corresponds exactly to the
so-called LP maximal regularity which has been the topic of a huge literature, see for example

[40] where the Gaussian upper estimates (UE]) are used.)

Proposition B. 19 (a) Consider BeRand e € (0,1). For every T > 0 and v € C7CP, the

function V(¢ fo ) 1(s) ds belongs to CrCA+2=2 with
HV Mesta-ze ST sup [o(s)]lcs
s€[0,t]
and
W llgervnge T ollcyes
So

175 ]| ca. S T° N fllpazse.

(b) Consider B e R p € (1,00) and € € (0,1). For every T > 0 and v € CyW5P, the function
=[P ) u(s) ds belongs to CrIWAT2=257 with

[V lyss2-zen ST sup [[v(s)|[jy0,
s€0,1]

and
IVl ggpez-20r2p0 S T I0llcpwas-

B.4. Resolution of PAM in such a 2-dimensional Building on the estimates proved in this Ap-
setting pendix, it is elementary to introduce and study
paracontrolled distributions in Hélder and Sobolev

spaces along the lines of Subsections [£.1] and [£2] in the present extended setting. Its applica-

tion to the parabolic Anderson model equation (PAM) is also almost straightforward as we only
need to check that the renormalization procedure explained in details in subsection under

the (Lip) assumption can be run here as well. This is indeed the case if the exponent ¢ in

the gradient assumption (G, ) is large enough, as this assumption yields some ” L9'-Gaussian”
estimates for every g1 < qo.
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Let us compute, as an example, an integral of type

L= / Ty pi(, y)Taps (2, 2) du(z),

where p; is the heat kernel of e7**, and s < t. By (B with the local Ahlfors regularity, there
exists a positive constant ¢ such that we have

1—2
—-L -5 d@y)?  d(xz)? ar
Isﬂg 5 t 24 S 241 </ e’ xty e’ acsz d#(g{j))

St s % (/ Gi(2,9)Gs(z, 2) du(%))

5 tiﬁsiﬁgﬁrs(ya Z)%(liﬁ),

where we used Lemma [A.5l So with respect to Subsection 5.3 where was assumed and
where I, ; would be estimated by Gs4+(y, 2), we now have the estimate

t+ )2 ﬁ
Is,t SJ <(7§7)> Gt+s(y7 Z)a

S

2 v
involving an extra factor (%) 1 Since all the conditions on the exponents were open

conditions in Subsection [5.3] we may allow a small loss if it is small enough. As a consequence,
we deduce that if ¢; can be chosen large enough then we may adapt and repeat the renormal-
ization procedure of the white noise in Holder and Sobolev spaces. The latter condition on ¢;
is equivalent to taking qg big enough.

We summarize this result under the following form, which gives an analogue of theorem

Theorem B.20. Assume the local Ahlfors regularity of dimension 2, as well as (%), (Gg,) and
(DGyg,) for qo large enough and 6 small enough. Fix p > 2 a large enough exponent.
Let £ stand for a time-independent weighted noise in space, and set £° := P.£, and X¢(t) =

Jo Pr-s (€°) ds.

(a) The pair (£, X¢) converges in probability in some space (in the Holder scaling (C%) or
Sobolev scaling (W*P)) to some extended noise (¢, X), with ¢ = &, and II(X, () well-
defined in the above sense.

(b) Furthermore, if u® stands for the solution of the renormalized equation
(B.26) Ou® + Lu® = F(u®) & — ¢ F'(u°) F(u®), u®(0) = uo
where ¢°(-) := E{H(L_lga,gs)(-)} is a deterministic real-valued function on M, then u®

converges in probability to the solution u of (¢P AM) associated with ({, X), in some space
whose definition depends on whether or not F is linear.
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