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Heat semigroup and singular PDEs

I. BAILLEUL1 and F. BERNICOT2

(with an Appendix by F. Bernicot & D. Frey)

Abstract. We provide in this work a semigroup approach to the study of singular PDEs, in
the line of the paracontrolled approach developed recently by Gubinelli, Imkeller and Perkowski.
Starting from a heat semigroup, we develop a functional calculus and introduce a paraproduct
based on the semigroup, for which commutator estimates and Schauder estimates are proved,
together with their paracontrolled extensions. This machinery allows us to investigate singular
PDEs in potentially unbounded Riemannian manifolds under mild geometric conditions. As an
illustration, we study the generalized parabolic Anderson model equation and prove, under mild
geometric conditions, its well-posed character in Hölders spaces, in small time on a potentially
unbounded 2-dimensional Riemannian manifold, for an equation driven by a coloured noise, and
for all times for the linear parabolic Anderson model equation in 2-dimensional unbounded man-
ifolds. This machinery can be extended to an even more singular setting and deal with Sobolev
spaces rather than Hölder spaces.
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2.2 Time derivatives and Carré du champ of the semigroup 10
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Introduction

1.1. State of the art Following the recent breakthrough of Hairer [32] and Gubinelli, Imkeller,
Perkowski [29], there has been recently a tremendous activity in the

study of parabolic singular partial differential equations (PDEs), such as the KPZ equation
(
∂t − ∂2x

)
u =

(
∂xu

)2
+ ξ,

the stochastic quantization equation
(
∂t −∆

)
u = −u3 + ξ,

or the Parabolic Anderson Model equation
(
∂t −∆

)
u = F(u)ξ

in all of which ξ stands for a space or space-time white noise. Each of these equations involves,
under the form of a product, a term which does not make sense a priori, given the expected
regularity of the solution in terms of the regularity of the noise ξ. Hairer’s theory of regularity
structures is built on the insights of earlier works [33, 37, 34] on (1+1)-dimensional space-time
problems where he used the framework of rough paths theory, under the form of Gubinelli’s
controlled paths, to make sense of previously ill-posed singular PDEs and give a meaningful
solution theory. Rough paths theory was used in this approach as a framework for studying
the properties in the 1-dimensional space variable of potential solutions. However, the very
notion of a rough path is intimately linked with the 1-dimensional time axis that parametrizes
paths.

To by-pass this barrier, both the theory of regularity structures and the paracontrolled
approach developed in [29] take as a departure point the fact that, like in rough paths theory,
to make sense of the equation, one needs to enrich the noise ξ into a finite collection of
objects/distributions, and that one should try and describe the potential solution of a singular
PDE in terms of that enriched noise. The latter depends on the equation under study and
plays in the theory of regularity structures the role plaid by polynomials in the usual Ck world
to give local descriptions of functions under the form of Taylor expansions at every space-time
point. The description of a solution in the paracontrolled approach is of a different nature and
rests on a global comparison with the solution to a linear equation (

(
∂t − ∆

)
u = ξ, in the

above examples) via the use of Bony’s paraproduct. In both approaches, the use of an ansatz
for the solution space allows for fixed point arguments to give a robust solution theory where
the solution becomes a continuous function of all the parameters of the problem.

So far, both theories have only been formulated and tested on some singular PDEs on the
torus, to the exception of the works [59, 60] on singular perturbations of the Navier-Stokes
equation on R

3, and the forthcoming work [36] on the parabolic Anderson model equation in
R
3. We introduce in the present work a functional analytic setting in which we are able to

extend the paracontrolled approach of [29] to investigate singular PDEs of the form
(
∂t + L

)
u = F(u, ξ)

for a nonlinear term F(u, ξ), on potentially unbounded (Riemannian or even sub-Riemannian)
manifolds or graphs. (The change of sign − to + in the operator is irrelevant.) This is a
priori far from obvious as the main analytic tool used in the paracontrolled approach in the
torus involves some tools from Fourier analysis that do not make sense on manifolds or graphs.
We develop to that end a functional calculus adapted to the heat semigroup associated with
the operator

(
∂t + L

)
, which we use to define a paraproduct enjoying the same regularity

properties as its Euclidean analogue. Such paraproducts adapted to a semigroup, as well as



3

a paralineariztion theory, have already been studied in recent works [8, 12]. However, the
irregular character of the noises ξ involved in the above motivating equations requires us
to improve the definition of such paraproducts so as to build a framework where to consider
regularity with a negative exponent; such an extension will be provided here. Building on these
tools, one can set up, as in [29], a framework where to investigate the well-posed character
of a whole class of parabolic singular PDEs. It is especially nice that all the objects in our
framework are defined uniquely in terms of semigroups, unlike the notions of Hölder spaces used
in the theory of regularity structures that involve a metric structure unrelated to the equation
under study. As a by-product, we are able to handle some general classes of operators L whose
treatment seem to be beyond the present-day scope of the theory of regularity structures, as
illustrated in some examples given in section 2.1.

It is unclear presently how one can adapt the different notions and tools of the theory of
regularity structures to extend them to a (Lipschitz) manifold or graph setting, or to other
second order operators (other than the Laplace operator), as well as to work with Sobolev
spaces (instead of Hölders spaces). Apart from the very definition of a regularity structure
on a manifold, the existence of the reconstruction operator in this setting seems in particular
challenging, as its proof in Rd involves some deep results on wavelets that were not proved
so far to hold true on generic manifolds, not even on all open sets of Rd. Their extension to
a non-smooth setting also seems higly non-trivial. So it comes as a good news that one can
use some reasonably elaborate theory of semigroups to implement the alternative machinery
of paracontrolled calculus in that setting; as described below, it also allows us to have much
flexibility on the operator L and also on the geometry of the ambiant space. Roughly speaking,
we could say that the point of view of the theory of regularity structures relies on the metric and
differential properties of the underlying space, while the present extension of the paracontrolled
calculus corresponds to a functional point of view adapted to the operator L involved in the
parabolic singular PDEs. We link here these two sides of the medal by requiring from the
heat semigroup (e−tL)t>0 to have a kernel together with its gradient, that satisfies pointwise
Gaussian bounds; this describes in some sense the link between the functional calculus and the
ambiant space, with its metric and its differential geometry.

Moreover, we will detail in Appendix B, how this approach can be used in the context of
Sobolev spaces (instead of Hölder spaces). From a technical point of view, it is a bit more
difficult since Sobolev spaces involve simultaneously all the frequencies, whereas for Hölder
spaces we can work at a fixed frequency scale. We do not know how such extension could also
be implemented through the regularity structure’s theory.

Motivated by this observation, the first part of this work is devoted to a precise study of the
so-called paracontrolled calculus in a very abstract setting, given by a doubling ambiant space,
equipped with a self-adjoint operator −L generating a semigroup with Gaussian bounds for
its kernel and its gradient. A suitable definition of paraproducts is given, and the main rules
of calculus for paracontrolled distributions are described. This general theory is all we need to
study a number of parabolic singular PDEs.

1.2. A generalized parabolic Anderson model As an illustration, we shall study the generalized
parabolic Anderson model equation (gPAM)

∂tu+ Lu = F(u) ξ, u(0) = u0,

on some possibly unbounded 2-dimensional Riemannian manifold M satisfying some mild
geometric conditions. One can take as operator the Laplace-Beltrami operator or some sub-
elliptic diffusion operator; see section 2.1 for examples. The nonlinearity F is C3

b , and ξ stands
above for a coloured Gaussian noise with weight in L2 ∩L∞ – see definition 5.5. The following
results involve some Hölder spaces Cγ , with negative exponents γ, that are defined in section
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2.3 in terms only of the semigroup
(
Pt

)
t≥0

generated by −L. We denote by X the solution to

the equation
∂tX + LX = ξ,

given by the formula X(t) :=
∫ t
0 Pt−s(ξ) ds. The following theorem is given in more precise

form in theorems 5.1 and 5.4. There is no need right now to understand precisely what the
’resonant’ term Π(X, ζ) below is; together with ζ it forms the above mentioned enriched noise
that makes the theory so efficient.

Theorem 1.1. Let α ∈
(
2
3 , 1
)
, an initial data u0 ∈ C2α, a nonlinearity F ∈ C3

b , and a time horizon

T > 0 be fixed. Assume that ζ ∈ Cα−2.

(a) Local well-posedness for (gPAM). If the resonant term Π(X, ζ) is well-defined as
a continuous function from [0, T ] to Cα−2, then for a small enough time horizon T , the
generalized PAM equation

(1.1) ∂tu+ Lu = F(u) ζ, u(0) = u0

has a unique solution in some function space.

(b) Global well-posedness for (PAM). If the resonant term Π(X, ζ) is well-defined as a
continuous function from R+ to a weighted version of Cα−2, then the PAM equation

∂tu+ Lu = u ζ, u(0) = u0

has a unique global in time solution in some function space.

The implementation of this result in the case where ζ is a random Gaussian noise takes the
following form, for a precise version of which we refer to theorem 5.7.

Theorem 1.2. Let ξ stand for a time-independent weighted noise in space, and set ξε := Pεξ,

and Xε(t) =
∫ t
0 Pt−s

(
ξε
)
ds.

(a) The pair
(
ξε,Xε

)
converges in probability in some space to some extended noise (ζ,X),

with ζ = ξ, and Π(X, ζ) well-defined in the above sense.

(b) Furthermore, if uε stands for the solution of the renormalized equation

(1.2) ∂tu
ε + Luε = F

(
uε
)
ξε − cε F′(uε

)
F(uε), uε(0) = u0

where cε(·) := E

[
Π
(
L−1ξε, ξε

)
(·)
]
is a deterministic real-valued function on M , then uε

converges in probability to the solution u of equation (1.1) associated with (ζ,X), in some
space whose definition depends on whether or not F is linear.

We have organized our work as follows. Section 2 presents the functional setting in which
our theory is set. The main geometrical assumptions on the geometric background are given
in section 2.1, where examples are given; these assumptions involve the properties of the heat
kernel of the semigroup

(
e−tL

)
t≥0

generated by L. A family of operators is introduced in

section 2.2, which will play in the sequel the role played by Fourier projectors in the clas-
sical Littlewood-Paley theory. We introduce in section 2.3 a scale of Hölder spaces, defined
uniquely in terms of the semigroup

(
e−tL

)
t≥0

. A paraproduct is introduced in section 3.1 and

is shown in section 3.2 to enjoy the same continuity properties as its Euclidean analogue. A
crucial commutator estimate between paraproduct and resonant terms is proved in section 3.3,
together with some paralinearization and composition estimates in section 3.4. Following [29],
we then introduce in section 4.1 what plays the role in our setting of paracontrolled distribu-
tions, and prove some fundamental Schauder estimates in section 3.5. Sections 2 to 4 give us
all the material needed to investigate singular PDEs from the point of view of paracontrolled
distributions. Section 5 is dedicated to the proof of theorems 1.1 and 1.2.
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We end this work by an Appendix (Appendix B), jointly written with Dorothee Frey, in
which we aim to explain how we can weaken an assumption of Lipschitz regularity of the
heat kernel (Lip) which we make in the main body of this work, in terms of more geometrical
properties, and show that one can prove results in Sobolev spaces similar to those proved in
the main body of that work in Hölder spaces.

We collect here a number of notations that will be used throughout that work.

• For a ball B of radius r and a real λ > 0, denote by λB the ball concentric with B
and with radius λr. Finally, we will use u . v to say that there exists a constant C
(independent of the important parameters) such that u ≤ Cv and u ≃ v to say that
u . v and v . u. We also adopt the non-conventional notation γa for the classical
gamma function, defined for a > 0 by the formula

γa :=

∫ ∞

0
xae−x dx

x
;

the capital letter Γ will be used to denote the carré du champ operator of some other
operator.

• For p ∈ [1,∞] and every f ∈ Lp, the Lp-norm (implicitly with respect to the measure
µ) is denoted by ‖f‖p. For p, q ∈ [1,∞] and an operator T acting from Lp to Lq, we
write ‖T‖p→q for its norm.

• For an integer k ≥ 0, we write Ck
b for the set of functions continuously differentiable

k-times f : R → R, equipped with the norm

‖f‖Ck
b
:= ‖f‖∞ + sup

1≤i≤k

∥∥∥f (i)
∥∥∥
∞
.

2

Functional calculus adapted to the heat semigroup

As announced in the introduction, this section is dedicated to setting the functional frame-
work where we shall set our study. Section 2.1 sets the geometrical framework needed for what
we want to do, in terms of a semigroup. We introduce in section 2.2 some operators that will
play the role of ’localizers’ in frequency space. These operators are used in section 2.3 to define
a scale of Hölder spaces which will be instrumental in the sequel.

2.1. Heat semigroup on a doubling space Let (M,d) be a locally compact separable metrisable
space, equipped with a Borel measure µ, finite on

compact sets and strictly positive on any non-empty open set. Given a ball B(x, r) of center
x and radius r, the notation V (x, r) will stand in the sequel for µ

(
B(x, r)

)
. To make things

concrete, the space (M,d) will mainly be for us smooth Riemannian manifold or a (possibly
infinite) metric graph. We shall assume that the metric measure space (M,d, µ) satisfies the
following volume doubling property

(VD) V (x, 2r) . V (x, r),

for all x ∈M and positive r, which can be stated equivalently under the form

(2.1) V (x, r) .
(r
s

)ν
V (x, s),

for some positive scaling factor ν, for all x ∈M , and all 0 < s ≤ r; it implies he inequality

V (x, r) .

(
d(x, y) + r

s

)ν

V (y, s),
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for any two points x, y inM and 0 < s ≤ r. (Another easy consequence of the volume doubling
property is that balls with a non-empty intersection and comparable radii have comparable
measures.)

Let also be given a non-negative self-adjoint operator L on L2(M,µ) with dense domain
D2(L) ⊂ L2(M,µ). Denote by E its associated quadratic form, defined by the formula

E(f, g) :=
∫

M
fLg dµ,

on a domain F which contains D2(L). We shall assume that the Dirichlet form E is strongly
local and regular; we refer the reader to the books [23, 31] of Fukushima & co. and Gyrya–
Saloff-Coste for precise definitions and background on Dirichlet forms. These two properties
will be obviously satisfied in the examples we shall work with. It follows from these conditions
that the operator L generates a strongly continuous semigroup

(
e−tL

)
t>0

of contractions on

L2(M,µ) which is conservative, in the sense that e−tL1 = 1, for all t ≥ 0; see e.g. Subsection
2.2.7 in the book [31]. We shall also assume that the semigroup

(
e−tL

)
t>0

has a kernel, given
for all positive times t by a non-negative measurable real-valued function pt on M ×M , such
that

(
e−tLf

)
(x) =

∫

M
pt(x, y)f(y) dµ(y),

for µ-almost all x in M , and every f ∈ D2(L). The kernel pt is called the heat kernel
associated with L. We assume that it satisfies for all 0 < t ≤ 1 and µ-almost all x, y, the
following typical upper estimates

pt(x, y) .
1√

V
(
x,

√
t
)
V
(
y,
√
t
) .

Under the volume doubling condition (VD), the previous estimate self-improves into a Gaussian
upper estimate for the heat kernel and its time derivatives

(UE)
∣∣∣∂at pt(x, y)

∣∣∣ .
t−a

√
V
(
x,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x, y)

2

t

)
.

that holds for all integera, all 0 < t ≤ 1, and µ-almost every x, y ∈ M ; see for instance the
article [25, Theorem 1.1] for the Riemannian case, and the work [17, Section 4.2] for a metric
measure space setting. We also assume that the heat kernel satisfies the following Lipschitz
condition3

(Lip)
∣∣∣pt(x, y)− pt(z, y)

∣∣∣ .
(
d(x, z)√

t

)
1√

V
(
x,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x, y)

2

t

)
.

It follows classically from the Gaussian estimates (UE) and the doubling property that the
heat semigroup

(
e−tL

)
t>0

is uniformly bounded on Lp(M,µ) for every p ∈ [1,∞] and strongly

continuous for p ∈ [1,∞). Last, note that
(
e−tL

)
0<t≤1

is, under these conditions, bounded

3 In the regularity structures theory or Euclidean paracontrolled theory, regularity at any order may be
considered because of the implicit use of the very nice differential geometry of the Euclidean space, or the torus.
In our current and far more general framework, since we only have assumptions on the heat kernel and its
gradient, it is natural to expect to be able to quantify regularity of some objects, up until order 1, and not
more. That is why in the different statements proved in the next sections some extra mild conditions on the
regularity exponents will appear, as compared with their Euclidean analogue. Since we aim to work with the
optimal / minimal setting, these new limitations cannot be removed and we are restricted to study regularity
at order at most 1, including negative orders; this is not restrictive as far as applications are concerned.
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analytic on Lp(M,µ), for every 1 < p < +∞, which means in particular that the time-
derivatives

(
(tL)ne−tL

)
0<t≤1

are bounded on Lp(M,µ) uniformly in 0 < t ≤ 1, for every

integer n ≥ 0; see [52].

Here are four representative classes of examples of doubling metric measure spaces and
Dirichlet forms satisfying the above conditions. We emphasize (as it can be seen by the list of
examples) that we have much flexibility in terms of the operator L as well as in terms of the
underlying space (M,d, µ).

(a) Markov chains. Let X be a countable set equipped with a Markov chain, specified
by a symmetric Markov kernel k : X ×X → R+, and let m be a non-negative function
on X, used to define a measure m on X, with density m with respect to the counting
measure µ. Denote by 〈·, ·〉m the scalar product on ℓ2(m). Consider also for integers
n ≥ 1 the iterated kernel kn, defined recursively by kn(x, y) :=

∫
kn−1(x, z)k(z, y)µ(dz).

Denoting by K the symmetric Markov operator with kernel k, the formula

E(f, g) = 1

2

∑

x,y∈X
kxy
(
fx − fy

)(
gx − gy

)

=
∑

x∈X
fx

1

mx

(
gx −

∑

y∈X
kxygy

)
mx

=
〈
f, Lg

〉
m

associated with the non-negative self-adjoint operator

(
Lg
)
(x) =

1

mx

(
gx −

∑

y∈X
kxygy

)
= g(x)−

(
Kg
)
(x),

defines a (strongly local) regular Dirichlet form and allows us to generate the continuous
heat semigroup

(
e−tL

)
t≥0

. (The above sum in x is implicitly restricted to those x for

which mx > 0, so there is no loss of generality in assuming that m > 0. ) The map k
induces a distance d on X by setting

d(x, y) := min
{
n ≥ 1 ; ∃ z0, . . . , zn,with z0 = x, zn = y and b

(
zi, zi+1

)
> 0, for i = 0..n − 1

}
,

for y 6= x. Following Grigor’yan’s result [26], one can give growth conditions on the m-
volume of d-balls that ensure the conservative character of the semigroup generated by
L in ℓ2(m). Then it is classical that getting Gaussian upper estimates for the semigroup(
e−tL

)
t≥0

is very closely related to getting discrete-time versions of Gaussian estimates

for the iterated Markov chains
(
Kn
)
n≥1

, and similarly for the Lipschitz regularity of

their kernels. Usually, given such a discrete framework, one prefers to work with the
discrete-time Markov chains rather than the continuous heat semigroup. To obtain
upper Gaussian estimates and a Lipschitz regularity for the iterated Markov chains
on a graphs is the topic of a huge literature to which we refer the reader; see for
instance by Hebisch and Saloff-Coste [38] for discrete groups and by Ischiwata [41] for
an extension to nilpotent covering graphs and more recently [42] for a perturbation of
these previous results. For example, the regular graphs Z

d and (Z/NZ)d have heat
semigroups satisfying the Gaussian estimates (UE) and the Lipschitz property (Lip).
Needless to say, for a (large) finite graph (X,E), with edge set E, and bxy = 1 if
(x, y) ∈ E, and mx =

∑
y∈X bxy, the previous results hold with the graph distance in

the role of d.

(b) Second order differential operators on Riemannian manifolds. Let (M,d, µ) be
a doubling possibly non-compact complete Riemannian manifold with Ricci curvature
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bounded from below. Then the heat semigroup
(
e−t∆

)
t≥0

generated by the Riemannian

Laplace operator satisfies both the upper Gaussian estimates (UE) and the Lipschitz
regularity (Lip) for small time 0 < t ≤ 1, and for every time t > 0 if the Ricci curvature
is nonnegative; see [56] and [45] for references. Particular examples are every smooth
compact Riemannian manifolds, or unbounded Riemannian manifolds with pinched
negative Ricci curvature, such as hyperbolic spaces.

Even on the Euclidean space R
d, we may consider a second order divergence form

operator L = −div(A∇) given by a map A taking values in real symmetric matrices
and satisfying usual ellipticity (or accretivity) condition. Then if A is Hölder continu-
ous, it is known that −L generates a self-adjoint semigroup with (UE) and (Lip); see
[4]. Similarly, consider an open (and bounded) subset Ω ⊂ R

d and consider for L, the
self-adjoint Laplace operator associated with (Dirichlet or Neumann) boundary condi-
tions. There is an extensive literature to describe assumptions on Ω such that (UE)
and (Lip) are satisfied. The present scope may well be beyond the present scope of
regularity structures, for which the Green function of the operator need to satisfy some
regularity assumptions that were not proven to hold true under a sole Hölder continuity
assumption for A, and whose formulation on a manifold is a real problem outside the
real of Lie groups or homogeneous spaces. The theory developed below works in that
relatively minimal setting.

The estimates (UE) and (Lip) also hold when working on a convex or C2-regular
bounded subset of the Euclidean space, with L given by Laplace operator with Neumann
boundary conditions; see [58].

(c) Sub-elliptic left invariant diffusions on groups. Let G be a unimodular con-
nected Lie group, endowed with its left-right Haar measure µ. Consider a family
X := {X1, ...,Xℓ} of left-invariant vector fields on G satisfying Hörmander condition.
They define a class of admissible paths γ•, characterized by the existence, for each of
them, of measurable functions a1, ..., ak such that one has

γ′(t) =
k∑

i=1

ai(t)Xi(ℓ(t)).

The length of such a curve is defined as

∣∣γ
∣∣ := 1

2

∫ 1

0

(
ℓ∑

i=1

|ai(t)|2
) 1

2

dt,

and the (Carnot-Caratheodory) distance d(x, y) between any two points x, y of G is
defined as the infimum of the lengths of all admissible curves joining x to y. We then
consider the sublaplacian ∆ defined by

∆ := −
k∑

i=1

X2
i .

Then the operator ∆ generates a heat semigroup satisfying both the upper Gaussian
estimates (UE) and the Lipschitz regularity (Lip) for small time t ∈ (0, 1); see for
instance Chapter 8 in the book [57]. If the group is nilpotent then it is also globally
doubling [30] and so the heat semigroup satisfies the Gaussian upper bound (UE) and
enjoys the Lipschitz property (Lip) for every t > 0; see [55, 50]. Particular examples of
such groups, are stratified Lie groups and so Heisenberg groups. For such Heisenberg-
type Lie groups, a kind of Fourier transform may be defined involving their irreducible
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unitary representations, which can be used to define an analog of the Euclidean para-
products / paradifferential calculus, such as done is [24]. We shall see, as a by-product
of the present work, that the structure of heat semigroup is sufficient to construct
similar tools with greater scope.

(d) The general case given by a subelliptic operator is more difficult. Let (M,d, µ) be a
complete and smooth connected manifold endowed with a self-adjoint smooth locally
subelliptic diffusion operator L satisfying L1 = 0. Then Baudoin and Garofalo intro-
duced in [7] a property, called “a generalized curvature-dimension inequality”, which
has to be thought as a lower bound on a sub-Riemannian generalization of the Ricci
tensor. Under such a condition, the heat kernel generated by L satisfies (UE) as well
as (Lip) (see [49]). We refer the reader to [7] for some examples of such sub-elliptic
settings and the fact that the heat kernel also satisfies in that case some Gaussian lower
bound.

Throughout that work, a point o ∈ M will be fixed, that we shall use to define a class of
test functions, together with its ’dual’ class of distributions.

Definition 2.1. We define a Fréchet space of test functions setting

So :=
{
f ∈

⋂

n≥0

D2

(
Ln
)
; ∀ a1, a2 ∈ N,

∥∥∥
(
1 + d(o, ·)

)a1La2f
∥∥∥
2
<∞

}
,

with

‖f‖ := sup
a1,a2∈N

1 ∧
∥∥∥
(
1 + d(o, ·)

)a1La2f
∥∥∥
2
.

A distribution is a continuous linear functional on So; we write S ′
o for the set of all distributions.

(We point out that the arbitrary choice of point o ∈ M is only relevant in the case of
a unbounded ambiant space M ; even in that case, the space So does not depend on o, for
o ranging inside a bounded subset of M .) Every bounded function defines for instance an
element of S ′

o. Examples of test functions are provided by the pt(x, ·), for every fixed x ∈ M
and 0 < t ≤ 1. Indeed for integers a1, a2, the upper bound (UE) gives

∣∣∣
(
1 + d(o, y)

)a1(La2pt(x, ·)
)
(y)
∣∣∣ .

t−a2

V (x,
√
t)
(1 + d(o, y))a1e−c d(x,y)2

t

.
t−a2

V (x,
√
t)
(1 + d(o, x))a1e−c′ d(x,y)

2

t

for some positive constants c and c′. Note that the heat semigroup acts not only on functions,
but also on distributions, by setting

〈(
etLφ

)
, f
〉
:=
〈
φ,
(
etLf

)〉

for φ ∈ S ′
o and f ∈ So. (We refer the reader to [15] and [46] for more details on the extension

of the semigroup to distributions.)

For a linear operator T acting from So to S ′
o, it will be useful below, to denote by KT its

Schwarz kernel, characterized by the identity

〈T (f), g〉 =
∫
KT (x, y)f(y)g(x)µ(dy)µ(dx).

giving an integral representation for every f, g ∈ So.
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2.2. Time derivatives and Carré du champ of the

semigroup

Let us introduce here a family of operators
that will play the role in our setting of the
Fourier multipliers used in the classical Littlewood-

Paley theory, that localize a function in frequency space. These will be the building blocks
used to define a convenient paraproduct for our needs, as done below in section 3.1.

Definition 2.2. Given a fixed positive integer a, set

(2.2) Q
(a)
t := (tL)ae−tL

and

(2.3) P
(a)
t := φa(tL), where φa(x) :=

1

γa

∫ ∞

x
sae−s ds

s
, x ≥ 0,

for every t > 0.

So we have for instance P
(1)
t = e−tL, and Q

(1)
t = tLe−tL. The two families of operators(

P
(a)
t

)
t>0

and
(
Q

(a)
t

)
t>0

are defined so as to have

(2.4) t∂tP
(a)
t = tLφ′a(tL) = −γ−1

a Q
(a)
t ,

so Q
(a)
t = (−1)ata∂at e

−tL, and P
(a)
t = pa(tL)e

−tL, for some polynomial pa of degree a− 1, with

pa(0) = 1. The analyticity of the semigroup provides a direct control of the operators P
(a)
t and

Q
(a)
t .

Proposition 2.3. For any integer a ≥ 0, operators P
(a)
t andQ

(a)
t have a kernel satisfying Gaussian

estimates (UE), and the Lipschitz regularity (Lip); as a consequence, they are bounded in every
Lp spaces for p ∈ [1,∞], uniformly with respect to t ∈ (0, 1].

Following the above interpretation of the operators Q(a) and P (a), the following Calderón
reproducing formula provides a decomposition of a function f in Lp(M,µ) into a low fre-
quency part and a high frequency part very similar to the Littlewood-Paley decomposition of
a distribution in terms of frequencies; see e.g. [6].

Proposition 2.4 (Calderón reproducing formula). Given p ∈ (1,+∞) and f ∈ Lp(M,µ), we
have

lim
t→0+

P
(a)
t f = f in Lp(M,µ)

for every positive integer a, and so

(2.5) f = γ−1
a

∫ 1

0
Q

(a)
t f

dt

t
+ P

(a)
1 (f).

Proof – One knows from theorem 3.1 in [20], that the operator L has a bounded H∞ func-
tional calculus in Lp(M,µ) under the volume doubling condition on (M,d, µ), and the
assumption that the heat kernel satisfies the upper estimate (UE). Since this implies
in particular sectoriality of L in Lp(M,µ), Theorem 3.8 in [18] yields the decomposition
of Lp(M,µ) into nullspace and range of L. Using this decomposition, the Convergence
Lemma implies for every f ∈ Lp(M,µ)

f = lim
t→0

P
(a)
t f = −

∫ 1

0
∂tP

(a)
t f

dt

t
+ P

(a)
1 (f)

= γ−1
a

∫ 1

0
Q

(a)
t f

dt

t
+ P

(a)
1 (f),

where the limit is taken in Lp(M,µ) and where we have used identity (2.4); see e.g. [3,
Theorem D] or [43, Lemma 9.13].
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⊲

We shall also make an extensive use in the sequel of the square-root of L, given by its carré
du champ operator Γ, defined for all (f, g) ∈ D2(L)×D2(L) as a bilinear operator satisfying
the identity

E(f, g) :=
∫

M
fL(g) dµ =

∫

M
gL(f) dµ =

∫

M
Γ(f, g) dµ.

It is also given by the explicit formula

Γ(f, g) = −1

2

(
L(fg)− fL(g)− gL(f)

)
;

we shall write D2(Γ) ⊂ L2 for its domain, which contains D2(L). As a shorthand, we write

Γ(f) for Γ(f, f)
1
2 in the sequel, which can be thought as the length of the intrinsic gradient

of f . It follows from the conservative property of L and its non-negative character, that the
bilinear map Γ is positive and satisfies the identity

∥∥Γ(f)
∥∥2
L2 =

∫

M
Γ(f, f) dµ =

∫

M
fL(f) dµ = E(f, f).

According to the Beurling-Deny-Le Jan formula, the carré du champ satisfies a Leibniz rule

(2.6) Γ(fg, h) = f Γ(g, h) + g Γ(f, h),

for all f, g, h ∈ D2(Γ), and a chain rule

(2.7) L
(
F (f)

)
= F ′(f)L(f) + F ′′(f) Γ(f, f).

for every function F ∈ C2
b (R) and every f ∈ D2(L); the function F (f) is automatically in

D2(L) – see e.g. [23, Section 3.2] and [53, Appendix] for these points.

The following pointwise and Lp-estimate for the intrinsic gradient of the semigroup will be
used several times in a crucial way; its proof is given in Appendix A. It says that the carré
du champ of the semigroup satisfies also some Gaussian pointwise estimates, as given by the
following claim.

Proposition 2.5. The following inequality holds

(2.8)
∣∣∣
(√
tΓ)
(
e−tLf

)
(x0)

∣∣∣ .
∫

M

1√
V
(
x0,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x0, y)

2

t

) ∣∣f(y)
∣∣ dµ(y),

for every t > 0, every function f ∈ L2, and almost every x0 ∈M . Consequently, we have

sup
t>0

∥∥∥
(√
tΓ
)(
e−tL ·

)∥∥∥
p→p

<∞,

for every p ∈ [1,∞]. We may replace the semigroup e−tL in the above equations by any of the

operators P
(a)
t , for any a ≥ 0.
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2.3. Hölder and Besov spaces through the heat

semigroup

Let us recall as a start that given a parameter
σ ∈ (0, 1], a bounded function f ∈ L∞ is said
to belong to the Hölder space Λσ if

‖f‖Λσ := ‖f‖∞ + sup
0<d(x,y)≤1

|f(x)− f(y)|
d(x, y)σ

<∞.

Recall on the other hand the definition of the inhomogeneous Besov spaces associated to a
semigroup; they were precisely studied in several works, such as [15] or [27],to name but a few.
We shall make an extensive use of these spaces.

Definition 2.6. Fix a positive integer a, an exponent p, q ∈ (1,∞), and σ ∈ R. A distribution
f ∈ S ′

o, is said to belong to the Besov space Bσ
p,q if

‖f‖Bσ
p,q

:=
∥∥e−Lf

∥∥
p
+

(∫ 1

0
t−q σ

2

∥∥∥Q(a)
t f

∥∥∥
q

p

dt

t

)1/q

<∞.

This definition of the space does not depend on the integer a ≥ 1, provided a is big enough.

We refer the reader to [15] for details about such spaces and a proof of the fact that they
do not depend on the parameter a used to define them, provided a is sufficiently large with
respect to s. The limiting case p = q = ∞ leads to the following definition.

Definition 2.7. Let a positive integer a be given. For σ ∈ (−∞, 2), a distribution f ∈ S ′
o is said

to belong to the space Cσ if

‖f‖Cσ :=
∥∥∥e−Lf

∥∥∥
∞

+ sup
0<t≤1

∥∥∥Q(a)
t f

∥∥∥
∞
t−

σ
2 <∞.

This definition of the space does not depend on the integer a ≥ 1.

We give in Appendix A a simple and self-contained proof that the space Cσ does not depend
on a, and that any two norms ‖·‖Cσ , defined with two different values of a, are equivalent. The
following proposition justifies that we call the spaces Cσ Hölder space, for all σ < 2, possibly
non-positive.

Proposition 2.8. For σ ∈ (0, 1), the spaces Λσ and Cσ are the same and the two corresponding
norms are equivalent.

We give here a complete proof of this proposition as it provides an elementary illustration of

how the properties of the operators Q
(a)
t are used to make actual computations. This kind

of reasoning and computations will be used repeatedly in the sequel, when working with our

paraproduct. Recall that the operators Q
(a)
t have kernels K

Q
(a)
t

satisfying Gaussian pointwise

estimates, by proposition 2.3.

Proof – We divide the proof in two steps, by showing successively that Λσ is continuously
injected in Cσ, and that, conversely, Cσ is continuously injected in Λσ.

Step 1 – Λσ →֒ Cσ. Note first that since the Hölder space Λσ is made up of bounded
functions, it is included in S ′

o. Fix an integer a ≥ 1; then for every t ∈ (0, 1), we have
(
Q

(a)
t f

)
(x) =

(
Q

(a)
t

(
f − f(x)

))
(x) =

∫
K

Q
(a)
t
(x, z)

(
f(z)− f(x)

)
µ(dz).

For the points z ∈M , with d(x, z) ≤
√
t < 1, we have

|f(z)− f(x)| ≤ d(x, z)σ‖f‖Λσ ≤ t
σ
2 ‖f‖Λσ
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so that
∣∣∣∣∣

∫

d(x,z)≤
√
t
K

Q
(a)
t
(x, z)

(
f(z)− f(x)

)
µ(dz)

∣∣∣∣∣ ≤ t
σ
2 ‖f‖Λσ

∫ ∣∣∣K
Q

(a)
t
(x, z)

∣∣∣ µ(dz)

. t
σ
2 ‖f‖Λσ ,

since Q
(a)
t has a kernel satisfying Gaussian pointwise bounds. The same bounds show that

∣∣∣∣∣

∫
√
t≤d(x,z)≤1

K
Q

(a)
t
(x, z)

(
f(z)− f(x)

)
µ(dz)

∣∣∣∣∣ ≤ ‖f‖Λσ

(∫
√
t≤d(x,z)≤1

∣∣∣K
Q

(a)
t
(x, z)

∣∣∣d(x, z)σ µ(dz)
)

. t
σ
2 ‖f‖Λσ

∫
√
t≤d(x,z)≤1

1

V (x,
√
t)
e−c d(x,z)2

t

(
d(x, z)√

t

)σ

µ(dz)

. t
σ
2 ‖f‖Λσ .

Similarly, we have
∣∣∣∣∣

∫

1≤d(x,z)
K

Q
(a)
t
(x, z)

(
f(z)− f(x)

)
µ(dz)

∣∣∣∣∣ ≤ ‖f‖∞
(∫

1≤d(x,z)

∣∣∣K
Q

(a)
t
(x, z)

∣∣∣ µ(dz)
)

. e−c/t‖f‖Λσ

. t
σ
2 ‖f‖Λσ ,

so it comes that the inequality
∣∣∣
(
Q

(a)
t f

)
(x)
∣∣∣ . t

σ
2 ‖f‖Λσ

holds uniformly in t ∈ (0, 1), and for every x ∈M , which proves that ‖f‖Cσ . ‖f‖Λσ .

Step 2 – Cσ →֒ Λσ. Let f ∈ Cσ be given. Using the decomposition of the identity provided
by Calderón reproducing formula

f = e−Lf −
∫ 1

0
Q

(1)
t f

dt

t
,

we first deduce that f is bounded, with

‖f‖∞ . ‖f‖Cσ

(
1 +

∫ 1

0
t
σ
2
dt

t

)
. ‖f‖Cσ .

Moreover, for any two points x, y, with 0 < d(x, y) ≤ 1, we have

f(x)− f(y) =
{(
e−Lf

)
(x)−

(
e−Lf

)
(y)
}
−
{∫ 1

0

((
Q

(1)
t f

)
(x)−

(
Q

(1)
t f

)
(y)
) dt
t

}

=
{
e−Lf(x)− e−Lf(y)

}
−
{(
Q

(1)
1 f

)
(x)−

(
Q

(1)
1 f

)
(y)
}

−
∫ 1

0

{(
Q

(2)
t f

)
(x)−

(
Q

(2)
t f

)
(y)
} dt
t
.

One can use the Lipschitz regularity (Lip) of the heat kernel to bound the first term in
the above sum, giving

∣∣∣e−Lf(x)− e−Lf(y)
∣∣∣ .

∫ ∣∣p1(x, z) − p1(y, z)
∣∣ ∣∣f(z)

∣∣µ(dz)

. d(x, y) ‖f‖∞.
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As similar bounds hold for Le−L, by analyticity of the heat kernel, the second term admits
a similar upper bound. Let now focus on the third term, using a similar reasoning and

noting that Q
(2)
t = 16Q

(2)
t/2Q

(2)
t/2. So, for d(x, y) ≤

√
t, we can write

∣∣∣
(
Q

(2)
t f

)
(x)−

(
Q

(2)
t f

)
(y)
∣∣∣ .

∫ ∣∣∣K
Q

(2)
t/2

(x, z)−K
Q

(2)
t/2

(y, z)
∣∣∣
∣∣∣K

Q
(2)
t/2

f(z)
∣∣∣µ(dz)

.
d(x, y)√

t

∥∥∥K
Q

(2)
t/2

f
∥∥∥
∞

.
d(x, y)√

t
t
σ
2 ‖f‖Cσ .

If
√
t ≤ d(x, y), then we directly have

∣∣∣
(
Q

(2)
t f

)
(x)−

(
Q

(2)
t f

)
(y)
∣∣∣ .

∥∥∥Q(2)
t f

∥∥∥
∞

. t
σ
2 ‖f‖Cσ .

Hence,

∣∣∣∣
∫ 1

0

{(
Q

(2)
t f

)
(x)−

(
Q

(2)
t f

)
(y)
}dt
t

∣∣∣∣ .
(∫ d(x,y)2

0
t
σ
2
dt

t
+

∫ 1

d(x,y)2

(
d(x, y)√

t

)
t
σ
2
dt

t

)
‖f‖Cσ

. d(x, y)σ ‖f‖Cσ ,

since σ ∈ (0, 1). Consequently, we have obtained
∣∣f(x)− f(y)

∣∣ . d(x, y)σ‖f‖Cσ

uniformly for every x 6= y with d(x, y) ≤ 1, so indeed ‖f‖Λσ . ‖f‖Cσ .
⊲

Our main example of Cσ distribution, with negative Hölder exponent σ, will be given by
typical realizations of a (possibly weighted) noise over (M,µ) – see Proposition 5.6. To prove
that regularity property, it will be convenient to assume that the metric measure space (M,d, µ)
has the following property, called Ahlfors regularity. There exists a positive constant c1 such
that

V (x, 1) ≥ c1,

for all x ∈M , which, by the doubling property, implies that we have

(2.9) V (x, r) ≥ c1r
ν ,

for some positive exponent ν, all x ∈ M and all 0 < r ≤ 1. (The constant ν is d on a
d-dimensional manifold.) This is a relatively weak assumption that is essentially satisfied in
a Riemannian setting for closed manifolds without boundary and injectivity radius bounded
below by a positive constant. Under that additional assumption, we have the following Besov
embedding, proved in Appendix A.

Lemma 2.9 (Besov embedding). Given −∞ < σ < 2, and 1 < p <∞, we have the following
continuous embeddings.

Bσ
p,p →֒ Bσ

p,∞ →֒ B
σ− ν

p
∞,∞ = Cσ− ν

p

Besov embedding can be used in a very efficient way to investigate the regularity properties
of random Gaussian fields, as will be illustrated in section 5.3.
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Remark 2.10. Let us point out here that our Hölder spaces Cσ, with σ < 0, coincide in the
Euclidean setting with those used by Hairer [32]. Indeed, on the Euclidean space it is known that
to define Besov spaces or Hölder spaces through Littlewood-Paley functionals, we may chose any
good Fourier multipliers satisfying suitable conditions; the latter are satisfied by the derivatives(
Q

(a)
t

)
t
of the heat semigroup. So our spaces correspond to the standard inhomogeneous spaces

defined by any Littlewood-Paley functionals. From wavelet or frame characterization (see for
instance [47]), we then conclude that our Hölder space coincides with those used in [32] or [36].

Before turning to the definition of our paraproduct, we close this section with two continuity
properties involving the Hölder spaces Cσ, which we shall use in the sequel.

Proposition 2.11. For any σ ∈ (−∞, 2), and every integer a ≥ 0, we have
∥∥∥P (a)

1 f
∥∥∥
∞

.
∥∥f
∥∥
Cσ .

Proof – We have by construction P
(a)
1 =

(
1+α1L+ · · ·+αa−1L

a−1
)
e−L, for some coefficients

α1, . . . , αa−1. As we have by definition
∥∥e−Lf

∥∥
∞ . ‖f‖Cσ , and Lℓe−L = Q

(ℓ)
1 , for ℓ =

1 . . . (a − 1), we see that
∥∥Lℓe−Lf

∥∥
∞ . ‖f‖Cσ , since we have seen above that we can

choose the parameter a in the definition of the Hölder space.
⊲

Proposition 2.12. For σ ∈ (−∞, 1), we have

sup
t∈(0,1]

t−
σ
2

∥∥∥
(√
tΓ
)(
e−tLf

)∥∥∥
∞

. ‖f‖Cσ .

The same conclusion holds with any of the operators P
(a)
t in the role of e−tL.

Proof – Given t ∈ (0, 1], use Calderón reproducing formula to write
∣∣∣
(√
tΓ
)(
e−tLf

)∣∣∣ .
∫ 1

0

∣∣∣
(√
tΓ
)(
e−tLQ(1)

s f
)∣∣∣
ds

s
+
∣∣∣
(√
tΓ
)(
e−(1+t)Lf

)∣∣∣.

We divide the integration interval in the above-right hand side into (0, t) and [t, 1] to bound

that term. For s < t, we have e−tLQ
(1)
s = s

t/2+s e
−t/2LQ

(1)
s+t/2, so we can use Proposition

2.5 to get ∥∥∥
(√
tΓ
)(
e−tLQ(1)

s f
)∥∥∥

∞
.
s

t

∥∥∥
(√
tΓ
)(
e−t/2L

)∥∥∥
∞→∞

∥∥∥Q(1)
s+t/2f

∥∥∥
∞

.
s

t
t
σ
2 ‖f‖Cσ .

Similarly for t ≤ s, then e−tLQ
(1)
s = e−sL/2 s

t+s/2 Q
(1)
s/2+t

, and we have

∥∥∥
(√
tΓ
)(
e−tLQ(1)

s f
)∥∥∥

∞
.

(
t

s

) 1
2
∥∥∥
(√
sΓ
)(
e−s/2L

)∥∥∥
∞→∞

∥∥∥Q(1)
s/2+tf

∥∥∥
∞

.

(
t

s

) 1
2

s
σ
2 ‖f‖Cσ .

Similar computations give the estimate∥∥∥
(√
tΓ
)(
e−(1+t)Lf

)∥∥∥
∞

.
√
t ‖f‖Cσ .

We conclude by integrating with respect to s ∈ (0, 1), using here the fact that σ < 1.
⊲
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3

Paraproduct and commutator estimates in Hölder spaces

3.1. Paraproducts based on the semigroup Bony’s paraproduct machinery has its roots in the
Littlewood-Paley decomposition of any distribution

f as a sum of smooth functions ∆if localized in the frequency space, so a product fg of any
two distributions can formally be decomposed as

(3.1) fg =
∑

i,j

∆if ∆jg =
∑

|i−j|≥2

∆if ∆jg +
∑

|i−j|≤1

∆if ∆jg =: (1) + Π(f, g)

into a sum of products of two functions oscillating on different scales, and an a priori resonant
term Π(f, g). This decomposition draws its usefulness from some relatively elementary a priori
estimates that show that the term (1) above makes sense and is well-controlled under extremely
general conditions, while the resonant term Π(f, g) can be shown to define a continuous map
from Cα × Cβ to Cα+β, provided α+ β > 0. These estimates rely crucially on some properties
inherited from the very definition of the Littlewood-Paley blocks as Fourier projectors. These
properties cannot be grasped so easily in our semigroup setting; however, we shall use the

operators P
(a)
t , Q

(a)
t and

√
tΓ or (tL)P

(a)
t as frequency projectors, with P

(a)
t projecting on

frequencies lower than or equal to t−
1
2 , and Q

(a)
t ,

√
tΓ or (tL)P

(a)
t as localizing at frequencies

of order t−
1
2 . This will be our main guide in the definition of our paraproduct given below.

This paraproduct will depend on a choice of a positive integer-valued parameter b that can be
tuned on demand in any given problem. To clarify notations, we shall repeatedly use below
the notation f · g for the (usual) product of two functions.

Rather than starting with Bony’s decomposition (3.1), we take as a starting point Calderon’s
reproducing formula

fg = lim
t→0

P
(b)
t

(
P

(b)
t f · P (b)

t g
)
= −

∫ 1

0

t∂t

{
P

(b)
t

(
P

(b)
t f · P (b)

t g
)} dt

t
+∆−1(f, g)

=
1

γb

∫ ∞

0

{
P

(b)
t

(
Q

(b)
t f · P (b)

t g
)
+ P

(b)
t

(
P

(b)
t f ·Q(b)

t g
)
+Q

(b)
t

(
P

(b)
t f · P (b)

t g
)} dt

t
+∆−1(f, g),

(3.2)

where

∆−1(f, g) := P
(b)
1

(
P

(b)
1 f · P (b)

1 g
)

stands for the ’low-frequency part’ of the product of f and g, and where we implicitly make
the necessary assumptions on f and g for the above formula to make sense.

Guided by the above heuristic argument about the role of the operators P
(a)
t , Q

(a)
t , etc. as

frequency projectors, we decompose the terme involving the product of P
(a)
t f and P

(a)
t g, by

using the definition of the carré du champ operator Γ

L
(
φ1 · φ2

)
= L(φ1)φ2 + L(φ2)φ1 − 2Γ(φ1, φ2)

and write

Q
(b)
t

(
P

(b)
t f · P (b)

t g
)

= Q
(b−1)
t

(
(tL)P

(b)
t f · P (b)

t g
)
+Q

(b−1)
t

(
P

(b)
t f · (tL)P (b)

t g
)
− 2Q

(b−1)
t Γ

(√
tP

(b)
t f,

√
tP

(b)
t g

)

=: Bg(f) +Bf (g) +R(f, g).

If one rewrites identity (3.2) under the form

fg =:

∫ 1

0

{
(1) + (2) + (3)

} dt
t
+∆−1(f, g)
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with obvious notations, this suggest to decompose it as

fg =

∫ 1

0

({
(1) +Bg(f)

}
+
{
(2) +Bf (g)

}
+R(f, g)

) dt
t
+∆−1(f, g)

and to identify the integral of the terms into brackets in the above formula as paraproducts,
and by defining the resonant term as the integral of R(f, g). This is what was done in [12] where
this notion of paraproduct, introduced in [8], was shown to have nice continuity properties in
Hölder spaces Cα, provided only deals with positive exponents α. Given our needs to deal
with negative exponents, a refinement of this decomposition seems to be needed to get some
continuity properties for negative exponent as well. We thus use the carré du champ formula
in each term (1) and (2), and write

(1) = (tL)P
(b)
t

(
Q

(b−1)
t f · P (b)

t g
)
+
{
2P

(b)
t

(
tΓ
) (
Q

(b−1)
t f, P

(b)
t g

)
− P

(b)
t

(
Q

(b−1)
t f · (tL)P (b)

t g
)}

=: Ag(f) + S(f, g),

with S(f, g) the sum of the two terms into bracket, and

(2) = Af (g) + S(g, f).

Note that the functions Af (g), S(f, g), . . . all depend implicitly on time. This decomposition
leads to the following definition.

Definition 3.1. Given an integer b ≥ 2 and f ∈ ⋃
s∈(0,1) Cs and g ∈ J∞, we define their

paraproduct by the formula

Π(b)
g (f) =

1

γb

∫ 1

0

{
Ag(f) +Bg(f)

} dt
t

=
1

γb

∫ 1

0

{
(tL)P

(b)
t

(
Q

(b−1)
t f · P (b)

t g
)
+Q

(b−1)
t

(
(tL)P

(b)
t f · P (b)

t g
)} dt

t
.

The well-posed character of this integral is proved in proposition 3.3 below. With this
notation, Calderon’s formula becomes

fg = Π(b)
g (f) + Π

(b)
f (g) + Π(b)(f, g) + ∆−1(f, g)

with the ’low-frequency part’

∆−1(f, g) := P
(b)
1

(
P

(b)
1 f · P (b)

1 g
)

and the ’resonant term’

Π(b)(f, g) =
1

γb

∫ 1

0

{
S(f, g) + S(g, f) +R(f, g)

} dt
t

=
1

γb

∫ 1

0

{
−P (b)

t

(
Q

(b−1)
t f · (tL)P (b)

t g
)
+ 2P

(b)
t Γ

(√
tQ

(b−1)
t f,

√
t P

(b)
t g

)} dt

t

+
1

γb

∫ 1

0

{
−P (b)

t

(
(tL)P

(b)
t f ·Q(b−1)

t g
)
+ 2P

(b)
t Γ

(√
t P

(b)
t f,

√
tQ

(b−1)
t g

)} dt

t

− 1

γb

∫ 1

0
2Q

(b−1)
t Γ

(√
tP

(b)
t f,

√
tP

(b)
t g

) dt

t
.

Note that we have Π
(b)
1
(·) = Id, as a consequence of our choice or renormalizing constant.
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3.2. Paraproduct estimates We prove in this paragraph the basic continuity estimates satisfied
by the maps defined by the low frequency part, the paraproduct

and the resonant term. The low-frequency part is easily bounded.

Proposition 3.2. Fix an integer b ≥ 2. For any α, β ∈ R and every γ > 0 we have for every
f ∈ Cα and g ∈ Cβ

(3.3)
∥∥∆−1(f, g)

∥∥
Cγ . ‖f‖Cα‖g‖Cβ .

Proof – Consider the collection
(
Q

(a)
s

)
0<s≤1

for a large enough integer a ≥ γ. Then

Q(a)
s ∆−1(f, g) = Q(a)

s P
(b)
1

(
P

(b)
1 f · P (b)

1 g
)
.

Since s ≤ 1, we have Q
(a)
s P

(b)
t = γ−1

a sae−sLLaP
(b)
1 , with the operator LaP

(b)
1 bounded on

L∞. We obtain the conclusion from Proposition 2.11 as we have
∥∥Q(a)

s ∆−1(f, g)
∥∥
∞ . sa

∥∥P (b)
1 f

∥∥
∞
∥∥P (b)

1 g
∥∥
∞

. sγ‖f‖Cα‖g‖Cβ .

⊲

The continuity properties of the paraproduct are given by the following statement; they are
the exact analogue of their classical counterpart, based on Littlewood-Paley decomposition, as
can be found for instance in the textbook [6] of Bahouri, Chemin and Danchin.

Proposition 3.3. Fix an integer b ≥ 2. For any α ∈ (−2, 1) and f ∈ Cα, we have

• for every g ∈ L∞

(3.4)
∥∥∥Π(b)

g (f)
∥∥∥
Cα

. ‖g‖∞‖f‖Cα

• for every g ∈ Cβ with β < 0 and α+ β ∈ (−2, 1)

(3.5)
∥∥∥Π(b)

g (f)
∥∥∥
Cα+β

. ‖g‖Cβ‖f‖Cα .

Remark 3.4. The range (−2, 1) for the regularity exponent could seem unusual, since in the
standard Euclidean theory such continuities hold for every α ∈ R. However, as explained
in footnote 3, the restriction α < 1 comes from our optimal / minimal setting where we
only assume gradient estimates on the heat kernel. In another hand, the restriction α > −2
can be explained as follows. In the Euclidean theory, nice Fourier multipliers can be used to
have a ’perfect’ frequency decomposition and the study of paraproducts mainly relies on the
following rule: the spectrum of the product of two functions is included into the sum of the
two spectrums, which comes from the group structure through the Fourier representation of the
convolution.
In our setting, the frequency decomposition involving the heat semigroup (as in the Calderón
reproducing formula) is not so perfect and above all, the previous rule on the spectrum does not
hold, at least not in such a ’perfect’ sense. That is why it appears this new limitation α > −2,
which is inherent to the semigroup approach.

Proof – Recall that

Π(b)
g (f) =

1

γb

∫ 1

0
(tL)P

(b)
t

(
Q

(b−1)
t f · P (b)

t g
)
+Q

(b−1)
t

(
(tL)P

(b)
t f · P (b)

t g
) dt

t
.

Set c := b− 1 ≥ 1, and given s ∈ (0, 1], consider Q
(c)
s Πg(f). For s ≤ t, we use that

Q(c)
s (tL)P

(b)
t =

(s
t

)c
(tL)c+1P

(b)
t e−sL and Q(c)

s Q
(b−1)
t =

(s
t

)c
Q

(b−1+c)
t e−sL,
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and for t ≤ s that

Q(c)
s (tL)P

(b)
t =

t

s
Q(c+1)

s P
(b)
t and Q(c)

s Q
(b−1)
t =

t

s
Q(c+1)

s Q
(b−2)
t .

Hence, with the uniform L∞-boundedness of Qt, Pt operators, we have
∥∥∥Q(c)

s Π(b)
g (f)

∥∥∥
∞

.

∫ s

0

t

s

∥∥∥Q(b−1)
t f

∥∥∥
∞

∥∥∥P (b)
t g

∥∥∥
∞

+
t

s

∥∥∥(tL)P (b)
t f

∥∥∥
∞

∥∥∥P (b)
t g

∥∥∥
∞

dt

t

+

∫ 1

s

(s
t

)c ∥∥∥Q(b−1)
t f

∥∥∥
∞

∥∥∥P (b)
t g

∥∥∥
∞

+
(s
t

)c ∥∥∥(tL)P (b)
t f

∥∥∥
∞

∥∥∥P (b)
t g

∥∥∥
∞

dt

t
.

Since f ∈ Cα we have
∥∥∥Q(b−1)

t f
∥∥∥
∞

+
∥∥∥(tL)P (b)

t f
∥∥∥
∞

. t
α
2 ‖f‖Cα .

Moreover, if g ∈ L∞ then ∥∥∥P (b)
t g

∥∥∥
∞

. ‖g‖∞
and if g ∈ Cβ with β < 0 then

∥∥∥P (b)
t g

∥∥∥
∞

≤
∫ 1

t

∥∥∥Q(b)
u g
∥∥∥
∞
du

u
+
∥∥∥P (b)

1 (f)
∥∥∥
∞

.

(∫ 1

t

du

u1−β/2
+ 1

)
‖g‖Cβ . t

β
2 ‖g‖Cβ .

As a consequence, we deduce the following bounds.
• If g ∈ L∞ then

∥∥∥Q(c)
s Π(b)

g (f)
∥∥∥
∞

.

(∫ s

0

(
t

s

)
t
α
2
dt

t
+

∫ 1

s

(s
t

)c
t
α
2
dt

t

)
‖f‖Cα‖g‖∞

. s
α
2 ‖f‖Cα‖g‖∞,

since α ∈ (−2, 1) and c ≥ 1. This holds for every s > 0 which yields (3.4).
• If g ∈ Cβ with α+ β ∈ (−2, 1) then

∥∥∥Q(c)
s Π(b)

g (f)
∥∥∥
∞

.

(∫ s

0

(
t

s

)
t
α+β
2
dt

t
+

∫ 1

s

(s
t

)c
t
α+β
2
dt

t

)
‖f‖Cα‖g‖Cβ

. s
α+β
2 ‖f‖Cα‖g‖∞,

since 2c ≥ 1 > α+ β > −2. This holds for every s > 0 which yields (3.5).
⊲

Proposition 3.5. Fix an integer b > 2. For any α, β ∈ (−∞, 1) with α+β > 0, for every f ∈ Cα

and g ∈ Cβ, we have the continuity estimate
∥∥∥Π(b)(f, g)

∥∥∥
Cα+β

. ‖f‖Cα‖g‖Cβ .

Proof – We recall that

Π(b)(f, g) =
1

γb

∫ 1

0
−P (b)

t

(
Q

(b−1)
t f · (tL)P (b)

t g
)
+ 2P

(b)
t Γ

(√
tQ

(b−1)
t f,

√
tP

(b)
t g

) dt

t

+
1

γb

∫ 1

0
−P (b)

t

(
(tL)P

(b)
t f ·Q(b−1)

t g
)
+ 2P

(b)
t Γ

(√
tP

(b−1)
t f,

√
tQ

(b)
t g
) dt

t

+
1

γb

∫ 1

0
2Q

(b−1)
t Γ

(√
tP

(b)
t f,

√
tP

(b)
t g

) dt

t
.
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Fix an integer c = b− 1 ≥ 1, and consider the function Q
(c)
s Π(b)(f, g), for every s ∈ (0, 1].

It is given by an integral over (0, 1), which we split into (I) an integral over (0, s), and
(II) an integral over (s, 1). Since f ∈ Cα, the use of Proposition 2.12, with α < 1, yields
the estimate

∥∥∥Q(b−1)
t f

∥∥∥
∞

+
∥∥∥
√
tΓ
(
Q

(b−1)
t f

)∥∥∥
∞

+
∥∥∥(tL)P (b)

t f
∥∥∥
∞

+
∥∥∥
√
tΓ
(
Q

(b−1)
t f

)∥∥∥
∞

+
∥∥∥
√
tΓ
(
P

(b)
t f

)∥∥∥
∞

. t
α
2 ‖f‖Cα ;

a similar estimate holds with g in place of f , and β in place of α. Using the uniform
L∞-boundedness of the different approximation operators, we get for the first part

∥∥Q(c)
s (I)

∥∥
∞ .

(∫ s

0
t
α+β
2
dt

t

)
‖f‖Cα‖g‖Cβ

. s
α+β
2 ‖f‖Cα‖g‖Cβ ,

where we used the strict inequality α + β > 0. For the second part, we observe that for
t > s then

Q(c)
s Pt =

(s
t

)c
e−sL(tL)cPt and Q(c)

s Q
(b−1)
t =

(s
t

)c
Q

(c+b−1)
t e−sL.

So we get for the second part

∥∥Q(c)
s (II)

∥∥
∞ .

(∫ 1

s
t
α+β
2

(s
t

)c dt
t

)
‖f‖Cα‖g‖Cβ

. s
α+β
2 ‖f‖Cα‖g‖Cβ ,

where we used the fact that 2c ≥ 2 > α+ β.
⊲

3.3. Commutator estimates The following commutator estimate gives sense to the difference
of two terms in a framework where none of them makes sense

separately, as it does not fit the conditions put forward in proposition 3.5. We fix an integer

b ≥ 2 in this section and write Π(f, g) for Π(b)(f, g), and Πg(f) for Π
(b)
g (f).

Proposition 3.6. Consider the a priori unbounded trilinear operator

C(f, g, h) := Π(b)
(
Π(b)

g (f), h
)
− gΠ(b)(f, h),

on S ′
o. Let α, β, γ be Hölder regularity exponents with α ∈ (−1, 1), β ∈ (0, 1) and γ ∈ (−∞, 1]. If

0 < α+ β + γ and α+ γ < 0

then, setting δ := (α+ β) ∧ 1 + γ, we have

(3.6)
∥∥C(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ ,

for every f ∈ Cα ,g ∈ Cβ and h ∈ Cγ ; so the commutator defines a trilinear map from Cα×Cβ×Cγ

to Cδ.

Proof – Note first that the paraproduct Πg(f) is given, up to a multiplicative constant, by
the sum of two terms of the form

A(f, g) =

∫ 1

0
Q1

t

(
Q2

t f · Ptg
) dt
t
,
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and the resonant part Π(f, g) by the sum of five terms of tone of the following forms

(3.7) R(f, g) =

∫ 1

0
P1
t Γ
(√

tP2
t f ,

√
tP3

t g
) dt

t
,

or

R(f, g) =

∫ 1

0
Pt ((tL)Ptf · Qtg)

dt

t
,

or

R(f, g) =

∫ 1

0
P1
t

(
Qtf · (tL)P2

t g
) dt
t
,

where the operators

• Qt,Qj
t are of the form (tL)b−1p(tL)e−tL with a polynomial function p,

• Pt,Pj
t are of the form p(tL)e−tL with a polynomial function p.

(Note also that terms of the for ψ(tL) are a posteriori of the form φ(tL).) So it suffices to
focus on a generic term of the form

D(f, g, h) := R
(
A(f, g), h

)
− gR(f, h)

and prove the continuity estimate (3.6) for it. We focus on the case where R has form
(3.7), the treatment of the other cases being similar and somewhat easier. We split the
proof of the commutator estimate (3.6) for D in two steps, and introduce an intermediate
quantity

S(f, g, h) :=
∫ 1

0
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
· Ptg

) dt

t

for which we shall prove that we have both

(3.8)
∥∥gR(f, h)− S(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ

and

(3.9)
∥∥D(f, g, h) − S(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ .

Step 1 – proof of (3.8). We first prove a weaker version of the continuity estimate (3.8),
under the form of the inequality

(3.10)
∥∥gR(f, h)− S(f, g, h)

∥∥
∞ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ .

As a start, remark that we have

(3.11)
(
gR(f, h) − S(f, g, h)

)
(x) =

∫ 1

0
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)

dt

t
,

for µ-almost every x ∈M . Since g ∈ Cβ, with β ∈ (0, 1), we have

‖Ptg − g‖∞ .

∫ t

0
‖Qsg‖∞

ds

s

.

(∫ t

0
sβ/2

ds

s

)
‖g‖Cβ . tβ/2 ‖g‖Cβ ,

so we have
∣∣Ptg(y)− g(x)

∣∣ ≤
∣∣Ptg(y) − g(y)

∣∣+
∣∣g(y) − g(x)

∣∣

. tβ/2‖g‖Cβ + d(x, y)β‖g‖Cβ

.
(
tβ/2 + d(x, y)β

)
‖g‖Cβ ,
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for every x, y ∈M . Coming back to equation (3.11) and using Gaussian pointwise estimates
for the kernel of P2

t , together with Proposition 2.12, we have
∣∣∣P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)
∣∣∣

.

{∫

M

1

V (x,
√
t)

exp

(
−cd(x, y)

2

t

) ∣∣g(x) − Ptg(y)
∣∣ dµ(y)

}∥∥√tΓ
(
P2
t f
)∥∥

∞
∥∥√tΓ

(
P3
t h
)∥∥

∞

.

{∫

M

1

V (x,
√
t)

exp

(
−cd(x, y)

2

t

)(
tβ/2 + d(x, y)β

)
dµ(y)

}
t
α
2 t

γ
2 ‖f‖Cα‖g‖Cβ‖h‖Cγ

The continuity estimate (3.10) comes from integrating with respect to time, taking into
account the fact that α+ β + γ > 0.

Let then estimate the regularity of gR(f, h) − S(f, g, h). For x, y ∈ M , with d(x, y) ≤,
write

(
g(x)R(f, h) − S(f, g, h)

)
(x)−

(
g(y)R(f, h) − S(f, g, h)(y)

)
(y) =: U + V

with U defined by the formula

∫ d(x,y)2

0

{
P1
t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(x) − P1

t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(y)− Ptg

))
(y)
} dt

t
,

and V is defined by the formula
∫ 1

d(x,y)2

{
P1
t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(x)− P1

t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(y)− Ptg

))
(y)
} dt

t
.

By repeating, the argument used in the proof of (3.10), we easily bound U by the quantity

U .

(∫ d(x,y)2

0
t(α+β+γ)/2 dt

t

)
‖f‖Cα‖g‖Cβ‖h‖Cγ

. d(x, y)δ‖f‖Cα‖g‖Cβ‖h‖Cγ .

For the second part, we use

|V | ≤ A+B

with A equal to
∣∣∣∣∣

∫ 1

d(x,y)2

{
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)− P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(y)
} dt
t

∣∣∣∣∣

and

B :=

∫ 1

d(x,y)2

∣∣g(x) − g(y)
∣∣ ·
∣∣∣P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h
))

(y)
∣∣∣
dt

t
.

The last quantity is bounded by

B . d(x, y)β ‖g‖Cβ

∫ 1

d(x,y)2

∥∥∥
√
tΓ
(
P2
t f
)∥∥∥

∞

∥∥∥
√
tΓ
(
P3
t h
)∥∥∥

∞

dt

t

. d(x, y)β ‖f‖Cα‖g‖Cβ‖h‖Cγ

∫ 1

d(x,y)2
t
α+γ
2
dt

t

. d(x, y)δ ‖f‖Cα‖g‖Cβ‖h‖Cγ .
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For the quantity A, we use the Lipschitz regularity (Lip) of the heat kernel to get the
upper bound,

∫ 1

d(x,y)2

{∫

M

d(x, y)√
tV (x,

√
t)

exp

(
−cd(x, z)

2

t

)
|g(x)− Ptg(z)| µ(dz)

}∥∥∥
√
tΓ
(
P2
t f
)∥∥∥

∞

∥∥∥
√
tΓ
(
P3
t h
)∥∥∥

∞

dt

t

.

{∫ 1

d(x,y)2

∫

M

d(x, y)√
tV
(
x,

√
t
) e−c d(x,z)2

t

(
d(x, z)β + tβ/2

)
µ(dz) t(α+γ)/2 dt

t

}
‖f‖Cα‖g‖Cβ‖h‖Cγ

.

(∫ 1

d(x,y)2

d(x, y)√
t
t(α+β+γ)/2 dt

t

)
‖f‖Cα‖g‖Cβ‖h‖Cγ

. d(x, y)α+β+γ ‖f‖Cα‖g‖Cβ‖h‖Cγ ,

where we have used the fact that α+ β + γ ∈ (0, 1). The combination of all the previous
estimates yields

∣∣∣
{
gR(f, h)−S(f, g, h)

}
(x)−

{
gR(f, h) − S(f, g, h)

}
(y)
∣∣∣

≤ |U |+A+B . d(x, y)δ‖f‖Cα‖g‖Cβ‖h‖Cγ ,

which concludes the proof of the continuity estimate (3.8).

Step 2 – proof of (3.9). Given the collection
(
Qr := Q

(1)
r

)
r∈(0,1] of operators, we need

to prove that we have

(3.12)
∥∥∥Qr

(
R
(
A(f, g), h

)
− S(f, g, h)

)∥∥∥
∞

. rδ/2.

for every r ∈ (0, 1], and where
(3.13)

R
(
A(f, g), h

)
−S(f, g, h) =

∫ 1

0
P1
t Γ

(√
t

{∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− Ptg · P2
t f

}
,
√
tP3

t h

)
dt

t
.

The notation is confusing and we have to be careful: when Γ acts Ptg · P2
t f , it is thought

to only acts on the variable of P2
t f (the variable of Ptg is frozen). We shall bound above

the absolute value of the Γ term in the integral, which is of the form Γ(p, q), by Γ(p)Γ(q)

– recall we write Γ(p) for
√

Γ(p, p). Set for that purpose

At(f, g) :=
√
tΓ

(∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− PtgP2
t f

)
.

We have for almost every x ∈M

At(f, g)(x) ≤
√
tΓP2

t

(∫ 1

0
Q1

s

(
Q2

sf · P3
s g
)
(x)

ds

s
− Ptg(x) · f

)
(x)

≤
∫ 1

0

√
tΓP2

t Q1
s

(
Q2

sf
(
P3
s g − Ptg(x)

))
(x)

ds

s
+ |Ptg(x)|

√
tΓ[P2

t P1f ](x),

where we used the property
∫ 1

0
Q1

sQ2
s

ds

s
= Id− P1,

for some P1 operator. As in Step 1, the fact that β > 0 implies
∣∣∣P3

s g(y) − Ptg(x)
∣∣∣ ≤

∣∣∣P3
s g(y)− g(y)

∣∣∣ +
∣∣g(y)− g(x)

∣∣ +
∣∣g(x) − Ptg(x)

∣∣

.
(
sβ/2 + tβ/2 + d(x, y)β

)
‖g‖Cβ .

(
max(s, t)β/2 + d(x, y)β

)
‖g‖Cβ .
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Moreover, it follows from Lemma A.5 below, on the composition of Gaussian pointwise

estimates, that the operator
√
tΓ
(
P2
t Q

1
s

)
has pointwise Gaussian estimates at the scale

max(s, t) with an extra factor
(

min(s,t)
max(s,t)

) 1
2
; so if one sets τ := max(s, t), we have

√
tΓP2

t Q1
s

(
Q2

sf
(
P3
s g − Ptg(x)

))
(x)

.

(
min(s, t)

max(s, t)

) 1
2
{∫

M

1

V (x,
√
τ )
e−c d(x,y)2

τ

(
τ

β
2 + d(x, y)β

)
dµ(y)

}∥∥Q2
sf
∥∥
∞‖g‖Cβ

.

(
min(s, t)

max(s, t)

) 1
2

τ
β
2 s

α
2 ‖f‖Cα‖g‖Cβ

.

(
min(s, t)

max(s, t)

) 1
2

max(s, t)
β
2 s

α
2 ‖f‖Cα‖g‖Cβ .

Integrating in s, and taking into account the fact that α > −1 and α+ β < 1, we obtain
for At(f, g) the estimate

∥∥At(f, g)
∥∥
∞ .

{∫ t

0

(s
t

) 1
2
tβ/2sα/2

ds

s
+

∫ 1

t

(
t

s

) 1
2

sβ/2sα/2
ds

s
+

√
t

}
‖f‖Cα‖g‖Cβ

. t
α+β
2 ‖f‖Cα‖g‖Cβ .

Observe that in the case where α+ β ≥ 1, we get

∥∥At(f, g)
∥∥
∞ . t

1
2 ‖f‖Cα‖g‖Cβ ,

Coming back to identity (3.13), we have

∣∣∣R
(
A(f, g), h

)
− S(f, g, h)

∣∣∣ ≤
∫ 1

0
P1
t

(
At(f, g) ·

√
tΓ
(
P4
t h
)) dt

t
,

and since α+ β + γ > 0, it follows that

∥∥∥R(A(f, g), h) − S(f, g, h)
∥∥∥
∞

.

(∫ 1

0
t(α+β+γ)/2 dt

t

)
‖f‖Cα‖g‖Cβ‖h‖Cγ

. ‖f‖Cα‖g‖Cβ‖h‖Cγ .

Moreover, taking into account that we have Q
(1)
r P1

t = r
tQt for t ≥ r, and α + β + γ < 1,

we see that the estimate (3.12) holds true

∥∥∥Q(1)
r

(
R
(
A(f, g), h

)
− S(f, g, h)

)∥∥∥
∞

.

∫ r

0

∥∥At(f, g)
∥∥
∞

∥∥∥
√
tΓ
(
P4
t h
)∥∥∥

∞

dt

t
+

∫ 1

r

r

t

∥∥At(f, g)
∥∥
∞

∥∥∥
√
tΓ
(
P4
t h
)∥∥∥

∞

dt

t

.

(∫ r

0
t(α+β+γ)/2 dt

t
+

∫ 1

r
rt(α+β+γ−2)/2 dt

t

)
‖f‖Cα‖g‖Cβ‖h‖Cγ

. r
δ
2 ‖f‖Cα‖g‖Cβ‖h‖Cγ .

⊲
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3.4. Paralinearization and composition estimates Two ingredients are needed to turn the ma-
chinery of paraproducts into an efficient tool.

To understand how nonlinear functions act on Hölder functions Cα, with 0 < α < 1, and to
understand how one can compose two paraproducts. The first point is the object of the fol-
lowing analogue of Bony’s classical result on paralinearization [13], while the second point is
dealt with by theorem 3.8 below.

Theorem 3.7. Let fix an integer b ≥ 2, α ∈ (0, 1), and consider a nonlinearity F ∈ C3
b . Then for

every f ∈ Cα, we have F(f) ∈ Cα and

RF (f) := F(f)−Π
(b)
F′(f)(f) ∈ C2α.

More precisely
∥∥∥F(f)−Π

(b)
F′(f)(f)

∥∥∥
C2α

. ‖F‖C3
b

(
1 + ‖f‖2Cα

)
.

If F ∈ C4
b then the remainder term RF (f) is Lipschitz with respect to f , in so far far as we have

∥∥RF(f)−RF(g)
∥∥
C2α . ‖F‖C4

b

(
1 + ‖f‖Cα + ‖g‖Cα

)2 ‖f − g‖Cα .

Proof – First using the Leibniz rule for the operator L, we know that for h ∈ Cα then

L
(
F(h)

)
= F′(h)L(h) + F′′(h)Γ(h)2.

Now, since the semigroup is continuous at t = 0, we have

F(f) = lim
t→0

P
(b)
t F

(
P

(b)
t f

)
,

so we can write

F(f) = −
∫ 1

0

d

dt
P

(b)
t F

(
P

(b)
t f

)
dt+ P

(b)
1 F

(
P

(b)
1 f

)

=
1

γb

∫ 1

0

{
Q

(b)
t

(
F(P

(b)
t f)

)
+ P

(b)
t

(
Q

(b)
t f · F′(P (b)

t f
))} dt

t
+ P

(b)
1 F

(
P

(b)
1 f

)
.

Using the relation Q
(b)
t = Q

(b−1)
t (tL), together with the chain rule

L
(
F
(
P

(b)
t f

))
= F′(P (b)

t f
)
LP

(b)
t f + F′′(P (b)

t f
)
Γ
(
P

(b)
t f

)2
,

we get

Q
(b)
t

(
F
(
P

(b)
t f

))
= Q

(b−1)
t

(
(tL)P

(b)
t f · F′(P (b)

t

))
+Q

(b−1)
t

(
F′′(P (b)

t f
)
· tΓ
(
P

(b)
t f

)2)
.

Note here the identity

P
(b)
t

(
Q

(b)
t f · F′(P (b)

t f
))

=(tL)P
(b)
t

(
Q

(b−1)
t f · F′(P (b)

t f
))

− P
(b)
t

(
Q

(b−1)
t f · tLF′(P (b)

t f
))

− 2P
(b)
t tΓ

(
Q

(b−1)
t f,F′(P (b)

t f
))
.

So we have

F(f)−Π
(b)

F′(f)
(f) =: (a) + (b) + (c) + (d) + (e) + (f)
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with

(a) := P
(b)
1 F

(
P

(b)
1 f

)
,

(b) :=
1

γb

∫ 1

0
Q

(b−1)
t

{
(tL)P

(b)
t f ·

(
F′(P (b)

t f
)
− P

(b)
t

(
F′(f)

))} dt
t

(c) :=
1

γb

∫ 1

0
(tL)P

(b)
t

{
Q

(b−1)
t f ·

(
F′(P (b)

t f
)
− P

(b)
t

(
F′(f)

))} dt
t

(d) :=
1

γb

∫ 1

0
Q

(b−1)
t

{
F′′(P (b)

t f
)
· tΓ
(
P

(b)
t f

)2} dt
t

(e) := − 1

γb

∫ 1

0
P

(b)
t

{
Q

(b−1)
t f · tLF′(P (b)

t f
)} dt

t

(f) := − 2

γb

∫ 1

0
P

(b)
t tΓ

(
Q

(b−1)
t f,F′(P (b)

t f
)) dt

t
.

We are now going to control each of these terms in the Hölder space C2α.

Step 1 – term (a). Since f ∈ Cα, we know that P
(b)
1 f ∈ L∞, so F

(
P

(b)
1 f

)
is also bounded.

From Proposition 2.11, we get
∥∥(a)

∥∥
C2α .

∥∥∥F
(
P

(b)
1 f

)∥∥∥
∞

. ‖f‖Cα .

Step 2 – terms (b), (c). The following quantity appears in these two terms
∣∣∣F′(P (b)

t f
)
− P

(b)
t

(
F′(f)

)∣∣∣ .
∥∥∥F′(f)− F′(P (b)

t f
)∥∥∥

∞
+
∥∥∥F ′(f)− P

(b)
t

(
F′(f)

)∥∥∥
∞

.
∥∥F′′∥∥

∞

∥∥∥f − P
(b)
t f

∥∥∥
∞

+
∥∥∥F′(f)− P

(b)
t

(
F′(f)

)∥∥∥
∞

.
∥∥F′′∥∥

∞

∫ t

0

∥∥Q(b)
s f

∥∥
∞
ds

s
+

∫ t

0

∥∥∥Q(b)
s

(
F′(f)

)∥∥∥
∞

ds

s

.
∥∥F′′∥∥

∞

(∫ t

0
sα/2

ds

s

)
‖f‖Cα +

(∫ t

0
sα/2

ds

s

)∥∥F′(f)
∥∥
Cα

. t
α
2

∥∥F′′∥∥
∞ ‖f‖Cα ;(3.14)

we used along the way the characterization of Hölder space, for 0α < 1, given by Proposi-
tion 2.8, to see that ∥∥F′(f)

∥∥
Cα .

∥∥F′′∥∥
∞ ‖f‖Cα .

Using this estimate (3.14), we deduce the following bound. Uniformly for every s ∈ (0, 1),
we have
∥∥∥Q(1)

s (b)
∥∥∥
∞

.

(∫ 1

0

∥∥∥Q(1)
s Q

(b−1)
t

∥∥∥
∞→∞

tα/2
∥∥∥F′(P (b)

t f)− P
(b)
t

(
F′(f)

)∥∥∥
∞

dt

t

)
‖f‖Cα

.

(∫ s

0
tα
dt

t
+

∫ 1

s

s

t
tα
dt

t

)∥∥F′′∥∥
∞‖f‖2Cα

. tα
∥∥F′′∥∥

∞‖f‖2Cα ,

where we used that
∥∥Q(1)

s Q
(b−1)
t

∥∥
L∞→L∞ .

min(s,t)
max(s,t) . That yields

∥∥(b)
∥∥
C2α .

∥∥F ′′∥∥
∞‖f‖2Cα ,

and a similar inequality holds also for the third term (c).
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Step 3 – terms (d), (e) and (f). We quickly sketch the boundedness of each of these
three terms. Using Proposition 2.12, we get a bound uniform in s ∈ (0, 1), of the form

∥∥Q(1)
s (d)

∥∥
∞ .

(∫ 1

0

∥∥∥Q(1)
s Q

(b−1)
t

∥∥∥
∞→∞

∥∥∥
√
tΓ
(
P

(b)
t f

)∥∥∥
2

∞

dt

t

)∥∥F′′∥∥
∞

.

(∫ s

0
tα
dt

t
+

∫ 1

s

s

t
tα
dt

t

)∥∥F′′∥∥
∞‖f‖2Cα

. tα
∥∥F′′∥∥

∞‖f‖2Cα .

Similarly

∥∥Q(1)
s (f)

∥∥
∞ .

(∫ 1

0

∥∥∥Q(1)
s P

(b)
t

∥∥∥
∞→∞

∥∥∥
√
tΓ
(
Q

(b−1)
t f

)∥∥∥
∞

∥∥∥
√
tΓ
(
F ′(P (b)

t f)
)∥∥∥

∞

dt

t

)

.

(∫ s

0
tα
dt

t
+

∫ 1

s

s

t
tα
dt

t

)∥∥F′′∥∥
∞‖f‖2Cα

. tα
∥∥F′′∥∥

∞‖f‖2Cα ,

where we used the Leibniz rule
∥∥∥
√
tΓ
(
F′(P (b)

t f
))∥∥∥

∞
≤
∥∥F′′∥∥

∞

∥∥∥
√
tΓ
(
(P

(b)
t f)

)∥∥∥
∞

. tα/2
∥∥F′′∥∥

∞‖f‖Cα .

For the remaining last term (e), we can still using the Leibniz rule and get

∥∥∥tLF′(P (b)
t f

)∥∥∥
∞

≤
(∥∥F′′∥∥

∞ +
∥∥F′′′∥∥

∞

)(∥∥∥(tL)P (b)
t f

∥∥∥
∞

+
∥∥∥
√
tΓ
(
P

(b)
t f

)∥∥∥
2

∞

)

which then yields

‖Q(1)
s (e)‖∞ .

∫ 1

0

∥∥∥Q(1)
s P

(b)
t

∥∥∥
∞→∞

∥∥∥Q(b−1)
t f

∥∥∥
∞

∥∥∥tLF′(P (b)
t f

)∥∥∥
∞

dt

t

.

(∫ s

0
tα
dt

t
+

∫ 1

s

s

t
tα
dt

t

)
‖F‖C3

b
‖f‖2Cα

. tα ‖F‖C3
b
‖f‖2Cα .

By combining the previous estimates, we conclude that we have
∥∥(d)

∥∥
C2α +

∥∥(e)
∥∥
C2α +

∥∥(f)
∥∥
C2α . ‖F‖C3

b
‖f‖Cα (1 + ‖f‖Cα),

which ends the proof of the estimate of the remainder. The Lipschitz regularity of the
remainder term is proved by very similar arguments which we leave to the reader.

⊲

Let us now examine the composition of two paraproducts. Note that for u ∈ Cα and v ∈ Cβ ,
with α ∈ (0, 1), β ∈ (0, α], we have uv ∈ Cβ.

Theorem 3.8. Fix an integer b ≥ 2, α ∈ (0, 1), β ∈ (0, α] and consider u ∈ Cα and v ∈ Cβ .
Then for every f ∈ Cα, we have

Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f) ∈ Cα+β

with ∥∥∥Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f)
∥∥∥
Cα+β

. ‖f‖Cα ‖u‖Cα‖v‖Cβ .
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Proof – We leave a detailed proof to the reader and we just sketch it, since it is similar and
easier than the proof of Theorem 3.7. Following Proposition 3.3, we know that the two

terms Π
(b)
u

(
Π

(b)
v (f)

)
and Π

(b)
uv (f) belong to Cα. The idea is to use the Cβ-regularity of v to

gain the same regularity in the difference.

Indeed, adopting the notations used above, the paraproduct Π
(b)
g (f) is given, up to a

multiplicative constant, by two terms with the form

I(f, g) =

∫ 1

0
Q1

t

(
Q2

t f · P1
t g
) dt
t
,

where in Q1
t and Q2

t we have at least a term (tL) to the power 1. Let us focus on this
form. Then we have

I
(
I(f, v), u

)
=

∫ 1

0

∫ 1

0
Q1

t

(
Q2

tQ1
s

(
Q2

sf · P1
s v
)
· P1

t u
) ds dt

st

and

I(f, vu) =

∫ 1

0

∫ 1

0
Q1

t

(
Q2

tQ1
s

(
Q2

sf
)
· P1

t (uv)
) ds dt

st
,

where we have used the normalization Π
(b)
1 = Id, which means here that I(f, vu) =

I
(
I(f, 1), vu

)
. Then using the Cβ-regularity of v and the fact that Qi

t involves at least

a power 1 of (tL), one can check that uniformly in s, t ∈ (0, 1)2, we have

∥∥∥Q1
t

(
Q2

tQ1
s

(
Q2

sf · P1
s v
)
· P 1

t u
)
−Q1

t

(
Q2

tQ1
s

(
Q2

sf
)
· P1

t (uv)
)∥∥∥

∞

.
min(s, t)

max(s, t)
s

α
2 (s+ t)

β
2 ‖f‖Cα‖v‖Cβ‖u‖Cα .

So integrating in s ∈ (0, 1) yields for α+ β < 2

∫ 1

0

∥∥∥Q1
t

(
Q2

tQ1
s

(
Q2

sf · P1
s g
)
· P1

t u
)
−Q1

t

(
Q2

tQ1
s

(
Q2

sf
)
· P1

t (uv)
)∥∥∥

∞

ds

s

. t
α+β
2 ‖f‖Cα‖v‖Cβ‖u‖Cα .

Then as previously we check that for every τ ∈ (0, 1) we have

∥∥∥Q1
τ

(
I
(
I(f, v), u

)
− I(f, vu)

)∥∥∥
∞

.

(∫ 1

0

min(τ, t)

max(τ, t)
t(α+β)/2 dt

t

)
‖f‖Cα‖v‖Cβ‖u‖Cα

. τ
α+β
2 ‖f‖Cα‖v‖Cβ‖u‖Cα ,

since α+ β < 2. That allows us to conclude that

∥∥∥I
(
I(f, v), u

)
− I(f, vu)

∥∥∥
Cα+β

. ‖f‖Cα‖v‖Cβ‖u‖Cα .

⊲
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3.5. Schauder estimates Proposition 3.10 gives an elementary proof in our setting of a Schauder-
type estimate about the regularizing character of the convolution op-

eration with the operators P
(b)
s . Its paracontrolled analogue, given in section 4.2 provides a

crucial ingredient in the study of parabolic singular PDEs, from the point of view of paracon-
tolled distributions.

Definition 3.9. For α ∈ (0, 2) and T > 0, we set

CTCα :=

{
f ∈ L∞(S ′

o), ‖f‖CT Cα := sup
t∈[0,T ]

∥∥f(t)
∥∥
Cα <∞

}

and

C
α/2
T L∞ :=



f ∈ L∞([0, T ]×M), ‖f‖

C
α/2
T L∞ := sup

s6=t
0≤s,t≤T

∥∥f(t)− f(s)
∥∥
∞

|t− s|α2
<∞



 .

We then define the space

Lα
T := CTCα ∩ Cα/2

T L∞.

Proposition 3.10. Consider an integer b ≥ 0 and β ∈ R. For every T > 0 and v ∈ CTCβ then

V (t) :=
∫ t
0 P

(b)
t−sv(s) ds belongs to CTCβ+2 with for every t ∈ [0, T ]

∥∥V (t)
∥∥
Cβ+2 . (1 + T ) sup

s∈[0,t]

∥∥v(s)
∥∥
Cβ .

Moreover if −2 < β < 0 then we also have
∥∥V
∥∥
C

β+2
2

T L∞
. ‖v‖CT Cβ .

Proof – We consider another integer c ≥ |β|/2 + 1 and a parameter τ ∈ (0, 1]. Then

Q(c)
τ

(
V (t)

)
=

∫ t

0
Q(c)

τ P
(b)
t−sv(s) ds.

We have
∥∥∥Q(c)

τ P
(b)
t−sv(s)

∥∥∥
∞

.

(
τ

τ + t− s

)c

‖Q(c)
τ+t−sv(s)‖∞ .

(
τ

τ + t− s

)c

(τ + t− s)
β
2 ‖v(s)‖Cβ .

So by integrating, it comes
∥∥∥Q(c)

τ

(
V (t)

)∥∥∥
∞

.

{∫ t

0

(
τ

τ + t− s

)c

(τ + t− s)
β
2 ds

}
sup
s∈[0,t]

∥∥v(s)
∥∥
Cβ

. τ
β
2
+1 sup

s∈[0,t]

∥∥v(s)
∥∥
Cβ .

This holds uniformly in τ ∈ (0, 1] and so one concludes the proof of the first statement
with the global inequality

∥∥V (t)
∥∥
∞ .

{∫ t

0
(· · · )ds

}
‖v‖CtCβ . T‖v‖CT Cβ .

For the second statement, we note that for s < t ≤ T we have

V (t)− V (s) =
(
P

(b)
t−s − Id

)(
V (s)

)
+

∫ t

s
P

(b)
t−r

(
v(r)

)
dr

=

∫ t−s

0
Q(a)

r V (s)
dr

r
+

∫ t

s
P

(b)
t−r

(
v(r)

)
dr.
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We have ∥∥∥∥
∫ t−s

0
Q(a)

r V (s)
dr

r

∥∥∥∥
∞

.

(∫ t−s

0
r

β
2
+1 dr

r

)∥∥V (s)
∥∥
C

β
2

. (t− s)
β
2
+1
∥∥V (s)

∥∥
Cβ+2

and since β < 0, we also have
∥∥∥∥
∫ t

s
P

(b)
t−r

(
v(r)

)
dr

∥∥∥∥
L∞

.

∫ t

s

(∫ 1

t−r

∥∥∥Q(b)
τ v(r)

∥∥∥
∞
dτ

τ
+
∥∥∥P (b)

1

(
v(r)

)∥∥∥
∞

)
dr

.

∫ t

s

(∥∥v(r)
∥∥
Cβ

∫ 1

t−r
τ

β
2
dτ

τ
+
∥∥∥P (N)

1

(
v(r)

)∥∥∥
∞

)
dr

. (t− s)
β
2
+1 sup

r∈[0,t]

∥∥v(r)
∥∥
Cβ ,

where we used β
2 + 1 ∈ (0, 1).

⊲

Corollary 3.11. For a fixed integer b ≥ 0 and α ∈ (0, 2), the map

(
Jf
)
(t) :=

∫ t

0
P

(b)
t−s

(
f(s)

)
,

defined on CCα−2, satisfies ∥∥Jf
∥∥
Lα
T
. (1 + T ) ‖f‖CT Cα−2 ,

uniformly in T > 0.

Remark 3.12. Observe that in Proposition 3.10 the weight (1 + T ) can be weakened, up to a
little loss on the regularity exponent. Indeed, the exact same proof allows us for some ε ∈ (0, 1)
to prove ∥∥V (t)

∥∥
Cβ+2−2ε . T ε sup

s∈[0,t]

∥∥v(s)
∥∥
Cβ

and ∥∥V
∥∥
C

(β+2−2ε)/2
T L∞ . T ε ‖v‖CT Cβ .

So ∥∥Jf
∥∥
Lα
T
. T ε ‖f‖CT Cα−2+2ε .

We refer the reader to Proposition 5.3 for a detailed proof of a more difficult statement, where
we show how we can improve the bound (1 + T ) up to a small loss on the regularity.

4

Paracontrolled calculus

The ideas of paracontrolled calculus, as introduced in [29], have their roots in Gubinelli’s
notion of controlled path [28]. The latter provides an alternative formulation of Lyons’ rough
paths theory that offers a simple approach to the core of the theory, while rephrasing it in a
very useful Banach setting. Let us have here a glimpse at this field, as a guide for what we
shall be doing in this section and the next one. We refer the reader to [21] for a very nice and
pedagogical introduction to the subject, assuming only here that she/he knows only the very
definition of a (weak geometric) α-Hölder rough path, for some 1

3 < α ≤ 1
2 .
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Assume we are given an R
ℓ-valued (weak geometric) α-Hölder rough path

X =
(
(Xts,Xts)

)
0≤s≤t≤T

,

with Xts ∈ R
ℓ and Xts ∈ R

ℓ ⊗ R
ℓ, and a map σ ∈ C

(
R
d,L
(
R
ℓ,Rd

))
. Following Lyons, an

R
d-valued path x• is said to solve the rough differential equation

(4.1) dxt = σ(xt)X(dt)

if one has

(4.2) xt − xs = σ(xs)Xts + σ′(xs)σ(xs)Xts +O
(
|t− s|a

)

for all 0 ≤ s ≤ t ≤ T , for some constant a > 1. (If Xts = ht − hs, and Xts =
∫ t
s (hr − hs)⊗ dhr,

for some Rℓ-valued C1 control h, equation (4.2) is nothing but a second order Taylor expansion

for the solution to the controlled differential equation ẋt = σ(xt) ḣt.) Gubinelli’s crucial remark
was to notice that for a path x• to satisfy equation (4.2), it needs to be controlled by X in the
sense that one has

(4.3) xt − xs = x′sXts +O
(
|t− s|2α

)
,

for some L(Rℓ,Rd)-valued α-Hölder path x′•, here x
′
s = σ(xs). The point of this remark is that,

somewhat conversely, if we are given an L(Rℓ,Rd)-valued α-Hölder path z• controlled by X,
then there exists a unique R

d-valued path y• whose increments satisfy

yt − ys = zsXts + z′sXts +O
(
|t− s|a

)
,

for some exponent a > 1. With a little bit of abuse, we write
∫ •
0 zsX(ds) for that path y• – this

path depends not only on z but rather on (z, z′). This path depends continuously on (z, z′)
and X in the right topologies. Given an R

d-valued path x• controlled by X, and σ sufficiently
regular, the L(Rℓ,Rd)-valued path zs := σ(xs) is controlled by X, with a control of the size of
(z, z′) given in terms of the size of (x, x′). So, for a path x• to solve the rough differential
equation (4.1), it is necessary and sufficient that it satisfies

xt − xs =

∫ t

s
σ(xr)X(dr),

for all 0 ≤ s ≤ t ≤ T , that is, x• is a fixed point of the continuous map

x• 7→
∫ •

0
σ(xr)X(dr),

from the space of paths controlled by X to itself. (Note that we indeed need the full rough
path X to define that map, and not just X.) The well-posed character of equation (4.1) is
then shown by proving that this map is a contraction if one works on a sufficiently small time
interval.

Our present setting will not differ much from the above description. We aim in the sequel
at solving equations of the form (

∂t +∆
)
u = F(u) ζ,

for some distribution ζ. Comparing this equation with (4.1), the role of the rough path will
be played in that setting by a pair X = (ζ, Z) of distributions, with ζ in the role of dXt,
with Π(Z, ζ), well-defined, somehow in the role of dXt, and

(
∂t + ∆

)
in the role of d

dt . The
elementary insight that the/a solution u should behave at small space scales as ζ is turned
into the definition of a distribution controlled by X, as given in definition 4.1 below, using the
paraproduct as a means of comparison, for writing a first order Taylor expansion of u similar
to identity (4.3). The crucial point of this definition is that one can make sense of the product
F(u) ζ, in that controlled setting, see theorem 4.2, which provides an analogue of the right
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hand side of identity (4.2) defining there σ(xs)X(ds). To run formally the above argument,
we shall need to see how controlled distributions are transformed by a nonlinear map; this
is the content of theorem 4.3. Some problems intrinsically linked with the multidimensional
setting of the problem are dealt with in section 4.2, where a version of Schauder theorem is
proved for paracontrolled distributions.

4.1. Paracontrolled distributions We fix throughout that section and the next one an integer
b ≥ 2.

Definition 4.1. Let α ∈ (−2, 1) and β > 0 be given, together with X ∈ Cα. A pair of
distributions (f, g) ∈ Cα×Cβ is said to be paracontrolled by X if (f, g)♯ := f −Πb

g(X) satisfies

(f, g)♯ ∈ Cα+β.

In such a case, we write (f, g) ∈ bβα(X) and define the norm
∥∥(f, g)

∥∥
bβα

:=
∥∥(f, g)♯

∥∥
Cα+β + ‖g‖Cβ .

If Y ∈ Cα and (h, k) ∈ bβα(Y ) then we also write

d
bβα

(
(f, g), (h, k)

)
:= ‖g − k‖Cβ +

∥∥(f, g)♯ − (h, k)♯
∥∥
Cα+β .

Note that this choice of norm allows to compare paracontrolled distributions associated with
different model distributions X and Y . Following the terminology of [29], the function g is
called the derivative of f , and the term (f, g)♯, the remainder; one should think of the
decomposition

f = Πb
g(X) + (f, g)♯

as a kind of first order Taylor formula for f , in terms of regularity properties. The notion
of derivative depends of course on which model distribution is used. As a first step towards
completing the above program, the following statement gives an analogue in our setting of
the right hand side of identity (4.3) defining σ(xs)X(ds) in the rough paths context. It is
motivated by the following simple regularity analysis based on propositions 3.3 and 3.5, giving

regularity conditions for the well-posed character of terms if the form Π
(b)
u (v) or Π(b)(u, v).

Given f ∈ Cα and v ∈ Cγ , with 0 < α < 1 and γ < 0, we have from Calderon’s identity the
formal identity

fv = Π
(b)
f (v) + Π(b)

v (f) + Π(b)(f, v),

where the only term that is potentially undefined is the diagonal term Π(b)(f, v). If however,
f is controlled by X, with derivative g ∈ Cβ, we can write

Π(b)(f, v) = Π(b)
(
Π(b)

g (X), v
)
+Π(b)

(
(f, g)♯, v

)
,

with Π(b)
(
Π

(b)
g (X), v

)
well-defined if α+ β + γ > 0. So, writing

Π(b)
(
Π(b)

g (X), v
)
= C(X, g, v) + gΠ(b)(X, v),

we finally see that the only undefined term in the above a priori decomposition of fv is the term
Π(b)(X, v), in that controlled setting. The following theorem turns that elementary regularity
analysis into a constructive recipe for defining fv.

Theorem 4.2. Fix an integer b ≥ 1. Let α ∈ (0, 1), β ∈ (0, α] and γ < 0 be such that

α+ β + γ ∈ (0, 1), α+ γ < 0 < β.



33

Let X ∈ Cα, v ∈ Cγ , p ∈ Cα+γ be such that there exist sequences of smooth functions(
Xn

)
n≥0

,
(
vn
)
n≥0

converging to X and v, in Cα and Cγ respectively, with the property that

Π(b)(Xn, vn) converges to p in Cα+γ . Then the application

(f, g) · v := Π
(b)
f (v) + Π(b)

v (f) + Π(b)
(
(f, g)♯, v

)
+ C(X, g, v) + g p

defines a trilinear operator which satisfies

(4.4)
∥∥(f, g) · v −Πb

f (v)
∥∥
Cα+γ .

∥∥(f, g)
∥∥
bβα(X)

{
‖v‖Cγ + ‖X‖Cα‖v‖Cγ + ‖p‖Cα+γ

}
.

So
(
(f, g) ·v, f

)
∈ bαγ (v). Furthermore, this operation is locally Lipschitz in the sense that we have,

with obvious notations where Y,w, q have the same role as X, v, p respectively,
∥∥∥
(
(f, g) · v, f

)♯ −
(
(h, k) · w, h

)♯∥∥∥
Cα+γ

. CM

{
d
bβα

(
(f, g), (h, k)

)
+ ‖X − Y ‖Cα + ‖v − w‖Cγ + ‖p− q‖Cα+γ

}
,

where CM is a positive constant with polynomial growth in

M := max
{
‖X‖Cα , ‖v‖Cγ , ‖p‖Cα+γ , ‖Y ‖Cα , ‖w‖Cγ , ‖q‖Cα+γ ,

∥∥(f, g)
∥∥
bβα(X)

,
∥∥(h, k)

∥∥
bβα(Y )

}
.

By definition of the commutator, we note that if v is smooth and v = Π(b)(f, g) then

gΠ(b)(u, v) is well-defined, by Proposition 3.5, and a simple computation yields

(f, g) · v = fv.

So this new operation ”·” allows us to extend, in some specific situations, the pointwise mul-
tiplication between a function and a distribution.

Proof – Let (f, g) ∈ bβα(X), with f,X ∈ Cα, g ∈ Cβ and (f, g)♯ ∈ Cα+β. Let us examine each
terms of

(f, g) · v = Π
(b)
f (v) + Π(b)

v (f) + Π(b)
(
(f, g)♯, v

)
+ C(X, g, v) + g p.

By Proposition 3.3, we have Π
(b)
f (v) ∈ Cγ and Π

(b)
v (f) ∈ Cα+γ . Proposition 3.5 yields

that Π(b)
(
(f, g)♯, v

)
∈ Cα+β+γ . Applying Proposition 3.6 with α + γ < 0, implies that

C(X, g, v) ∈ Cδ, with δ = min(α+ β, 1). Since α + γ < β, then g p ∈ Cα+γ . Each of these
terms belong also in Cγ and (4.4) holds since α < 1.

We let the reader check the Lipschitz inequality for this operation, in terms of (f, g), X,
v and p.

⊲

Combining the above fact with the paralinearization formula, we are able to study the action
of a nonlinearity on paracontrolled distributions, giving us the equivalent of the elementary
fact that, in the above classical controlled setting for rough differential equations, the image by
some map σ of a path (x, x′) controlled by some reference rough path X is again controlled by
X, and has a size given in terms of the size of (x, x′), under reasonnable regularity conditions
on σ.

Theorem 4.3. Let α ∈ (0, 1) and β ∈ (0, α]. Let X ∈ Cα, (f, g) ∈ bβα(X) and F ∈ C4
b . Then(

F(f),F′(f)g
)
belons to bβα(X), and
∥∥∥
(
F(f),F′(f)g

)∥∥∥
bβα(X)

. ‖F‖C3
b

(
1 +

∥∥(f, g)
∥∥2
bβα(X)

)(
1 + ‖X‖2Cα

)
.
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Moreover, this operation is locally Lipschitz in the sense that we have, with the same notations as
above,

d
bβα

((
F(f),F′(f)g

)
,
(
F(h),F′(h)k

))
. CM‖F‖3C4

b

(
d
bβα

(
(f, g), (h, k)

)
+ ‖X − Y ‖Cα

)
,

where CM is a constant with a polynomial growth in

M := max
{
‖X‖Cα , ‖Y ‖Cα ,

∥∥(f, g)
∥∥
bβα(X)

,
∥∥(h, k)

∥∥
bβα(Y )

}
.

Proof – Consider f ∈ Cα and so F(f) ∈ Cα (since F is Lipschitz). We know that F′(f)g ∈ Cβ ,
since F′(f) ∈ Cα and g ∈ Cβ. Using the notations of Theorem 3.7, we have

F(f)−Π
(b)

F′(f)g
(X) = Π

(b)

F′(f)
(f)−Π

(b)

F′(f)g
(X) +RF(f)

with RF(f) ∈ C2α ⊂ Cα+β. Since f = (f, g)♯ +Π
(b)
g (X), we have

Π
(b)
F′(f)(f) = Π

(b)
F′(f)Π

(b)
g (X) + Π

(b)
F′(f)

(
(f, g)♯

)

with Π
(b)

F′(f)

(
(f, g)♯

)
∈ Cα+β (due to Proposition 3.3). So

F(f)−Π
(b)
F′(f)g(X) ∈ Π

(b)
F′(f)Π

(b)
g (X)−Π

(b)
F′(f)g(X) + Cα+β .

Using Theorem 3.8, we deduce that

F(f)−Π
(b)
F′(f)g(X) ∈ Cα+β ,

which concludes the proof of
(
F(f),F′(f)g

)
∈ bβα(X). We let the reader to check the

Lipschitz inequality for this operation, in terms of (f, g) and X.
⊲

4.2. Schauder estimate for paracontrolled

distributions

The above definition of a paracontrolled distribution
is adapted to a time-independent setting. To deal
with the time-dependent setting needed to handle

the parabolic equations considered in practical examples, we use an adapted notion. Recall
the definition of the space Lα

T given in definition 3.9.

Definition 4.4. Let α ∈ R and β > 0 be such that α + β ∈ (0, 2), and fix X ∈ Lα
T , for some

T > 0. A pair of distributions (f, g) ∈ Lα
T × Lβ

T is said to be paracontrolled by X if

(f, g)♯ := f −Π(b)
g (X) ∈ CTCα+β ∩Cβ/2

T L∞.

In such a case, we write (f, g) ∈ Lβ
α,T (X) and define the norm

∥∥(f, g)
∥∥
bβα,T

:=
∥∥(f, g)♯

∥∥
CT Cα+β +

∥∥(f, g)♯
∥∥
C

β/2
T L∞ + ‖g‖Lβ

T
.

If Y ∈ Lα
T and (h, k) ∈ Lβ

α,T (Y ), then we also write

d
bβα,T

(
(f, g), (h, k)

)
:= ‖g − k‖Lβ

T
+
∥∥(f, g)♯ − (h, k)♯

∥∥
CT Cα+β∩Cβ/2

T L∞ .

Remark 4.5. We just point out that the previous definition is weaker than the property

(f, g)♯ ∈ Lα+β
T . Indeed in Lα+β

T the assumed time-regularity is stronger. Unfortunately, as in
[29], we will not be able to solve the fix point (associated to PAM equation) with this stronger
norm, but only with the one defined previously.
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Theorem 4.6. Let β ∈ (0, 1), α ∈ (0, 2 − β) and a fixed positive time horizon T be given. For
some v ∈ CTCα−2, let X be the solution on [0, T ) of

LX := (∂t + L)X = v

with X∣∣t=0
= 0. Consider g ∈ Lβ

T , h ∈ CTCα+β−2 and f0 ∈ Cα+β, and denote by f the solution

to the initial value problem

Lf = h+Π(b)
g (v)

with f∣∣t=0
= f0. Then we have (f, g) ∈ bβα,T (X) and

∥∥(f, g)
∥∥
bβα,T

. ‖f0‖Cα+β + (1 + T )
{
‖g‖Lβ

T

(
1 + ‖v‖CT Cα−2

)
+ ‖h‖CT Cα+β−2

}
.

Moreover, the map (v,X, g, h, f0) 7→ (f, g) is locally Lipschitz.

Proof – Since v ∈ CTCα−2 then Corollary 3.11 yields that X ∈ Lα
T . Moreover g ∈ Lβ

T and f
is the solution of

Lf = h+Π(b)
g (v)

with h ∈ CTCα+β−2 ⊂ CTCα−2 and Π
(b)
g (v) ∈ CTCα−2, by Proposition 3.3, so Corollary

3.11 yields that f ∈ Lα
T . So it remains us to check that

(4.5) (f, g)♯ := f −Π(b)
g (X) ∈ CTCα+β ∩Cβ/2

T L∞.

Let us derive an equation for this quantity:

L(f, g)♯ = Lf − LΠ(b)
g (X) = h+Π(b)

g (v) − LΠ(b)
g (X)

= h+Π(b)
g (LX)− LΠ(b)

g (X) = h+
[
L,Π(b)

g

]
(X).

By definition h ∈ CTCα+β−2. Moreover we have seen that Π
(b)
g (v) ∈ CTCα−2 and similarly

Π
(b)
g (X) ∈ CTCα so that LΠ(b)

g (X) ∈ CTCα−2. By studying the difference (which consist

to commute the paraproduct Π
(b)
g with L) with introducing an intermediate time-space

paraproduct, as done in [29, Lemma 5.1] – whose proof can easily be extended to our
setting, we obtain that

J
[
L,Π(b)

g

]
(X) ∈ CTCα+β ∩ Cβ/2

T L∞,

where J is the resolution of heat equation (see Corollary 3.11). We invite the reader to
check the Lipschitz inequality for this operation, in terms of v,X, g, h, f0.

⊲

With this result in hands, we now have all the theoretical apparatus needed to study some
examples of singular parabolic PDEs. We have chosen to illustrate our machinery on what
may be one of the simplest examples of such an equation, the generalized parabolic Anderson
equation, (gPAM), that was already handled in the 2-dimensional torus both by Hairer in [32]
using his theory of regularity structures, and by Gubinelli, Imkeller and Perkowski in [29],
using their Fourier-based paracontrolled approach. This choice is motivated by the fact that
only one (probabilistic) renormalization is needed to implement the paracontrolled machinery,
while further renormalizations are needed in the stochastic quantization or KPZ equations. So
the reader can see in the next section the machinery at work without being overwhelmed by
side probabilistic matters.
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5

The (generalized) parabolic Anderson Model in dimension 2

This section is devoted to the study in our abstract setting of the (generalized) parabolic
Anderson Model, in dimension 2. The setting is described in Section 2. The space (M,d, µ)
is a space of homogeneous type, equipped with a semigroup

(
e−tL

)
t>0

satisfying the regularity

assumptions (UE) and (Lip). In the next two subsections, we restrict our attention to the
dimension ν = 2. Let us insist here on the fact that even in this modest setting, the above
semigroup approach offers some results that seem to be beyond the present scope of the theory
of regularity structures, in so far as we are for instance allowed to work in various underlying
spaces and even in the Euclidean space with operators L of the form div

(
A∇

)
, with A Hölder

continuous – see example 2 in section 2.1. (We are also able to deal with unbounded manifolds
by working with weighted noises; which can also be done with regularity structures in R

d, as
testified by the work [35] of Hairer and Labbé on the linear PAM equation in R

3, and their
elementary approach [36] to that equation in R

2.) The first two subsections are dedicated to
proving some local and global in time well-posedness results, for the deterministic (gPAM) and
(PAM) equations respectively. To turn that machinery into an efficient tool for investigating
stochastic PDEs in which the singular term involves a Gaussian noise, we need to lift this
noise into an enriched distribution; this step requires a probabilistic limit procedure generically
called a renormalization step. It is performed in section 5.3, in the geometric framework of a
potentially unbounded manifold and a coloured noise.

5.1. Local well-posedness result for generalized PAM Fix the integer b ≥ 2, which allows us
to consider the corresponding paraprod-

ucts.

Theorem 5.1. Let α ∈
(
2
3 , 1
)
be given, and α′ < α be close enough to α to have 2α+α′−2 > 0;

let also a large enough integer b ≥ 1, and a finite positive time horizon T be given. Let also fix
an initial data u0 ∈ C2α, and a nonlinearity F ∈ C3

b . Given ζ ∈ Cα−2, denote by Z := J(ζ)
the solution of the heat equation defined in Corollary 3.11, and assume that the resonant term
Π(b)(Z, ζ) is well-defined in CTCα−2. Then the generalized PAM

∂tu+ Lu = F(u)ζ, u(0) = u0

has a unique solution
(
u, u′

)
∈ bα

′
α,T (Z) with u

′ = F (u), provided T is small enough.

Since, we have established in the previous sections the main estimates of the paracontrolled
calculus, we can this result by following the same proof as in [29], as extended here to our
more abstract setting.

Proof – Fix α ∈ (2/3, 1) with α′ < α (close enough to α such that 2α + α′ − 2 > 0) and
K,T > 0. The singular perturbation ζ ∈ Cα−2 is fixed and Proposition 5.3 shows that the
resolution of the heat equation Z := J(ζ) is well defined and Z ∈ Lα

T . Consider A(T,K),

the set of couple of distributions (u, u′) ∈ CTCα × CTCα′
such that

(u, u′) ∈ bα
′

α,T (Z),
∥∥(u, u′)

∥∥
bα

′
α,T

≤ K, u′(0) = F(u0) and (u, u′)♯(0) = u0.

We define on A(T,K) the map γT as follows. For (u, u′) ∈ A(T,K), we set γT (u, u
′) =(

v,F(u)
)
with v the solution of

∂tv + Lv =
(
F(u),F′(u)u′

)
· ζ, v(0) = u0.
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Then since (u, u′) ∈ bα
′

α,T (Z) and Z ∈ Lα
T , Theorem 4.3 implies that

(
F(u),F′(u)u′

)
∈

bα
′

α,T (Z) with
∥∥∥
(
F(u),F′(u)u′

)∥∥∥
bα′
α (Z)

. ‖F‖C3
b

(
1 +

∥∥(u, u′)
∥∥2
bα′
α

)(
1 + ‖X‖2CT Cα

)
.

So since we assume that the resonant term Π(b)(Z, ζ) ∈ CTCα−2 is well defined, then
Theorem 4.2 (with γ = α− 2) allows us to define

(
F(u),F′(u)u′

)
· ζ such that

((
F(u),F′(u)u′

)
· ζ,F(u)

)
∈ bα

′
α−2,T (ζ)

(since we have α′ + 2α − 2 > 0) with
∥∥∥
(
F(u),F′(u)u′

)
· ζ −Πb

F(u)(ζ)
∥∥∥
CT C2α−2

.
∥∥∥
(
F(u),F′(u)u′

)∥∥∥
bα

′
α,T (Z)

(
‖ζ‖Cα−2 + ‖Z‖CT Cα‖ζ‖Cα−2 +

∥∥Π(b)(Z, ζ)
∥∥
CT C2α−2

)
.

We have the decomposition
(
F(u),F′(u)u′

)
· ζ =

((
F(u), g − F′(u)u′

)
· ζ −Πb

F(u)(ζ)
)
+Πb

F(u)(ζ).

Using Theorem 4.6 with the comment following theorem 4.2 and the fact that by definition
F(u)ζ :=

(
F(u),F′(u)u′

)
· ζ, we deduce that the solution v of the equation

∂tv + Lv =
(
F(u),F′(u)u′

)
· ζ, v(0) = u0

with initial condition u0 ∈ C2α, satisfies
(
v,F(u)

)
∈ bα′

α,T (Z),

with
∥∥∥
(
v,F(u)

)∥∥∥
bα

′
α,T

bounded above by

∥∥u0
∥∥
C2α + T ε

(∥∥F(u)
∥∥
Lα
T

(
1 + ‖ζ‖Cα−2

)
+
∥∥∥
(
F(u), g − F′(u)u′

)
· ζ −Πb

F(u)(ζ)
∥∥∥
CT C2α−2

)
,

where ε := (α−α′)/2 > 0. At the end, by combining all the previous estimates we conclude

that
(
v,F(u)

)
belongs to bα

′
α,T (Z) and has a bα

′
α,T (Z)-norm bounded above by

∥∥u0
∥∥
C2α + T ε

(
‖F‖C3

b
‖u‖Lα

T

(
1 + ‖ζ‖Cα−2

)
+ ‖F‖C3

b

(
1 +

∥∥(u, u′)
∥∥2
bα

′
α,T

)(
1 + ‖Z‖2CT Cα

)
(⋆)

)
,

with

(⋆) := ‖ζ‖Cα−2 + ‖F‖C3
b
‖u‖CT Cα‖ζ‖Cα−2 + ‖Π(b)(Z, ζ)‖CT C2α−2 .

So then we conclude that for a large enough K and a small enough time T then γT maps
A(T,K) into A(T,K). Moreover, we also have for (u, u′) and (v, v′) contained in A(T,K)
that

d
bα

′
α,T

(
γT (u, u

′), γT (v, v
′)
)
. T ε

(
‖u− v‖Lα

T
+ d

bα
′

α,T

(
(u, u′), (v, v′)

))

with implicit constants depending only on K, Z and ζ. So, as ε is positive, for a small
enough T the map γT defines a contraction of A(T,K). We may then apply Picard iteration
theorem to find a unique fixed point of γT . Since it is easy to check (as detailed in [29])
that a solution of (gPAM) has to be in A(T,K) (at least for a small enough T ), this shows
the local in time well-posed character of the equation.

⊲
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5.2. Global well-posedness result for linear PAM We focus in this subsection on the linear (PAM)
equation and prove a global in time well-posedness

result in that setting. With that aim in mind, we define a weighted (in time) version of the
previous functional spaces of paracontrolled distributions.

Definition 5.2. Given λ ≥ 1 and α ∈ (−2, 2), set

EλCα :=

{
f ∈ L∞

loc(S ′
o), ‖f‖EλCα := sup

t≥0
e−λt

∥∥f(t)
∥∥
Cα <∞

}

and

Eα/2
λ L∞ :=



f ∈ L∞

loc(S ′
o), ‖f‖Eα/2

λ L∞ := sup
s6=t

0≤s,t≤1

e−λs

∥∥f(t)− f(s)
∥∥
∞

|t− s|α2
<∞



 .

We then define the space Lα
λ := EλCα ∩ Eα/2

λ L∞ and similarly the space bβα,λ.

Following the reasoning of Theorem 5.1, we aim to obtain in the linear situation some global
in time results. One of the main ingredient used is given by the Schauder estimates, through
Proposition 3.10 or Corollary 3.11. We now give an extension of these estimates with the above
exponentially weighted spaces.

Proposition 5.3. Consider an integer a ≥ 0, β ∈ (−2, 0) and λ ≥ 1. For every ε ∈ (0, 1) and

v ∈ EλCβ the function V (t) :=
∫ t
0 P

(a)
t−sv(s) ds belongs to EλCβ+2−2ε and satisfies the λ-uniform

bounds

‖V ‖EλCβ+2−2ε . λ−ε ‖v‖EλCβ .

and

‖V ‖E(β+2−2ε)/2
λ L∞ . λ−ε ‖v‖EλCβ .

Consequently,

‖V ‖L(β+2−2ε)/2
λ

. λ−ε ‖v‖EλCβ .

Proof – We adapt the proof of Proposition 3.10 and add an extra new argument to consider
the exponential weight in time. So consider another integer b ≥ |β|/2+1 and a parameter
τ ∈ (0, 1]. Then

Q(b)
τ

(
V (t)

)
=

∫ t

0
Q(b)

τ P
(a)
t−sv(s) ds.

Hence,

∥∥∥Q(b)
τ P

(a)
t−sv(s)

∥∥∥
∞

.

(
τ

τ + t− s

)b ∥∥∥Q(b)
τ+t−sv(s)

∥∥∥
∞

.

(
τ

τ + t− s

)b

(τ + t− s)β/2
∥∥v(s)

∥∥
Cβ .

So by integrating, it comes

e−λt
∥∥∥Q(b)

τ

(
V (t)

)∥∥∥
∞

.

(∫ t

0
e−λ(t−s)

(
τ

τ + t− s

)b

(τ + t− s)β/2 ds

)
sup
s∈[0,t]

e−λs
∥∥v(s)

∥∥
Cβ

.

(∫ t

0
e−λ(t−s)

(
τ

τ + t− s

)b

(τ + t− s)β/2 ds

)
‖v‖EλCβ .
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Let us just consider the integral term (temporarily denoted by I). If t ≤ τ then

I ≤ τβ/2
∫ t

0
e−λ(t−s) ds . τβ/2

1− e−λt

λ
. τβ/2(λt)(1−ε)λ−1

. τβ/2+1−ελ−ε.

If t ≥ τ then

I ≤ τβ/2
∫ t

t−τ
e−λ(t−s) ds+

∫ t−τ

0
e−λ(t−s)

(
τ

t− s

)b

(t− s)β/2 ds

. τβ/2
1− e−λτ

λ
+ τβ/2+1−ε

∫ t−τ

0
e−λ(t−s)(t− s)ε−1 ds

. τβ/2
1− e−λτ

λ
+ τβ/2+1−ελ−ε

(∫ ∞

0
e−xxε−1 dx

)

. τβ/2+1−ελ−ε.

So in both situations, we deduce that uniformly in λ ≥ 1 and t > 0, it comes

e−λt
∥∥∥Q(b)

τ

(
V (t)

)∥∥∥
∞

. τβ/2+1−ελ−ε‖v‖EλCβ

and similarly

e−λt
∥∥∥P1

[
V (t)

]∥∥∥
∞

. λ−ε‖v‖EλCβ .

Consequently, we deduce that for every t ≥ 0

e−λt
∥∥V (t)

∥∥
Cβ+2−2ε . λ−ε‖v‖EλCβ ,

which yields

‖V ‖EλCβ+2−2ε . λ−ε‖v‖EλCβ .

For the second statement, for s < t we have

V (t)− V (s) =
(
P

(a)
t−s − Id

)
[V (s)] +

∫ t

s
P

(a)
t−r

[
v(r)

]
dr

=

∫ t−s

0
Q(a)

r V (s)
dr

r
+

∫ t

s
P

(a)
t−r

[
v(r)

]
dr.

So

e−λt

∥∥∥∥
∫ t−s

0
Q(a)

r V (s)
dr

r

∥∥∥∥
∞

.

(∫ t−s

0
rβ/2+1 dr

r

)
e−λt

∥∥V (s)
∥∥
Cβ+2

. (t− s)β/2+1e−λ(t−s)e−λ(t−s)‖V ‖EλCβ+2

. (t− s)β/2+1
(
λ(t− s)

)−ε‖V ‖EλCβ+2

. (t− s)β/2+1−ελ−ε‖V ‖EλCβ+2
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and also (since β < 0)

e−λt

∥∥∥∥
∫ t

s
P

(a)
t−r

[
v(r)

]
dr

∥∥∥∥
L∞

.

∫ t

s
e−λt

(∫ 1

t−r

∥∥Q(a)
τ v(r)

∥∥
∞
dτ

τ
+
∥∥∥P (a)

1

[
v(r)

]∥∥∥
∞

)
dr

.

∫ t

s
e−λt

(
‖v(r)‖Cβ

∫ 1

t−r
τβ/2

dτ

τ
+ ‖P (a)

1 [v(r)]‖L∞

)
dr

. ‖v‖EλCβ

∫ t

s
e−λ(t−r)

(∫ 1

t−r
τβ/2

dτ

τ
+ 1

)
dr

. ‖v‖EλCβ

∫ t

s
e−λ(t−r)

(
(t− r)β/2 + 1

)
dr

. λ−ε‖v‖EλCβ (t− s)β/2+1−ε,

where we used β/2 + 1 ∈ (0, 1). So we conclude to

‖V ‖E(β+2)/2−ε
λ L∞ . λ−ε‖v‖EλCβ .

⊲

Theorem 5.4. Let α ∈
(
2
3 , 1
)
be given, and α′ < α be close enough to α to have 2α+α′−2 > 0;

let also choose a large enough integer b ≥ 1, and fix an initial data u0 ∈ C2α with some λ ≥ 1.
Assume that ζ ∈ Cα−2 and that the resonant term Π(b)(Z, ζ) is well-defined in EλCα−2 where
Z = J(ζ) is the solution of the heat equation (∂t + L)Z = ζ, with null initial condition. Then if
λ is large enough, the linear PAM equation

∂tu+ Lu = u ζ, u(0) = u0

has a unique global in time solution
(
u, u′

)
∈ bα

′
α,λ(Z) with u

′ = u.

Proof – Consider α ∈ (2/3, 1), K and λ ≥ 1 parameters (which will be fixed later). Since
ζ ∈ Cα−2, Proposition 5.3 implies that Z = J(ζ) ∈ Lα

λ . For some α′ ∈ (0, α) (close enough
to α such that 2α+ α′ − 2 > 0), consider the set A(λ,K) defined as

{
(u, u′) ∈ EλCα × EλCα′

; (u, u′) ∈ bα
′

α,λ(Z), ‖(u, u′)‖bα′
α,λ

≤ K, u′(0) = u0, (u, u
′)♯(0) = u0

}
.

We define on A(λ,K) the map γλ as follows: for (u, u′) ∈ A(λ,K), we set γλ(u, u
′) = (v, u)

with v the solution of

∂tv + Lv = (u, u′) · ζ, v(0) = u0.

Then by the same considerations, as detailed for Theorem 5.1 (with some simplifications
getting around the paralinearization step since here we only consider the linear situation)
and using Proposition 5.3 instead of Proposition 3.10, we get the following: for (u, u′) ∈
A(λ,K) then γλ(u, u

′) belongs to bα
′

α,λ(Z) and satisfies (uniformly in λ ≥ 1) with ε :=

α− α′ > 0

‖γλ(u, u′)‖bα′
α,T (Z) . ‖u0‖C2α + λ−ε

(
‖u‖Lα

λ

(
1 + ‖ζ‖Cα−2

)
+ ‖(u, u′)‖bα′

α,T
(⋆)
)
,

with

(⋆) :=
(
‖ζ‖Cα−2 + ‖Z‖EλCα‖ζ‖Cα−2 +

∥∥Π(b)(Z, ζ)
∥∥
CT C2α−2

)
.

Since ε > 0, we deduce that for K and λ large enough then γλ maps A(λ,K) into A(λ,K).
Moreover, we also have for (u, u′) and (v, v′) contained in A(λ,K)

d
bα

′
α,λ

(
γλ(u, u

′), γλ(v, v
′)
)
. λ−ε

(
‖u− v‖Lα

λ
+ d

bα
′

α,λ

(
(u, u′), (v, v′)

))
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with implicit constants depending only on K, Z and ζ. So for a large enough λ ≥ 1 then
γλ defines a contraction on A(λ,K). We may then apply Picard iteration theorem to find
a fixed point of γλ which yields a global (in time) existence and uniqueness of solution.

⊲

5.3. Renormalization for a weighted noise We cannot expect to work in the Besov spaces used
above when working in unbounded ambiant spaces

and with a spatial white noise; so weights need to be introduced, with a choice to be made. We
can either put the weight in the Hölder spaces and still consider a uniform white noise, or we
can put the weight on the noise and consider a coloured noise with values in unweighted Hölder
spaces. The first approach has been recently implemented by Hairer and Labbé in a forthcom-
ing work (see [36]) on the linear (PAM) equation in R

3. We chose to work with the second
option here, partly motivated by exploring this unexplored question, partly because it seems
to us that spatial white noise in an unbounded space has more something of a mathematical
abstraction than of a model for real-life phenomena.

Definition 5.5. Let ω be an L2(µ) weight on M ; the noise with weight ω is the centered
Gaussian process ξ indexed by L2(ωµ), such that for every continuous function f ∈ L2(ωµ) we
have

(5.1) E
[
ξ(f)2

]
=

∫
f2(x)ω(x)µ(dx).

Let us define the following notation. For t > 0, we denote by Gt the Gaussian kernel

Gt(x, y) :=
1

V (x,
√
t)
e−c

d(x,y)2

t ;

it also depends on the positive constant c, although we do not mention it in the notation for
convenience. Since, we will have to ”commute” in some sense the Gaussian kernels with the
weight ω defining the colour of the noise, it seems natural to make the following assumption.
We assume the existence of some implicit constant such that for every t ∈ (0, 1] and every
x, y ∈M , we have

(5.2) Gt(x, y)ω(y) . ω(x)Gt(x, y).

Recall the definition of Ahlfors regularity of a measure µ on a metric space (M,d), given
in section 2.3 before the Sobolev embedding theorem 2.9, and quantified in equation (2.9). In
that setting, it is relatively elementary to use the latter and prove by classical means that a
coloured noise, as defined above, has a realization that takes almost-surely its values in some
Hölder space.

Proposition 5.6. Assume that (M,d, µ) is Ahlfors regular and let ξ be a noise onM , with weight
ω ∈ L1 ∩L∞ satisfying the assumption (5.2). Then, for every σ < −ν

2 , there exists a version of ξ,
still denoted by the same symbol, which takes almost surely its values in Cσ.

Proof – It suffices from general principles and lemma 2.9 to check that the two expectations

E

(∫

Rd

∣∣e−Lf
∣∣p(x)µ(dx)

)

and

(⋆) := E

(∫ 1

0
t−pσ

2

∥∥∥Q(a)
t f

∥∥∥
p

p

dt

t

)

are finite for every p > 2. We show how to deal with the second expectation, the first one

being easier to treat with similar arguments. Starting from the fact that
(
Q

(a)
t f

)
(x) is, for
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every x ∈M , a Gaussian random variable with covariance the L2(ωµ)-norm of K
Q

(a)
t
(x, ·),

the equivalence of Gaussian moments with (5.1) give the upper bound

E

[∣∣∣Q(a)
t f

∣∣∣
p
(x)
]
. E

[∣∣∣Q(a)
t f

∣∣∣
2
(x)

] p
2

.

∣∣∣∣
∫
K

Q
(a)
t
(x, z)2ω(z)µ(dz)

∣∣∣∣

p
2

.

Using the Gaussian bounds for the kernel ofQ
(a)
t with property (5.2) and Ahlfors regularity,

this implies for t ∈ (0, 1)

E

[∣∣∣Q(a)
t f

∣∣∣
p
(x)
]
. ω(x)

p
2 t−ν p

4 .

Hence, it follows

(⋆) .

∫ 1

0

∫

M
ω(x)

p
2 t−p ν

4 t−pσ
2 µ(dx)

dt

t
. ‖ω‖p

2

if σ < −ν
2 . We conclude since ω ∈ L1 ∩ L∞ ⊂ L

p
2 .

⊲

Let ξ be a coloured noise, with weight ω, and define for every s > 0, a function gs :M → R,
by the formula

gs(x) := E

[
Π
(
e−sLξ, ξ

)
(x)
]
;

so that we formally have ∫ ∞

0
gs(x) ds = E

[
Π
(
L−1ξ, ξ

)
(x)
]
.

An explicit computation can be used in the case of the torus and the white noise to show
that this integral diverges; see [29]. A similar computation can be done in our setting with

the help of a highly non-trivial estimate on the kernel of the operators Q
(1)
s , showing that

the above integral also diverges at almost all points x of M . These facts justifies that we
consider the modified integral (5.3) below. Even though we shall only use here theorem 5.7 in
a 2-dimensional setting, we prove it in the optimal range of homogeneous dimensions d ∈ [2, 4),
for use in forthcoming works. Denote by ϑ the function J(ξ) solution to the linear equation(
∂t +∆

)
ϑ = ξ.

Theorem 5.7 (Renormalization). Assume that (M,d, µ) is locally Ahlfors regular, with homo-
geneous dimension d = ν ∈ [2, 4). Consider ξ a weighted noise with weight ω ∈ L1∩L∞ satisfying
assumptions (5.2). For some integer a ≥ 0, set

(5.3)
(
ϑ♦ξ

)
(t) :=

∫ t

0

{
Π
(
e−sLξ, ξ

)
(x)− gs(x)

}
ds,

where we recall that gs(x) := E

[
Π
(
e−sLξ, ξ

)
(x)
]
, and we write Π for Π(a). Consider one of the

following time functional space F = CT (for some arbitrary T <∞) or F = Eλ, for some arbitrary

λ ≥ 1. Then for every α ∈
(
1− d

4 , 2− d
2

)
and p ∈ (1,∞), we have

E

[∥∥ϑ♦ξ
∥∥p
FC2α−2

]
<∞.

Moreover, by considering for ε ∈ (0, 1), the regularized versions ξε := e−εLξ, and ϑε := e−εLϑ,
and cε :=

∫∞
0 E

[
Π(e−sLξε, ξε)

]
ds, then for every p ∈ [1,∞), we have

lim
ε→0

E

[∥∥ϑ♦ξ − (Π(b)(ϑε, ξε)− cε)
∥∥p
FC2α−2

]
= 0.
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Remarks 5.8. • In particular, if the ambiant space M is bounded (and so of finite mea-
sure) then the constant weight ω ≡ 1 satisfies (5.2) and belongs to L1 ∩ L∞. So the
previous results can be applied to white noise.

• In Proposition 5.6 as well as in Theorem 5.7, we do not need ω ∈ L1 ∩ L∞. Indeed,
what is really needed is ω ∈ Lp for sufficiently large and finite exponent p.

• Consider a fix point o ∈ M , then any weight of the form ω(x) = (1 + d(x, o))−M for
M > d/2 satisfies the assumption (5.2) and belongs to L∞ ∩ L2.

Proof – By definition of white noise with colour ω, we know that if T, T ′ are two self-adjoint
operators then for every y, z ∈M

(5.4) E

[(
Tξ
)
(y)
(
T ′ξ
)
(z)
]
=

∫
KT (u, y)KT ′(u, z)ω(u)µ(du).

Moreover if T and T ′ are self-adjoint operators, with a kernel pointwisely bounded by
Gaussian kernels at scale t, t′ ∈ (0, 1]: for almost every x, y ∈M

∣∣KT (x, y)
∣∣ . Gt(x, y) and

∣∣KT ′(x, y)
∣∣ . Gt′(x, y)

then we deduce by (5.4) and Assumption (5.2) that

E
[
Tξ(y)T ′ξ(z)

]
=

∫
KT (u, y)KT ′(u, z)ω(u)µ(du) .

∫
Gt(u, y)Gt′(u, z)ω(u)µ(du)

. ω(y)

∫
Gt(u, y)Gt′(u, z)µ(du) . ω(y)Gt+t′(y, z),(5.5)

where we used Lemma A.5. Fix now an integer b ≥ 2 + d
2 and for r ∈ (0, 1] and s > 0, we

define the quantity

A(r, s) :=

∫ 1

0

∫ 1

0

(
r

r + t1

)b( r

r + t2

)b

. . .

. . .

(
t1t2

(t1 + s)(t2 + s)

) 1
2

(s + t1 + t2)
− d

2 (r + t1 + t2)
− d

2
dt1
t1

dt2
t2
,

We set the function

Ξs := Π(a)
(
e−sLξ, ξ

)
− gs,

and we claim that for every r ∈ (0, 1], s > 0 and every x ∈M then

(5.6) E

[∣∣Q(b)
r Ξs(x)

∣∣2
]
. A(r, s)ω(x)2.

Step 1 – Proof of (5.6). The resonant (or diagonal) part of the paraproduct Π(a) is
given by five terms, of the form

R1(f, g) =

∫ 1

0
Pt

(
(tL)P1

t f · Qtg
) dt
t

or R2(f, g) =

∫ 1

0
Pt

(
Qtf · (tL)P1

t g
) dt
t
,

or

R3(f, g) =

∫ 1

0
PtΓ

(√
tP1

t f ,
√
tP2

t g
) dt

t

where
• Pt,P1

t and P2
t are operators of the form p(tL)e−tL with p a polynomial function;

• Qt is of the form (tL)a−1p(tL)e−tL with a polynomial function p.
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So both of these operators have a kernel with Gaussian pointwise estimates and we only
have to deal with these three generic quantities.

Let us focus on a term of the first form and study

Ξ1
s := R1

(
e−sLξ, ξ

)
(x)− g1s(x) with g1s(x) := E

[
II1
(
e−sLξ, ξ

)
(x)
]
.

Due to the covariance rule of Gaussian variables, we have for T,U, T ′, U ′ self-adjoint op-
erators (using (5.4)) and every y, z ∈M

E

(
Tξ(y)Uξ(y)T ′ξ(z)U ′ξ(z)− E

[
Tξ(y)Uξ(y)

]
E
[
T ′ξ(z)U ′ξ(z)

])

= E
[
Tξ(y)T ′ξ(z)

]
E
[
Uξ(y)U ′ξ(z)

]
+ E

[
Tξ(y)U ′ξ(z)]E[Uξ(y)T ′ξ(z)

]
.

Hence E

[∣∣Q(b)
r Ξ1

s(x)
∣∣2
]
is equal to

∫ 1

0

∫ 1

0

{(
Q(b)

r Pt1 ⊗Q(b)
r Pt2

)(
E

[
(t1L)P1

t1e
−sLξ(•)(t2L)P1

t2e
−sLξ(•)

]
E

[
Qt1ξ(•)Qt2ξ(•)

])
(x, x)

+
(
Q(b)

r Pt1 ⊗Q(b)
r Pt2

)(
E

[
(t1L)P1

t1e
−sLξ(•)Qt2ξ(•)

]
E

[
Qt1ξ(•)(t2L)P1

t2e
−sLξ(•)

])
(x, x)

} dt1
t1

dt2
t2
,

where we use the notation f(•, •) for a function of two variables, with (fg)(•, •) standing
for the map (y, z) 7→ f(y, z) g(y, z). Moreover, to shorten notations, we shall use below

the notation dm for the measure µ(dy)µ(dz)dt1t1
dt2
t2
. By applying (5.5), it follows

E

[∣∣Q(b)
r Ξ1

s(x)
∣∣2
]
. J1 + J2

with

J1 :=

∫ ∣∣∣KQ
(b)
r Pt1

(x, y)
∣∣∣
∣∣∣KQ

(b)
r Pt2

(x, z)
∣∣∣ω(y)ω(z)

t1
t1 + s

t2
t2 + s

Gt1+t2+s(y, z)Gt1+t2(y, z) dm

and

J2 :=

∫ ∣∣∣KQ
(b)
r Pt1

(x, y)
∣∣∣
∣∣∣KQ

(b)
r Pt2

(x, z)
∣∣∣ω(y)ω(z)

t1
t1 + s

t2
t2 + s

Gt1+t2+s(y, z)Gt1+t2+s(y, z) dm.

Let us first explain how we can estimate the kernel of Q
(b)
r Pt1 . Using the notation Pt1 =

p(t1L)e
−t1L for some polynomial function p, it comes

Q(b)
r Pt1 =

(
r

r + 1
2
t1

)b (
(r + 1

2
t1)L

)b
e−rLp(t1L)e

−t1L

=

(
r

r + 1
2
t1

)b

Q
(b)

r+ 1
2
t1
p(t1L)e

− 1
2
t1L,

so since r+ 1
2
t1 ≃ r+ t1, Q

(b)

r+ 1
2
t1
has a kernel with Gaussian bounds at the scale r+ 1

2
t1 and

p(t1L)e
− 1

2
t1L at the scale t1, it follows by Lemma A.5 that Q

(b)
r Pt1 has a kernel pointwise

bounded by Gr+t1 with an extra factor
(

r
r+t1

)b
. Coming back to estimate the first term

J1. We have the upper bound

J1 .

∫ ∣∣∣∣
r2

(r + t1)(r + t2)

∣∣∣∣
b

Gr+t1(x, y)Gr+t2(x, z)ω(y)ω(z)
t1

t1 + s

t2
t2 + s

Gt1+t2+s(y, z)Gt1+t2(y, z) dm

. ω(x)2
∫ ∣∣∣∣

r2

(r + t1)(r + t2)

∣∣∣∣
b

t1
t1 + s

t2
t2 + s

Gr+t1(x, y)Gr+t2(x, z)Gt1+t2+s(y, z)Gt1+t2(y, z) dm,
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where we used Assumption 5.2. Due to Lemma A.5 with Ahlfors regularity (2.9), we have

∫∫
Gr+t1(x, y)Gr+t2(x, z)Gt1+t2+s(y, z)Gt1+t2(y, z)µ(dy)µ(dz)

. (t1 + t2 + s)−
d
2

∫∫
Gr+t1(x, y)Gr+t2(x, z)Gt1+t2(y, z)µ(dy)µ(dz)

. (t1 + t2 + s)−
d
2 (r + t1 + t2)

− d
2 .

Hence,

J1 . ω(x)2
∫ 1

0

∫ 1

0

∣∣∣∣
r2

(r + t1)(r + t2)

∣∣∣∣
b

t1
t1 + s

t2
t2 + s

(s+ t1 + t2)
− d

2 (r + t1 + t2)
− d

2
dt1
t1

dt2
t2

. ω(x)2A(r, s).

The second term J2 can be similarly bounded, which concludes the proof of (5.6) for Ξ1.
The corresponding term Ξ2 with R2 can be estimated in the same way. So it remains us
now to focus on the last and third term with

R3(f, g) =

∫ 1

0
PttΓ

(
P1
t f,P2

t g
) dt
t

and Ξ3
s := R3

(
e−sLξ, ξ

)
(x)− g3s(x). Following the exact same reasoning we have

E

(∣∣Q(b)
r Ξ3

s(x)
∣∣2
)
. K1 +K2

with K1 equal to

∫ ∣∣∣KQ
(b)
r Pt1

(x, y)
∣∣∣
∣∣∣KQ

(b)
r Pt2

(x, z)
∣∣∣ω(y)ω(z)

∣∣∣∣
t1t2

(t1 + s)(t2 + s)

∣∣∣∣

1
2

Gt1+t2+s(y, z)Gt1+t2(y, z) dν

and K2 equal to

∫ ∣∣∣KQ
(b)
r Pt1

(x, y)
∣∣∣
∣∣∣KQ

(b)
r Pt2

(x, z)
∣∣∣ω(y)ω(z)

∣∣∣∣
t1t2

(t1 + s)(t2 + s)

∣∣∣∣

1
2

Gt1+t2+s(y, z)Gt1+t2+s(y, z) dν.

Following the same computations, gives us that both K1 and K2 are bounded as follows

K1 +K2 . ω(x)2A(r, s),

which concludes the proof of (5.6).

Step 2 – Conclusion. We refer the reader to Lemma A.6 for a precise control of quantity
A. Combining (5.6) with Lemma A.6 gives

(5.7) E

[∣∣Q(b)
r Ξs(x)

∣∣
]
. E

[∣∣Q(b)
r Ξs(x)

∣∣2
] 1

2
. ω(x)

(
r

s+ r

) 1
2

(rs)−
d
4

(
1 + log

(s+ r

s

)) 1
2

.

We then consider

(
ϑ♦ξ

)
(t) :=

∫ t

0

(
Π
(
e−sLξ, ξ

)
(x)− gs(x)

)
ds.
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We refer the reader to Definition 2.6 for the definition of Besov spaces (involving an integer
b). So for all 0 ≤ s < t, it comes

E

[∥∥ϑ♦ξ(t)− ϑ♦ξ(s)
∥∥2p
B2α−2

2p,2p

]
=

∫ 1

0
r−p(2α−2)

∫

M
E

(∣∣Q(b)
r [ϑ♦ξ(t)− ϑ♦ξ(s)]

∣∣2p
)
µ(dx)

dr

r

.

∫ 1

0
r−p(2α−2)

∫

M

(∫ t

s
E

(∣∣Q(b)
r Ξ(τ)(x)

∣∣
)
dτ

)2p

µ(dx)
dr

r

. ‖ω‖2p2p
∫ 1

0
r−p(2α−2)

(∫ t

s

(
r

r + τ

) 1
2

(rτ)−
d
4

(
1 + log

(τ + r

τ

)) 1
2

dτ

)2p
dr

r
,

where we have used Gaussian hypercontractivity; see [22]. So it comes, by Minkowski
inequality,

E

[∥∥ϑ♦ξ(t)− ϑ♦ξ(s)
∥∥2p
B2α−2

2p,2p

]

. ‖ω‖2p2p

(∫ t

s

(∫ 1

0
r−2p(α−1)

(
r

r + τ

)p

(rτ)−
dp
2

(
1 + log

(τ + r

τ

))p dr

r

) 1
2p

dτ

)2p

.

We have
∫ 1

0

r−2p(α−1)

(
r

r + τ

)p (
rτ
)− dp

2

(
1 + log

(τ + r

τ

))p
dr

r

.

∫ τ

0

r−2p(α−1)
( r
τ

)p
(rτ)−

dp
2
dr

r
+

∫ 1

τ

r−2p(α−1)(rτ)−
dp
2

(
1 + log

( r
τ

))p dr

r

. τ−2p(α−1)−dp,

since

−2(α − 1)− d

2
< 0 < −2(α− 1) + 1− d

2
which is equivalent to

1− d

4
< α <

3

2
− d

4
.

Observe that this last condition is satisfied since d ∈ [2, 4) and so 1− d
4 < α < 2− d

2 ≤ 3
2− d

4 .

Then because of α < 2− d
2 , it yields −(α− 1)− d

2 > −1 and so

E

[∥∥ϑ♦ξ(t)− ϑ♦ξ(s)
∥∥2p
B2α−2

2p,2p

]
. ‖ω‖2p2p

(∫ t

s
τ−(α−1)− d

2 dτ

)2p

. ‖ω‖2p2p|s− t|−2p(α−2)−dp.

We can then use Kolmogorov’s continuity criterion to deduce that for every T < ∞ and
λ ≥ 1, we have

E

[∥∥ϑ♦ξ
∥∥2p
CTB2α−2

2p,2p

]
+ E

[∥∥ϑ♦ξ
∥∥2p
EλB2α−2

2p,2p

]
<∞.

And using Besov embedding (due to Ahlfors regularity (2.9), see Lemma A.4), we know
that

B2α−2
2p,2p →֒ B2α−2

2p,∞ →֒ B2α−2−d/2p
∞,∞ = C2α−2−d/2p.

So for every p ≥ 1 and every α ∈ (1− d
2 , 2− d

2)

E

[∥∥ϑ♦ξ
∥∥2p
CT C2α−2−d/2p

]
+ E

[∥∥ϑ♦ξ
∥∥2p
EλC2α−2−d/2p

]
<∞,

which allows us to conclude.
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Step 3 – Second part of the statement. The second part of the statement about the
approximation results can be similarly obtained, we only have to include some additional
factors coming from

ξ − ξε = (1− e−εL)ξ =

∫ ε

0
Q(1)

σ ξ
dσ

σ
.

A careful examination shows that in the previous reasoning, ξ may be replaced by Q
(1)
σ ξ

and the difference involves some extra factors of the type

sσ

(s+ σ)2
,

σt1
(σ + t1)2

or
σt2

(σ + t2)2
.

In these three situations (by replacing ξ with Q
(1)
σ ξ), the same estimates hold with a

quantity Aσ(r, s) satisfying (instead of (A.9)), for η > 0 as small as we want

(5.8) Aσ(r, s) .

(
r

s+ r

)
(rs)−d/2

(
1 + log

(s+ r

s

))( σ

min(r, s)

)η

.

Then we let the reader to check that since all the conditions on the exponents are “open
conditions”, then the previous reasoning can be reproduced, up to a small loss of regularity.
So with

Fε := ϑ♦ξ −
(
Π(b)(ϑε, ξε)− cε

)

we get for a sufficiently small η > 0

E

[∥∥Fε(t)− Fε(s)
∥∥2p
B2α−2

2p,2p

]
.

(∫ ε

0

∫ t

s

(σ
τ

)η
τ−(α−1)−d/2 dτ

dσ

σ

)2p

. |s− t|−2p(α−2)−dp

(
ε

|s− t|

)2pη

,

which allows us to conclude as previously using Besov embedding.
⊲

Proof of Theorem 1.2 – Let us fix the (coloured) white noise ξ and its regularized version
ξε := e−εLξ. As in Theorem 5.7 or Theorem 1.2, let us consider the function

cε :=

∫ ∞

0
E
[
Π(e−sLξε, ξε)

]
ds = E

[
Π(L−1ξε, ξε)

]
.

In order to make appear this term in the equation, we can introduce a suitable correction
term in the regularized problems and we are conducted (as detailed in [29]) to study the
following renormalized PDE

∂tu
ε + Luε = F (uε)ξε − cεF ′(uε)F (uε).

We then follow the exact same approach as for Theorem 5.1 (or Theorem 5.4 for the global
estimates with the spaces Eλ), adapted to this modified PDE. So we only detail the required

modification. We cannot use Π(b)(Xε, ξε) but we have to replace it by Π(b)(Xε, ξε) − cε

which belongs to CTC2α−2.

Using the arguments of Theorem 4.2 (with γ = α− 2), it allows us to define the following
“product” for (u, u′) ∈ dαα(X

ε)
((
F (u), F ′(u)u′

)
· ξε
)
− cεu′F ′(u) ∈ bα

′
α−2,T (ζ)
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uniformly with respect to ε (since an upper bound involves only ‖Π(b)(Xε, ξε)−cε‖CT C2α−2)
with

∥∥∥
(
F (u), F ′(u)u′

)
· ξε −Πb

F (u)(ξ
ε)− cεu′F ′(u)

∥∥∥
CT C2α−2

.
∥∥∥
(
F (u), F ′(u)u′

)∥∥∥
bα

′
α,T (X)

(
‖ξε‖Cα−2 + ‖Xε‖CT Cα‖ξε‖Cα−2 +

∥∥Π(b)(Xε, ξε)− cε
∥∥
CT C2α−2

)
.

Then we conclude as in Theorem 5.1 (or Theorem 5.4), by using a fixed point theorem.
⊲

A

Heat kernel and technical estimates

We gather in this Appendix a number of propositions whose proofs were not given in the
course of the paper, so as to keep focused on the most essential aspects of our work. These
proofs are given here.

We start by proving the following pointwise and Lp-estimate for the gradient of the heat
semigroup.

Proposition A.1. Assume that (M,d, µ) is a doubling space equipped with a semigroup satisfying
(UE) and (Lip). Then for every t > 0, x0 ∈M and every function f ∈ L2 we have

(A.1)
∣∣∣
(√
tΓ
)(
e−tLf

)
(x0)

∣∣∣ .
∫

M

1√
V
(
x0,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x0, y)

2

t

) ∣∣f(y)
∣∣µ(dy).

Let us first introduce the following notation: for a function f ∈ L2
loc and a ball B ⊂M , we

write OscB(f) for the L
2 oscillation of f on B defined by

OscB(f) :=

(
−
∫

B
|f −AvgB(f)|2 dµ

)1/2

,

where AvgB(f) = −
∫
B f dµ stands for the average of f on the ball B.

Proof – Fix the function f ∈ L2 and consider g = e−tLf . By L2-Caccioppoli inequality (see
Lemma below), we have for every x0 and r > 0 that

(
−
∫

B(x0,r)
Γ(g)2 dµ

) 1
2

.
1

r
OscB(x0,2r)(g) +

(
−
∫

B(x0,2r)
|Lg|2 dµ

)1/2

.

So if x0 is a Lebesgue point of Γ(g)2 and |Lg|2 (which is the case for almost every point
x0 ∈M) then taking the limit for r → 0 yields

(A.2) Γ(g)(x0) . lim inf
r→0

1

r
OscB(x0,2r)(g) + |Lg(x0)|.

Since (tL)e−tL has a kernel satisfying the Gaussian upper estimates (UE) (by analyticity),
we deduce that

(A.3) |tLg(x0)| .
∫

M

1√
V (x0,

√
t)V (y,

√
t)

exp

(
−c d(x0, y)

2

t

)
|f(y)|µ(dy).
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Using Lipschitz regularity (Lip) for the heat kernel and doubling property, it comes for
x, z ∈ B(x0, 2r) with r ≤

√
t

|g(x) − g(z)| =
∣∣e−tLf(x)− e−tLf(z)

∣∣

.

(
d(x, z)√

t

)∫

M

1√
V
(
x0,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x, y)

2

t

)
|f(y)|µ(dy).

Hence, uniformly with respect to r ∈ (0,
√
t) we obtain

1

r
OscB(x0,2r)(g) .

1√
t

∫

M

1√
V
(
x0,

√
t
)
V
(
y,
√
t
) exp

(
−c d(x, y)

2

t

)
|f(y)|µ(dy).(A.4)

By combining these last inequalities (A.3) and (A.4) into (A.2), one concludes to (A.1).
⊲

Lemma A.2 (Cacciopoli inequality). For every ball B of radius r > 0 and every function
f ∈ D2(L) we have

(
−
∫

B
Γ(f)2 dµ

) 1
2

.
1

r
Osc2B(f) + r

(
−
∫

2B
|Lf |2 dµ

) 1
2

.

Before to check this inequality, let us first recall some consequences of the Gaussian upper
estimates (UE). Under (UE), we know that a scale-invariant local Sobolev inequality holds,
more precisely

‖f‖2q . |B|
2
q
−1 (‖f‖22 + r2E(f, f)

)
,

for every ball B of radius r > 0, every f ∈ D2(Γ) supported in B and for some q > 2. This
inequality was introduced in [51] and was shown, under (VD), to be equivalent to (UE) in
the Riemannian setting. The equivalence was stated in our more general setting in [54]. See
also [14] for many reformulations of local Sobolev inequalities, an alternative proof of the
equivalence with (UE), and more references.

Such a local Sobolev inequality also implies a following relative Faber-Krahn inequality (see
for instance [39, Theorem 2.5], as well as [14, Section 3.3]): for every ball B with a small
enough radius r > 0 , every function f ∈ D2(Γ) supported in B then

(A.5) ‖f‖2 . r‖Γ(f)‖2.

Proof of Lemma A.2 – We refer to [9, Lemma A.1] for such a result for harmonic function:
if u ∈ D2(L) is harmonic on 2B (which means L(u) = 0 on 2B) then

(A.6)

(
−
∫

B
Γ(u)2 dµ

) 1
2

.
1

r
Osc2B(u).

Now consider f ∈ D2(L). By [9, Lemma 4.6], it is known that there exists u ∈ D2(L)
harmonic on 2B such that f − u ∈ D(Γ) is supported on the ball 2B. By the support
property, it follows

‖Γ(f − u)‖22 =
∫

(f − u)L(f − u) dµ =

∫
(f − u)L(f) dµ.

So using Faber-Krahn inequality (A.5) we obtain

(A.7) ‖f − u‖2 . r‖Γ(f − u)‖L2(2B)

and so

‖Γ(f − u)‖22 . ‖f − u‖2‖L(f)‖L2(2B) . r‖Γ(f − u)‖2‖L(f)‖L2(2B),
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which yields

(A.8) ‖Γ(f − u)‖2 . r‖L(f)‖L2(2B).

Then we split

‖Γ(f)‖2 ≤ ‖Γ(f − u)‖2 + ‖Γ(u)‖2 . r‖L(f)‖L2(2B) + ‖Γ(u)‖2
and then use (A.6) to get

(
−
∫

B
Γ(f)2 dµ

) 1
2

. r

(
−
∫

2B
|L(f)|2 dµ

) 1
2

+
1

r
Osc2B(u)

. r

(
−
∫

2B
|L(f)|2 dµ

) 1
2

+
1

r
Osc2B(f) +

1

r

(
−
∫

2B
|f − u|2 dµ

) 1
2

. r

(
−
∫

2B
|L(f)|2 dµ

) 1
2

+
1

r
Osc2B(f),

where we used again (A.7) and (A.8) at the last step.
⊲

We also give a proof of the following basic important fact about the Hölder spaces Cσ defined
in definition 2.7.

Proposition A.3. For σ < 2, the Hölder spaces Cσ do not depend on the parameter a used
to define them, and the two norms on Cσ corresponding to two different parameters a, a′, are
equivalent.

Proof – Given two positive integers a and a′, consider the two spaces Cσ
a and Cσ

a′ , and their
corresponding norms. Fix t ∈ (0, 1]. If a′ ≥ a, then writing

Q
(a′)
t = 2a

′
Q

(a′)
t/2 e

−tL/2 = 2a
′
Q

(a)
t/2Q

(a′−a)
t/2

and using the fact that the operators Q
(a′−a)
t/2 are uniformly bounded on L∞, we get

‖ · ‖Cσ
a′
. ‖ · ‖Cσ

a
.

If now a′ < a, write

Q
(a′)
t =

1

γa−a′

∫ 1

0
Q

(a′)
t Q(a−a′)

s

ds

s
+Q

(a′)
t P

(a−a′)
1 .

For s ≤ t, we have

Q
(a′)
t Q(a−a′)

s =
(s
t

)a−a′

Q
(a)
t+s

(
t

t+ s

)a

so that for f ∈ Cσ
a

∥∥∥Q(a′)
t Q(a−a′)

s f
∥∥∥
∞

.
(s
t

)a−a′ ∥∥∥Q(a)
t+sf

∥∥∥
∞

.
(s
t

)a−a′

t
σ
2 ‖f‖Cσ

a
.

For t ≤ s, we have

Q
(a′)
t Q(a−a′)

s =
(s
t

)a−a′

Q
(a)
t+s

(
t

t+ s

)a
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so that
∥∥∥Q(a′)

t Q(a−a′)
s f

∥∥∥
∞

.

(
t

s

)a′ ∥∥∥Q(a)
t+sf

∥∥∥
∞

.

(
t

s

)a′

s
σ
2 ‖f‖Cσ

a
,

and similarly ∥∥∥Q(a′)
t P

(a−a′)
1 f

∥∥∥
∞

. ta
′‖f‖Cσ

a
.

Then by integrating (and since a′, a− a′ ≥ 1 > σ
2 ) we have

∥∥∥Q(a′)
t f

∥∥∥
∞

.

(∫ t

0

(s
t

)a−a′ ds

s

)
t
σ
2 ‖f‖Cσ

a
+

(∫ 1

t

(
t

s

)a′

s
σ
2
ds

s

)
‖f‖Cσ

a
+ ta

′ ‖f‖Cσ
a

. t
σ
2 ‖f‖Cσ

a
,

which concludes the proof that

‖ · ‖Cσ
a′
. ‖ · ‖Cσ

a
.

⊲

The following lemma provides a useful way of proving that a distribution is Hölder; it was
used in sections 2.3 and 5.3 to investigate the almost sure regularity properties of white noise
and the renormalized paraproduct dealt with in theorem 5.7. We recall that Besov spaces were
defined in Definition 2.6.

Lemma A.4. Assume that the metric measure space (M,d, µ) is Ahlfors regular (see (2.9)), with
exponent ν. Then, given −∞ < σ < 2, and 1 < p <∞, we have the continuous embeddings

Bσ
p,p →֒ Bσ

p,∞ →֒ B
σ− ν

p
∞,∞ = Cσ− ν

p .

Proof – The first embedding is a direct application of the following fact. For s ∈ (0, 1) and
an integer a ≥ 2 then

Q(a)
s f =

2

s

∫ s

s/2
Q

(a)
t

(s
t

)a
e−(s−t)Lf dt.

Since the semigroup is uniformly bounded on Lp, we get
∥∥∥Q(a)

s f
∥∥∥
p
.

∫ s

s/2

∥∥∥Q(a)
t f

∥∥∥
p

dt

t

and by Hölder inequality

∥∥∥Q(a)
s f

∥∥∥
p
.

(∫ s

s/2

∥∥∥Q(a)
t f

∥∥∥
p

p

dt

t

)1/p

. s
σ
2 ‖f‖Bσ

p,p
.

The second embedding comes from the following elementary fact. For t ∈ (0, 1), let T a
linear operator with a kernel, pointwisely bounded by a Gaussian kernel Gt at scale t, then
with Ahlfors regularity (2.9), we have

‖T‖Lp→L∞ . t−
ν
2p .

So for s ∈
(
0, 12
)
, applying to T = Q

(a)
s we obtain since Q

(2a)
2s = 22aQ

(a)
s Q

(a)
s

∥∥∥Q(2a)
2s f

∥∥∥
∞

. s−
ν
2p

∥∥∥Q(a)
s f

∥∥∥
Lp

. s−
ν
2p

+σ
2 ‖f‖Bσ

p,∞ ,

which proves the embedding Bσ
p,∞ →֒ B

σ− ν
p

∞,∞.
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⊲

The next three lemmas were used in the proof of the renormalization theorem 5.7.

Lemma A.5. For every t > 0, set Gt the Gaussian kernel at scale t

Gt(x, y) :=
1

V (x,
√
t)
e−c

d(x,y)2

t ,

where we forget the dependence with respect to the constant c in the notation. Then for s > t > 0
and every x, z ∈M , we have

∫
Gs(x, y)Gt(y, z)µ(dy) . Gs(x, z) .

1

V (x,
√
s) + V (z,

√
s)
.

Proof – By considering that Gt(·, z) belongs to L1, uniformly in s, we directly obtain that

∫
Gs(x, y)Gt(y, z)µ(dy) . sup

y∈M
Gs(x, y) .

1

V (x,
√
s)
.

Moreover,

exp
(
−d(x, y)2/s

)
· exp

(
−d(y, z)2/t

)
≤ exp

(
−d(x, y)2/s

)
· exp

(
−d(y, z)2/s

)

≤ exp
(
−d(x, z)2/(2s)

)
.

So in the product Gs(x, y)Gt(y, z), we may factorize an exponential decay and so for some
implicit constants, we have

∫
Gs(x, y)Gt(y, z) dµ(y) . Gs(x, z).

⊲

Lemma A.6. For r ∈ (0, 1], s > 0 and d ≥ 2, let us consider the quantity

A(r, s) :=

∫ 1

0

∫ 1

0

(
r

r + t1

)b( r

r + t2

)b

. . .

. . .

(
t1t2

(t1 + s)(t2 + s)

) 1
2

(s + t1 + t2)
− d

2 (r + t1 + t2)
− d

2
dt1
t1

dt2
t2
,

where b ≥ 2 + d
2 is an integer. Then we have

(A.9) A(r, s) .

(
r

s+ r

)
(rs)−

d
2

(
1 + log

(s+ r

s

))
.

Proof – The two variables t1, t2 play a symmetric role so we may restrict our attention to
the double integral under the condition t2 ≤ t1. The part A1 of the double integral where
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t2 ≤ t1 ≤ r gives

A1(r, s) =

∫ r

0

∫ t1

0

(
t1t2

(t1 + s)(t2 + s)

) 1
2

r−
d
2 (t1 + s)−

d
2
dt2
t2

dt1
t1

.

∫ r

0

(
t1

t1 + s

) 1
2

(t1 + s)−
d
2 r−

d
2

(
t1

t1 + s

) 1
2
(
1 + log

(s+ t1
s

)) dt1
t1

. r−
d
2

∫ r

0

(
t1

(t1 + s)d/2+1

)(
1 + log

(s+ t1
s

)) dt1
t1

. r−
d
2

{
s−d/2 −

(
1 + log

(s+ r

s

))
(s+ r)−

d
2

}

. (sr)−
d
2

r

s+ r

(
1 + log

(s+ r

s

))
,

where we usedthe basic inequality

∫ t1

0

dt2√
t2(t2 + s)

.

(
t1

s+ t1

) 1
2
(
1 + log

(s+ t1
s

))

which can be easily checked by splitting into the two cases t1 ≤ s and s ≤ t1. The second
part A2 of the double integral where t2 ≤ r ≤ t1 is controlled as follows

A2(r, s) =

∫ 1

r

∫ r

0

(
r

r + t1

)b( t1t2
(t1 + s)(t2 + s)

) 1
2

t
− d

2
1 (t1 + s)−

d
2
dt2
t2

dt1
t1

.

∫ 1

r

(
r

t1

)b( t1
t1 + s

) 1
2
(

r

r + s

) 1
2
(
1 + log

(s+ r

s

))
(t1 + s)−

d
2 t

− d
2

1

dt1
t1

.
r

r + s

(
r(r + s)

)− d
2

(
1 + log

(s+ r

s

))
,

where we used Lemma A.7. The third and last part A3 of the double integral where
r ≤ t2 ≤ t1 satisfies

A3(r, s) =

∫ 1

r

∫ t1

r

(
r

t1

)b( r
t2

)b( t1t2
(t1 + s)(t2 + s)

) 1
2

t
− d

2
1 (t1 + s)−

d
2
dt2
t2

dt1
t1

.

∫ 1

r

(
r

t1

)b( t1
t1 + s

) 1
2
(

r

r + s

) 1
2

(t1 + s)−
d
2 t

− d
2

1

dt1
t1
.

We then use again Lemma A.7, to obtain

A3(r, s) .
r

r + s
(rs)−

d
2 .

Inequality (A.9) comes by combining the above three estimates.
⊲

Lemma A.7. For every r, t ∈ (0, 1) and any 0 < ρ < ε
∫ 1

r

(
t

t+ s

)ρ

t−ε dt

t
.

(
r

s+ r

)ρ

r−ε.

Proof – Indeed if r ≥ s then for every t ∈ (r, 1) we have t ≃ t+ s and so
∫ 1

r

(
t

t+ s

)ρ

t−εdt

t
.

∫ 1

r
t−ε dt

t
≃ r−ε.
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Now if s ≥ r, we split the integral in two terms and we have
∫ 1

r

(
t

t+ s

)ρ

t−ε dt

t
.

∫ s

r

(
t

s

)ρ

t−εdt

t
+

∫ 1

s
t−εdt

t

.
(r
s

)ρ
r−ε + s−ε .

(r
s

)ρ
r−ε,

where we used ε > Aρ.
⊲

B

Extension of the theory

Consider as above a doubling metric measure space (M,d, µ) equipped with a heat semigroup
satisfying the upper gaussian estimates (UE). We aim in this appendix at explaining how one
can get the same conclusions as in the above main body of work

(a) by weakening the Lipschitz regularity assumption on the heat kernel (Lip), assuming
only some integrated estimates of the gradient of the heat kernel;

(b) by developing the theory of paracontrolled calculus in Sobolev spaces rather than in
Hölder spaces. By Sobolev embedding, Sobolev spaces are included in some Hölder
spaces, so it will be interesting to understand if starting from an initial data belonging
to some Sobolev space, the solution of renormalized singular PDEs will lives in this same
scale of Sobolev spaces. From a technical point of view, it is a bit more difficult since
Sobolev spaces involve simultaneously all the frequencies, whereas for Hölder spaces we
can work at a fixed frequency scale.

We give in section B.1 the regularity assumptions on the heat kernel under which we shall
work here, and reformulate and extend in section B.2 the main continuity estimates on the

operators P
(a)
t , Q

(a)
t and Γ needed to extend the paraproduct machinery to the present setting.

The latter, together with some crucial commutator estimates in Hölder and Sobolev spaces, is
investigated in section B.3. The last and short section B.4 describes how these results can be
used to extend the results of section 5 to our optimal regularity setting.

This appendix was written jointly with Dorothee Frey.

B.1. Regularity assumptions Rather than assuming the Lipschitz property (Lip) used above
we shall assume here that the gradient /carré du champ operator

Γ satisfies some Lq estimates and the Lq-de Giorgi property recalled below in sections B.1.1
and B.1.2. We shall also assume that it satisfies a scale-invariant Poincaré inequality recalled
in section B.1.3.

B.1.1. Lq-estimates of the gradient of the

semigroup

Given q0 > 2, the following uniform Lq0-boundedness
of the gradient (or “carré du champ”) of the semi-
group, was introduced in [2]

(Gp0) sup
t>0

‖
√
tΓe−tL‖q0→q0 < +∞.

By definition of the carré du champ operator, (G2) holds trivially. It is known in that case
that this global L2-inequality can be improved into localized estimates, via L2-Davies-Gaffney
estimates. For every subset E,F ⊂M and every t > 0, we have

∥∥e−tL
∥∥
L2(E)→L2(F )

+
√
t
∥∥Γe−tL

∥∥
L2(E)→L2(F )

. e−c d2(E,F )
t .
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Assuming the volume doubling condition (VD) and the Gaussian upper bound (UE) for the
heat kernel, one can interpolate the estimate (Gq0) with the above L2-Davies-Gaffney estimates
and deduce that (Gq) holds for every q ∈ [2, q0]. More precisely, for every subset E,F ⊂ M
and every t > 0, the inequality

∥∥e−tL
∥∥
Lq(E)→Lq(F )

+
√
t
∥∥Γe−tL

∥∥
Lq(E)→Lq(F )

. e−cq
d2(E,F )

t

holds for some positive constant cq, only depending on q ∈ [2, q0). Following [2, Proposition
1.10], the latter estimate can be reformulated in terms of integral estimates of the gradient of
the heat kernel. Denoting by pt the kernel of e−tL, we have

√
t
∥∥Γx pt(., y)

∥∥
q
.
[
V
(
y,
√
t
)]−(1− 1

q
)
,

for µ-almost all y ∈M and all positive times. By interpolation with the L2-Gaffney estimates,
there exists a positive constant c such that

(B.1)
√
t
∥∥∥ec

d(·,y)2
t Γx pt(., y)

∥∥∥
q
.
[
V
(
y,
√
t
)]−(1− 1

q
)

holds for µ-almost all y ∈M and all positive times.
We refer the reader to [2] for more details about Property (Gp) and the link with the

boundedness of the Riesz transform; see also [11] and references therein for more details.

B.1.2. Lq-de Giorgi Property The so-called ”de Giorgi property”, or ”Dirichlet property”, on
the growth of the Dirichlet integral for harmonic functions was

introduced by De Giorgi in [19], for second order divergence form differential operators on R
n,

with real coefficients. In de Giorgi’s work, this property prescribes a(n at most) linear growth
rate for the L2-average of gradients of harmonic functions. This property was subsequently
used in many works and in various situations in order to prove Hölder regularity for solutions
of inhomogeneous elliptic equations and systems. An Lq-version was recently introduced in
[9], and we refer the reader to that work for more details about it.

Definition B.1 (Lq-de Giorgi property). Given q ∈ [1,+∞) and θ ∈ (0, 1), we say that the
operator Γ satisfies the inequality (DGq,θ) if it satisfies the following estimate. For every positive
r ≤ R, every pair of concentric balls Br, BR with radii r and R, respectively, and for every function
f ∈ D, one has

(DGq,θ)

(
−
∫

Br

|Γf |qdµ
) 1

q

.

(
R

r

)θ
{(

−
∫

BR

|Γf |qdµ
) 1

q

+R‖Lf‖L∞(BR)

}
.

We sometimes omit the parameter θ, and write (DGq) if (DGq,θ) is satisfied for some θ ∈ (0, 1).

As we always have

(
−
∫

Br

|Γf |qdµ
) 1

q

.

( |BR|
|Br|

)1
q
(
−
∫

BR

|Γf |qdµ
) 1

q

for every f ∈ D and 0 < r < R, if the space is doubling, with dimension ν, the inequality
(DGq,θ) holds for every q > ν, with θ = ν

q < 1.
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B.1.3. Poincaré inequality Last, we shall assume that the carré du champ operator Γ satisfies
the following scale-invariant Poincaré inequality

(P2)

(
−
∫

B

∣∣∣∣f −−
∫

B
fdµ

∣∣∣∣
2

dµ

) 1
2

. r

(∫

B
Γ(f)2 dµ

) 1
2

,

for every f ∈ D2(L) and every ball B of radius r. We refer the reader to [9] for a precise study
of the connection between Poincaré inequality, Lp-gradient estimates and de Giorgi property.
Let us just point out that if Γ satisfies the above Poincaré inequality and the gradient estimate
(Gp0), then there exists a parameter θ ∈ (0, 1) such that the inequality (DGp,θ) holds for
every p ∈ [2, p0). Note also that in the first and main part of this work, we assumed an
upper Gaussian pointwise estimates for the gradient of the heat kernel equivalent to (G∞).
This assumption yields the Poincaré inequality (P2), the integrated gradient estimate (Gq0) for
every q0 ∈ [2,∞], and also de Giorgi property (DGq,θ) for every θ ∈ (0, 1) and every q ∈ [2,∞).

Our aim in this appendix will thus be to weaken the (G∞) assumption made above into a
combination of (Gq0) and (DGq,θ), for some exponent q0, q and θ.

In the first and main part of this work, the paracontrolled calculus and its application to the
2-dimensional parabolic Anderson model equation was studied under the assumptions (UE)
and (G∞) that the heat kernel and its gradient satisfy pointwise Gaussian upper bounds. The
aim of this section is to weaken the latter condition. Here are examples where the operator
Γ satisfies only the properties (P2), (Gq) and (DGq) for some q > 2, and where (G∞) does not
hold.

(a) Conical manifolds. Consider a compact Riemannian manifold N of dimension n−1 ≥
1, and define M := (0,∞) × N as the conical manifold whose basis is N . It is known
thatM is a doubling manifold of dimension n which satisfies (UE). Moreover, as shown
by Li in [44], the operator Γ satisfies (Gq) if and only if

q < q(N) :=


1

2
−

√(
1

2
− 2

n

)2

+
λ1
n




−1

where λ1 is the first non-vanishing eigenvalue of the Laplace operator on N . As an
example, if we consider N = rS1 the circle of radius r > 1, then

q(N) =
2r

r − 1
.

So theorem B.20 below allows us to solve the PAM equation on M for r sufficiently
close to 1.

(b) Elliptic perturbation of the Laplacien. On the Euclidean space R
d, or any non-

compact doubling Riemannian manifold satisfying Poincaré inequality (P2) and the
Gaussian bound (UE), we may consider a second order divergence form operator L =
−div(A∇) given by a map A taking values in real symmetric matrices and satisfying the
usual ellipticity condition. Then ifA is Hölder continuous, it is known that−L generates
a self-adjoint semigroup with (UE) and Gaussian pointwise bounds for the gradient of
the semigroup (G∞); see [4]. In such a case we may apply the results proved in the first
part. Following Auscher’s work [1], we know that the combination of property (UE)
with Hölder regularity of the heat kernel is stable under L∞ perturbation. So fix A0

a Hölder continuous map with values in real symmetric matrices and satisfying usual
ellipticity condition. Then for every Q > 2, and any positive Θ, there exists a positive
constant ε such that for any map A on the state space, with values in the space of
real symmetric matrices, and such that ‖A − A0‖∞ ≤ ε, the operator L = −div(A∇)
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satisfies (Gq0) for some q0 > Q, and has de Giorgi property (DGq,θ), for θ = d/q < Θ
and some Q ≤ q < q0. In such a situation, we may apply Theorem B.20 and deduce
that we can solve the PAM equation in such a 2-dimensional context.

(c) Lipschitz domain with Neumann boundary conditions. Similarly, consider an
open and bounded subset Ω ⊂ R

2 and consider for L the self-adjoint Laplace operator
associated with Neumann boundary conditions. Then by a change of variable, this
situation is very similar to the previous one: if the boundary is sufficiently close (in a
Lipschitz sense) to a smooth set (at least of regularity C2), then we can solve the PAM
equation.

B.2. Functional calculus and gradient estimates in

Hölder and Sobolev spaces

We start this section by quantifying the lo-

calization properties of the operators P
(a)
t

and Q
(a)
t , and their gradients, in Lp spaces,

before turning to the gradient estimates of the heat semigroup in the intrinsic Hölder and
Sobolev spaces in section B.2.2.

B.2.1. Localization properties of the approximation

operators P
(a)
t and Q

(a)
t

As we know, for every integer a ≥ 0, the

operators P
(a)
t andQ

(a)
t have a kernel satis-

fying Gaussian estimates (UE). The above
regularity assumptions (Gq), (DGq), (P2) on the gradient operator actually imply much more.

Lemma B.2. Let pt stands for the kernel of e−tL or P
(a)
t , Q

(a)
t for any integer a ≥ 1. Under

(DGq,θ) and (Gq0) with Poincaré inequality (P2) for some 2 ≤ q < q0, we have the following
Hölder regularity estimate for the heat kernel. For every η ∈ (0, 1 − θ], t > 0 and almost every
x, y, z ∈M

|pt(x, z)− pt(y, z)| .
(
d(x, y)√

t

)η

V (z,
√
t)−1e−c d(x,z)2

t .

We only sketch the proof and refer the reader to [9] for details.

Proof – We follow the argument of Morrey’s inequality, which relies oscillation estimates to
some gradient bounds. Let x, y ∈M be Lebesgue points for f = pt(·, z) with d(x, y) ≤

√
t,

otherwise there is nothing to be done. Let Bi(x) = B
(
x, 2−id(x, y)

)
, for i ∈ N. Note that

for all i ∈ N, Bi(x) ⊂ B0(x). By Poincaré’s inequality, this yields

∣∣∣∣∣f(x)−−
∫

B0(x)
fdµ

∣∣∣∣∣ .
∑

i≥0

2−id(x, y)

(
−
∫

Bi(x)
|Γf |q dµ

) 1
q

.

By considering B√
t a ball of radius

√
t containing both x, y, (DGq,θ) yields

(
−
∫

Bi(x)
|Γf |q dµ

) 1
q

.

( √
t

2−id(x, y)

)θ


(
−
∫

B√
t

|Γf |q dµ
) 1

q

+
√
t‖Lf‖L∞(B√

t)


 .

Since f = pt(·, z), by (Gq0) and (UE) we know that

(
−
∫

B√
t

∣∣√tΓf
∣∣q dµ

) 1
q

+
∥∥tLf

∥∥
L∞(B√

t)
. V

(
z,
√
t
)−1

e−c
d(x,z)2

t

so we can conclude the proof by summing over i, since θ ∈ (0, 1).
⊲
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Under the sole assumption (UE) that the kernels of the operators P
(a)
t and Q

(a)
t have Gauss-

ian upper bounds, these operators are bounded in every Lp space for p ∈ [1,∞], uniformly with
respect to t ∈ (0, 1]. Moreover, for every p1, p2 ∈ [1,∞] and t > 0, they satisfy the following
Lp1-Lp2 off-diagonal estimates at scale

√
t, which quantify the localization properties of these

operators. For every ball B1, B2 of radius
√
t, and for every function f ∈ Lp1(B1), we have

(
−
∫

B2

|P (a)
t f |p2 dµ

)1/p2

+

(
−
∫

B2

|Q(a)
t f |p2 dµ

)1/p2

. e−c
d(B1,B2)

2

t

(
−
∫

B1

|f |p1 dµ
)1/p1

.

One can refine this estimate by using off-diagonal estimates, such as done in [10, Lemma 2.5,
Lemma 2.6].

Proposition B.3. Assume (Gq0) for some q0 > 2.

(i) For every non-negative integer a and every p ∈ [2, q0), the operators ΓP
(a)
t and ΓQ

(a)
t

satisfy L2-Lp the following off-diagonal estimates at the scale
√
t. For every ball B1, B2 of

radius
√
t and every function f ∈ L2(B1), we have

(
−
∫

B2

|
√
tΓQ

(a)
t f |p dµ

) 1
p

+

(
−
∫

B2

|
√
tΓP

(a)
t f |p dµ

) 1
p

. e−c
d(B1,B2)

2

t

(
−
∫

B1

|f |2 dµ
) 1

2

.

It follows in that we have

sup
t>0

{∥∥∥
(√
tΓ
)(
P

(a)
t ·

)∥∥∥
p→p

+
∥∥∥
(√
tΓ
)(
Q

(a)
t ·

)∥∥∥
p→p

}
<∞

for every p ∈ [2, q0).

(ii) For every positive real number a and every positive t, the operator Q
(a)
t is an integral

operator with kernel k
(a)
t that satisfies the inequality

(B.2)
∣∣∣k(a)t (x, y)

∣∣∣ .
1

V (x,
√
t)λV (y,

√
t)1−λ

(
1 +

d2(x, y)

t

)−a

for all λ ∈ [0, 1] and µ-almost all x, y ∈ M . As a consequence the operator Q
(a)
t satisfies

the following Lp1-Lp2 off-diagonal bounds of order a at scale
√
t, for every p1, p2 ∈ [1,+∞].

Given any balls B1, B2 of radius
√
t, and any function f ∈ Lp1(B1), we have

(
−
∫

B2

∣∣Q(a)
t f

∣∣p2 dµ
) 1

p2

.

(
1 +

d(B1, B2)
2

t

)−a(
−
∫

B1

|f |p1 dµ
) 1

p1

.

Besides these localization property in the physical space, the approximation operators Q
(a)
t

satisfy some orthogonality properties, which will be of crucial use in proving the continuity
properties of the paraproduct and resonant operators below, and which can be viewed as an
analog of the Littlewood-Paley theory, as made clear in [10, Proposition 2.13 and Lemma 2.15].

Lemma B.4. Let a be a positive real number. Set

Q̃t := (tL)a
2 e−

t
2
L = 2

a
2Q

a
2
t
2

,

so that Q
(a)
t = Q̃2

t . Assume the Gaussian upper bound (UE) holds. Let also F : (0,+∞)×M → R

be a measurable function and write Ft(x) for F (t, x). Then for every p ∈ (1,+∞), one has
∥∥∥∥
∫ +∞

0
Q

(a)
t Ft

dt

t

∥∥∥∥
p

.

∥∥∥∥∥

(∫ +∞

0

∣∣Q̃tFt

∣∣2 dt
t

)1/2
∥∥∥∥∥
p

,



59

whenever the right hand side has a meaning and is finite. If F = f does not depend on t, we have
the following Lp-boundedness of the vertical square function

∥∥∥∥
∫ +∞

0

∣∣Q(a)
t f

∣∣ dt
t

∥∥∥∥
p

≃ ‖f‖p.

B.2.2. Gradient estimates in Hölder and Sobolev

spaces

As said above, we shall now work in the fol-
lowing setting, strictly weaker than the geo-
metrical setting used in the first five sections

of this work.

Regularity assumptions

(i) The metric measure space (M,d, µ) is doubling and the semigroup satisfies the Gaussian
bound (UE).

(ii) The gradient operator Γ satisfies (Gq0) and (DGq,θ) for some 2 ≤ q < q0 ≤ ∞, and the
scale-invariant Poincaré inequality.

If q0 = q = 2, we require that the L2 Davies-Gaffney estimates hold instead of (DGq,θ). As
we shall see below, one can extend the machinery of paracontrolled calculus to that setting
in Hölder and Sobolev spaces. Recall the definition of the spaces Λσ and Cσ given in section
2.3. The parameter θ is involved in the property (DGq,θ). The following embedding is proved
as Proposition 2.8 by using the fact proved in Lemma B.2 that the heat kernel is Hölder
continuous, with exponent 1− θ, instead of its Lipschitz character.

Proposition B.5. For σ ∈ (0, 1), the space Λσ is continuously embedded into Cσ. If σ ∈ (0, 1−θ),
the two spaces are the same with equivalent norms.

Sobolev spaces are naturally defined in terms of L as follows.

Definition B.6. Fix an exponent p ∈ (1,∞), and s ∈ R. A distribution f ∈ S ′
o, is said to belong

to the inhomogeneous Sobolev space W s,p if

‖f‖W s,p :=
∥∥∥
(
1 + L

) s
2 f
∥∥∥
p
≃
∥∥e−Lf

∥∥
p
+
∥∥∥
(
1 + L

) s
2 f
∥∥∥
p
<∞.

Proposition B.7. For σ ∈ (−∞, 1− θ) and f ∈ Cσ, we have

sup
x∈M

(
−
∫

B(x,
√
t)
|
√
tΓe−tLf |q dµ

) 1
q

. t
σ
2 ‖f‖Cσ .

The same conclusion holds with any of the operators P
(a)
t , with an integer a ≥ 1, in the role of

e−tL.

Proof – Consider b ≥ 1, and write

√
tΓe−tLf =

∫ 1

0

√
tΓQ(b)

s e−tLf
ds

s
+

√
tΓP

(b)
1 e−tLf.

For s ≤ t, we have
(
−
∫

B(x,
√
t)

∣∣√tΓQ(b)
s e−tLf

∣∣q dµ
) 1

q

=

(
s

s+ t

)b
(
−
∫

B(x,
√
t)

∣∣√tΓQ(b)
s+tf

∣∣q dµ
) 1

q

.
(s
t

)b∑

ℓ≥0

γℓ

(
−
∫

2ℓB(x,
√
t)

∣∣Q(b)
(s+t)/2f

∣∣q dµ
) 1

q

,
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where γℓ are exponentially decreasing coefficients and where we used Lq-Lq off-diagonal
estimates of Γe−(s+t)L/2 (at the scale

√
s+ t ≃

√
t) with the relation

Q
(b)
s+t = 2be−(s+t)L/2Q

(b)
(s+t)/2.

So we have
(
−
∫

B(x,
√
t)

∣∣√tL1/2Q(b)
s e−tLf

∣∣q dµ
) 1

q

.
(s
t

)b∑

ℓ≥0

γℓ
∥∥Q(b)

(s+t)/2f
∥∥
∞

.
(s
t

)b
t
σ
2 ‖f‖Cσ ,

and we can integrate this inequality on the interval s ∈ (0, t). For s ≥ t, we use Property
(DGq,θ) to have

(
−
∫

B(x,
√
t)

∣∣√tΓQ(b)
s e−tLf

∣∣q dµ
) 1

q

.

(
t

s

)(1−θ)/2
(
−
∫

B(x,
√
s)

∣∣√sΓQ(b)
s e−tLf

∣∣q dµ
) 1

q

+

(
t

s

)(1−θ)/2 ∥∥∥Q(b+1)
s e−tLf

∥∥∥
L∞(B(x,

√
s))

.

(
t

s

)(1−θ)/2

s
σ
2 ‖f‖Cσ ,

where we have used Q
(b)
s = 2bQ

(b/2)
s/2 Q

(b/2)
s/2 with Lq-Lq (resp. Lq-L∞) off-diagonal estimates

for ΓQ
(b/2)
s/2 (resp. (sL)Q

(b/2)
s/2 ), provided b is large enough. This inequality can be then

integrated along s ∈ (t, 1) as soon as θ + σ < 1.

We perform the same analysis for the term
√
tΓP

(b)
1 e−tLf , which gives

(
−
∫

B(x,
√
t)

∣∣√tΓP (b)
1 e−tLf

∣∣q dµ
) 1

q

. t(1−θ)/2

(
−
∫

B(x,1)

∣∣ΓP (b)
1 e−tLf

∣∣q dµ
) 1

q

+ t(1−θ)/2
∥∥∥LP (b)

1 e−tLf
∥∥∥
L∞(B(x,1))

. t(1−θ)/2‖f‖Cσ .

The conclusion follows from this inequality since t ∈ (0, 1) and σ < 1− θ.
⊲

Proposition B.8. For α ∈ (0, 1− θ) and 0 < 2δ < 1− θ − α, we have uniformly in x ∈M and
t > 0 (

−
∫

B(x,
√
t)

∣∣√tΓe−tLf
∣∣q dµ

) 1
q

. M
[
(tL)α/2Q

(δ)
t/2f

]
,

where M is the Hardy-Littlewood maximal function. The same conclusion holds with any of the

operators P
(a)
t , with an integer a ≥ 1, in the role of e−tL and also by replacing B(x,

√
t) by any

bigger ball B
(
x,K

√
t
)
and the estimates are uniform with respect to K ≥ 1.

Proof – We write (for a chosen large enough)

√
tΓe−tL =

√
tΓL−α/2e−tLLα/2f =

√
t

∫ ∞

0
ΓQ(a)

s e−tLLα/2f
ds

s1−α/2
.
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For s < t, we then write

Q(a)
s e−tL =

(s
t

)a
Q

(a)
t e−sL =

(
2s

t

)a

Q
(a−δ)
t/2 e−sLQ

(δ)
t/2

and using L1-Lq off-diagonal estimates of the carré du champ of the semigroup, this yields
(
−
∫

B(x,
√
t)

∣∣√tΓQ(a)
s e−tLLα/2f

∣∣q dµ
) 1

q

.
(s
t

)a
M
[
Lα/2Q

(δ)
t/2f

]
(x).

For t ≤ s we have by (DGq,θ)

(
−
∫

B(x,
√
t)

∣∣√tΓQ(a)
s e−tLLα/2f

∣∣q dµ
) 1

q

.
(s
t

)(θ−1)/2
(
−
∫

B(x,
√
s)

∣∣√sΓQ(a)
s e−tLLα/2f

∣∣q dµ
) 1

q

+
(s
t

)(θ−1)/2 ∥∥∥Q(a+1)
s e−tLLα/2f

∥∥∥
L∞(B(x,

√
s))

.
(s
t

)(θ−1)/2+δ
M
[
Lα/2Q

(δ)
t f

]
(x),

where we used that Q
(a)
s e−tL = (s/t)δQ

(a−δ)
s Q

(δ)
t with L1-Lq (resp. L1-L∞) off-diagonal

estimates for ΓQ
(a−δ)
s (resp. Q

(a+1−δ)
s ), provided a is large enough.

Hence,
(
−
∫

B(x,
√
t)
|
√
tΓe−tLf |q dµ

) 1
q

.

[∫ t

0

(s
t

)a ds

s1−α/2
+

∫ 1

t

(s
t

)(θ−1)/2+δ ds

s1−α/2

]
M
[
Lα/2Q

(δ)
t f

]
(x)

. M
[
(tL)α/2Q

(δ)
t f

]
(x),

due to a large enough and 2δ < 1 − θ − α. We let the reader check the straightforward
modifications that are required to deal with a bigger ball B(x,K

√
t), and that the estimates

are uniform with respect to K ≥ 1.
⊲

Replacing the L1-Lq off-diagonal estimates by Lp-Lq estimates, the same proof as above
leads to the following result.

Proposition B.9. Assume the local Ahlfors regularity. Suppose p ∈ [1,∞) and α ∈ (−∞, 1 −
θ + ν

p ), and f ∈Wα,p. Then, uniformly in x ∈M and t ∈ (0, 1],

(
−
∫

B(x,
√
t)

∣∣√tΓe−tLf
∣∣q dµ

) 1
q

. t
− ν

2p
+α

2 ‖f‖Wα,p .

The same conclusion holds with any of the operators P
(a)
t , with an integer a ≥ 1, in the role of

e−tL.

Proof – As previously, we write

√
tΓe−tL =

√
t

∫ 1

0
ΓQ(a)

s e−tLLα/2f
ds

s1−α/2
+

√
tΓP

(a)
1 e−tLf,

for a a large enough integer. For s < t, we then have
(
−
∫

B(x,
√
t)

∣∣√tΓQ(a)
s e−tLLα/2f

∣∣q dµ
) 1

q

.
(s
t

)a
t−ν/(2p)‖f‖Wα,p
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and for t ≤ s we have by (DGq,θ)
(
−
∫

B(x,
√
t)

∣∣√tΓQ(a)
s e−tLLα/2f

∣∣q dµ
) 1

q

.
(s
t

)(θ−1)/2
(
−
∫

B(x,
√
s)
|
√
sΓQ(a)

s e−tLLα/2f |q dµ
) 1

q

+
(s
t

)(θ−1)/2 ∥∥∥Q(a+1)
s e−tLLα/2f

∥∥∥
L∞(B(x,

√
s))

.
(s
t

)(θ−1)/2
s−ν/(2p)‖f‖Wα,p .

For the low frequency part, we have
(
−
∫

B(x,
√
t)

∣∣√tΓP (a)
1 e−tLf

∣∣q dµ
) 1

q

. t(1−θ)/2‖f‖Wα,p .

Hence,
(
−
∫

B(x,
√
t)
|
√
tΓe−tLf |p dµ

)1/p

.

[∫ t

0

(s
t

)a ds

s1−α/2
+

∫ 1

t

(s
t

)(θ−1)/2−ν/(2p) ds

s1−α/2
+ t(1−θ)/2

]
t−ν/(2p)‖f‖Wα,p

. t
− ν

2p
+α

2 ‖f‖Wα,p,

due to a large enough and α < 1− θ + ν
p .

⊲

B.3. Paraproduct and commutator estimates in

Hölder-Sobolev spaces

This subsection is devoted to the statement /
proofs of the main estimates about Paraprod-
ucts and commutators, in the current more

general framework.

B.3.1. Paraproduct estimates We state in this paragraph the basic continuity estimates sat-
isfied by the maps defined by the low frequency part, the para-

product and the resonant terms – see Subsection 3.1 for the precise definition of these quantities
and for detailed proofs. The low-frequency part is easily bounded.

Proposition B.10. Fix an integer b ≥ 2. For any α, β ∈ R and every γ > 0 we have for every
f ∈ Cα and g ∈ Cβ

(B.3)
∥∥∆−1(f, g)

∥∥
Cγ . ‖f‖Cα‖g‖Cβ .

If the space (M,d, µ) is locally Alhfors regular, then for every α, β, γ ∈ R and p ∈ [1,∞), we
have for every f ∈Wα,p and g ∈W β,p

(B.4)
∥∥∆−1(f, g)

∥∥
W γ,p . ‖f‖Wα,p‖g‖W β,p .

The continuity properties of the paraproduct are given by the following statement.

Proposition B.11. Fix an integer b ≥ 2. For any α ∈ (−2, 1) and f ∈ Cα, we have

• for every g ∈ L∞

(B.5)
∥∥∥Π(b)

g (f)
∥∥∥
Cα

. ‖g‖∞‖f‖Cα

• for every g ∈ Cβ with β < 0 and α+ β ∈ (−2, 1)

(B.6)
∥∥∥Π(b)

g (f)
∥∥∥
Cα+β

. ‖g‖Cβ‖f‖Cα .
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The proof is already given for Proposition 3.3 – and only relies on (UE) (which is also
assumed here). We then state the analog in Sobolev spaces.

Proposition B.12. Assume local Alhfors regularity. Fix an integer b ≥ 2 and p ∈ [1,∞). For
any α ∈ (−2, 1) and f ∈Wα,p, we have

• for every g ∈W β,p with ν
p < β < 1

(B.7)
∥∥∥Π(b)

g (f)
∥∥∥
Wα,p

. ‖g‖W β,p‖f‖Wα,p

• for every g ∈W β,p with β < ν
p and α+ β − ν

p ∈ (−2, 1)

(B.8)
∥∥∥Π(b)

g (f)
∥∥∥
W

α+β−ν
p ,p

. ‖g‖W β,p‖f‖Wα,p .

Even if the proof is not very difficult, we give the details here in order to explain how to use
the Lp-orthogonality property put forward in Lemma B.4.

Proof – Recall that

Π(b)
g (f) =

1

γb

∫ 1

0
(tL)P

(b)
t

(
Q

(b−1)
t f · P (b)

t g
)
+Q

(b−1)
t

(
(tL)P

(b)
t f · P (b)

t g
) dt

t
.

With s = α+ (β − ν
p )− > −2, Lemma B.4 yields

‖Π(b)
g (f)‖W s,p .

∥∥∥∥∥

(∫ 1

0
t−s
∣∣∣Q(b−1)

t f · P (b)
t g

∣∣∣
2
+ t−s

∣∣∣(tL)P (b)
t f · P (b)

t g
∣∣∣
2 dt

t

)1/2
∥∥∥∥∥
p

.

If β > ν/p (and so s = α) then uniformly with respect to t > 0 we have due to the local
Ahlfors regularity (which allows us to use a Sobolev embedding, see [10, Lemma 10.5])

∥∥P (b)
t g

∥∥
∞ . ‖g‖∞ . ‖g‖W β,p

and so

‖Π(b)
g (f)‖W s,p .

∥∥∥∥∥

(∫ 1

0
t−s
∣∣∣Q(b−1)

t f
∣∣∣
2
+ t−s

∣∣∣(tL)P (b)
t f

∣∣∣
2 dt

t

)1/2
∥∥∥∥∥
p

‖g‖W β,p

. ‖f‖W s,p‖g‖W β,p ,

where we used again Lemma B.4. If β < ν
p (and so s = α+ β − ν

p ), then

∥∥P (b)
t g

∥∥
∞ .

∫ 1

t

∥∥Q(b)
s g
∥∥
∞
ds

s
+
∥∥P (b)

1 g
∥∥
∞

.

∫ 1

t
sβ/2

∥∥Q(b−β/2)
s Lβ/2g

∥∥
∞
ds

s
+ ‖g‖W β,p

.

(
1 +

∫ 1

t
s(β−

ν
p
)/2 ds

s

)
‖g‖W β,p

. t(β−
ν
p
)/2‖g‖W β,p .

Hence, we conclude with Lemma B.4 since

∥∥Π(b)
g (f)

∥∥
W s,p .

∥∥∥∥∥

(∫ 1

0
t−α

∣∣∣Q(b−1)
t f

∣∣∣
2
+ t−α

∣∣∣(tL)P (b)
t f

∣∣∣
2 dt

t

)1/2
∥∥∥∥∥
p

‖g‖W β,p

. ‖f‖Wα,p‖g‖W β,p .

⊲
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Proposition B.13. Fix an integer b > 2. For any α, β ∈ (−∞, 1− θ) with α+ β > 0, for every
f ∈ Cα and g ∈ Cβ, we have the continuity estimate

∥∥∥Π(b)(f, g)
∥∥∥
Cα+β

. ‖f‖Cα‖g‖Cβ .

Proof – We only study the most difficult term in the resonant term Π(b)(f, g), which takes
the form

(B.9) A(f, g) :=

∫ 1

0
P

(b−1)
t Γ

(√
tP

(b−1)
t f,

√
tP

(b−1)
t g

) dt

t
.

P
(b−1)
t satisfies L1-L∞ off-diagonal estimates at order N (N can be chosen arbitrarily large,

since b is an integer) and so

∣∣∣P (b−1)
t (h)(x)

∣∣∣ .
∑

ℓ≥0

2−ℓN

(
−
∫

2ℓB(x,
√
t)
|h| dµ

)
.

With h =
√
tΓP

(b−1)
t f ·

√
tΓP

(b−1)
t g and Hölder’s inequality, we deduce that

A(f, g)(x) .
∑

ℓ≥0

2−ℓN

∫ 1

0

(
−
∫

B(x,2ℓ
√
t)
|
√
tΓP

(b−1)
t f |2 dµ

)1/2(
−
∫

B(x,2ℓ
√
t)
|
√
tΓP

(b−1)
t g|2 dµ

)1/2
dt

t
.

We then conclude as previously, with Proposition B.7.
⊲

We then give the analog estimate in Sobolev spaces.

Proposition B.14. Assume the local Ahlfors regularity. Fix an integer b > 2 and p ∈ (1,∞).
For any α, β ∈ (−∞, 1 − θ) with α + β > ν

p , for every f ∈ Wα,p and g ∈ W β,p, we have the

continuity estimate ∥∥∥Π(b)(f, g)
∥∥∥
W

α+β−ν
p ,p

. ‖f‖Wα,p‖g‖W β,p .

Proof – Again, we only study the most difficult term A(f, g) defined in (B.9). With s :=
α+ β − ν

p > 0, we have by Lemma B.4

∥∥Ls/2A(f, g)
∥∥
p
.

∥∥∥∥∥

(∫ 1

0
t−s
∣∣∣(tL)s/2P (b−1)

t Γ
(√

tP
(b−1)
t f,

√
tP

(b−1)
t g

)∣∣∣
2 dt

t

)1/2
∥∥∥∥∥
p

.

Since s > 0, (tL)s/2P
(b−1)
t satisfies L1-L∞ off-diagonal estimates at order s

2 (see Proposition
B.3) and so

∣∣∣(tL)s/2P (b−1)
t (h)(x)

∣∣∣ .
∑

ℓ≥0

2−ℓ s
2

(
−
∫

2ℓB(x,
√
t)
|h| dµ

)
.

With h =
√
tΓP

(b−1)
t f ·

√
tP

(b−1)
t g and Hölder’s inequality, we deduce that

∥∥∥L
s
2A(f, g)

∥∥∥
p

is bounded by
(B.10)

∑

ℓ≥0

2−ℓs

∥∥∥∥∥∥

(∫ 1

0
t−s

(
−
∫

B(x,2ℓ
√
t)
|
√
tΓP

(b−1)
t f |2 dµ

)(
−
∫

B(x,2ℓ
√
t)
|
√
tΓP

(b−1)
t g|2 dµ

)
dt

t

)1/2
∥∥∥∥∥∥
p

.

Then using Proposition B.9 with the Ahlfors regularity, we have
(
−
∫

B(x,2ℓ
√
t)

∣∣√tΓP (b−1)
t g

∣∣2 dµ
)1/2

. t−ν/(2p)tβ/2‖g‖W β,p .
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By Proposition B.8, we get
(
−
∫

B(x,2ℓ
√
t)

∣∣√tΓP (b−1)
t f

∣∣2
)1/2

. M
[
(tL)α/2Q

(δ)
t f

]
(x),

for some δ > 0. Hence

∥∥∥Ls/2A(f, g)
∥∥∥
p
. ‖g‖W β,p

∑

ℓ≥0

2−ℓs

∥∥∥∥∥

(∫ 1

0
t−s
∣∣∣M
[
(tL)α/2Q

(δ)
t f

]∣∣∣
2
tβ−ν/p dt

t

)1/2
∥∥∥∥∥
p

. ‖g‖W β,p

∥∥∥∥∥

(∫ 1

0

∣∣∣M
[
Q

(δ)
t Lα/2f

]∣∣∣
2 dt

t

)1/2
∥∥∥∥∥
p

.

Using the Fefferman-Stein inequality (on the maximal function) with the Lp-boundedness
of the square function (see Lemma B.4), we deduce that

∥∥Ls/2A(f, g)
∥∥
p
.
∥∥Lα/2f

∥∥
p
‖g‖W β,p . ‖f‖Wα,p‖g‖W β,p .

By a similar reasoning, we have

∥∥A(f, g)
∥∥
p
.

∫ 1

0

∥∥∥P (b−1)
t Γ

(√
tP

(b−1)
t f,

√
tP

(b−1)
t g

)∥∥∥
p

dt

t

. ‖g‖W β,p

∫ 1

0

∥∥∥M
[
Q

(δ)
t Lα/2f

]∥∥∥
p
t−ν/(2p)tβ/2

dt

t

. ‖f‖Wα,p‖g‖W β,p

(∫ 1

0
ts/2

dt

t

)

. ‖f‖Wα,p‖g‖W β,p ,

where we used that s > 0 and the Lp-boundedness of the approximation operators. That
concludes the proof of the estimate

∥∥A(f, g)
∥∥
W s,p . ‖f‖Wα,p‖g‖W β,p .

Since the resonant part Π(b) can be split into a finite number of terms similar to A(f, g),
we then deduce the Sobolev boundedness of the resonent part.

⊲

B.3.2. Commutator estimates We now focus on the adaptation of the commutator estimates
given above in Proposition 3.6.

Proposition B.15. Consider the a priori unbounded trilinear operator

C(f, g, h) := Π(b)
(
Π(b)

g (f), h
)
− gΠ(b)(f, h),

on S ′
o. Let α, β, γ be Hölder regularity exponents with α ∈ (−1, 1 − θ), β ∈ (0, 1 − θ) and

γ ∈ (−∞, 1]. If

0 < α+ β + γ and α+ γ < 0

then, setting δ := (α+ β) ∧ (1− θ) + γ, we have

(B.11)
∥∥C(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ ,

for every f ∈ Cα ,g ∈ Cβ and h ∈ Cγ ; so the commutator defines a trilinear map from Cα×Cβ×Cγ

to Cδ.
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Proof – We refer to the proof of Proposition 3.6 for details and we keep the same notations.
So it suffices to focus on a generic term of the form

D(f, g, h) := R
(
A(f, g), h

)
− gR(f, h)

and prove the continuity estimate (B.11) for it. As previously done, we split the proof
of the commutator estimate (B.11) for D in two steps, and introduce an intermediate
quantity

S(f, g, h) :=
∫ 1

0
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
· Ptg

) dt

t
,

for which we shall prove that we have both

(B.12)
∥∥gR(f, h)− S(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ

and

(B.13)
∥∥D(f, g, h) − S(f, g, h)

∥∥
Cδ . ‖f‖Cα ‖g‖Cβ ‖h‖Cγ .

Step 1 – proof of (B.12). This part is very similar to Step 1 of Proposition 3.6, so we
only point out the modifications. Using Gaussian pointwise estimates for the kernel of P1

t ,
we have for almost every x ∈M

∣∣∣P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)
∣∣∣ .

∑

ℓ≥0

e−c4ℓ

(
sup

d(x,y)≤2ℓ
√
t

∣∣g(x) − Ptg(y)
∣∣
)
...

...

(
−
∫

2ℓB(x,
√
t)

∣∣√tΓ
(
P2
t f
)∣∣2 dµ

)1/2(
−
∫

2ℓB(x,
√
t)

∣∣√tΓ
(
P3
t h
)∣∣2 dµ

)1/2

.

By using the Cβ-regularity of g as well as Proposition B.7 to estimate the L2 averages, we
get

∣∣∣P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)
∣∣∣ .



∑

ℓ≥0

e−c4ℓ(4ℓt)β/2tα/2tγ/2


 ‖f‖Cα‖g‖Cβ‖h‖Cγ

. t(α+β+γ)/2‖f‖Cα‖g‖Cβ‖h‖Cγ .

Consequently, the continuity estimate (B.12) in L∞ comes from integrating with respect
to time, taking into account the fact that α+ β + γ > 0.
Then to estimate the regularity of gR(f, h)−S(f, g, h), one can exactly reproduce the same
reasoning as for Proposition 3.6 by using the Hölder regularity of the heat kernel (Lemma
B.2), which involves the condition α+ β + γ < 1− θ (since β < 1− θ and α+ γ < 0).

Step 2 – proof of (B.13). Given the collection
(
Qr := Q

(1)
r

)
r∈(0,1] of operators, we need

to prove that we have

(B.14)
∥∥∥Qr

(
R
(
A(f, g), h

)
− S(f, g, h)

)∥∥∥
∞

. rδ/2.

for every r ∈ (0, 1], and where
(B.15)

R
(
A(f, g), h

)
−S(f, g, h) =

∫ 1

0
P1
t Γ

(√
t

{∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− Ptg · P2
t f

}
,
√
tP3

t h

)
dt

t
.

We are going to follow the same argument as for Proposition 3.6 and we only detail the
modifications. So we set

At(f, g) :=
√
tΓ

(∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− PtgP2
t f

)
.
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and using the L1-L∞ off-diagonal estimates of P1
t , we then deduce that for almost every

x0 ∈M∣∣∣R
(
A(f, g), h

)
− S(f, g, h)

)
(x0)

∣∣∣

.
∑

ℓ≥0

∫ 1

0
e−c4ℓ

(
−
∫

B(x0,2ℓ
√
t)
|At(f, g)|2 dµ

)1/2(
−
∫

B(x0,2ℓ
√
t)
|
√
tΓP4

t h|2 dµ
)1/2

.(B.16)

Using a suitable normalization of the operators
∫ 1
0 Q1

sQ2
sf

ds
s = f −P1f for some operator

P1, it yields for every x ∈M

At(f, g)(x) ≤
∫ 1

0

√
tΓP2

t Q1
s

(
Q2

sf
(
P3
s g − Ptg(x)

))
(x)

ds

s
+ |Ptg(x)|

√
tΓ[P2

t P1f ](x).

This quantity will then be integrated on Bℓ := B(x0, 2
ℓ
√
t), so we first aim to replace

Ptg(x) by −
∫
Bℓ
Ptg dµ. Observe that

At(f, g)(x) ≤
∫ 1

0

√
tΓP2

t Q1
s

(
Q2

sf
(
P3
s g −−

∫

Bℓ

Ptg dµ
))

(x)
ds

s

+

∣∣∣∣Ptg(x)−−
∫

Bℓ

Ptg dµ

∣∣∣∣
√
tΓP2

t f(x) + |Ptg(x)|
√
tΓ[P2

t P1f ](x).(B.17)

As before, we use β > 0 and the Cβ regularity of g to have∣∣∣∣Ptg(x) −−
∫

Bℓ

Ptg dµ

∣∣∣∣ .
(
2ℓ
√
t
)β

‖g‖Cβ ,

and uniformly in y ∈M
∣∣∣P3

s g(y)−−
∫

B(x0,
√
t)
Ptg dµ

∣∣∣ .
(
max(s, t)β/2 + d(x0, y)

β
)
‖g‖Cβ .

Moreover, it follows from the composition of L2 off-diagonal estimates (corresponding to a

L2 analog of Lemma A.5 – Part1, see also [10, Lemma 2.5]), that the operator
√
tΓ
(
P2
t Q

1
s

)

satisfies L2 off-diagonal estimates at the scale max(s, t) with an extra factor
(

min(s,t)
max(s,t)

)
; so

if one sets τ := max(s, t), we have with (B.17)
(
−
∫

B(x0,2ℓ
√
t)

|At(f, g)|2 dµ
)1/2

.

∫ 1

0

∑

k≥0

(
min(s, t)

max(s, t)

)
e−c4k(4k+ℓτ)β/2

(
−
∫

B(x0,2k+ℓ
√
τ)

|Q2
sf |2 dµ

)1/2

‖g‖Cβ

ds

s

+

(
−
∫

B(x0,2ℓ
√
t)

|
√
tΓP2

t f |2 dµ
)1/2 (

2ℓ
√
t
)β

‖g‖Cβ + t(1−θ)/2‖g‖∞‖f‖Cα

. 2ℓβ
[∫ 1

0

(
min(s, t)

max(s, t)

)
s

α
2 τ

β
2
ds

s
+ t

σ
2

]
‖f‖Cα‖g‖Cβ

. 2ℓβt
α+β

2 ‖f‖Cα‖g‖Cβ ,

where we used Proposition B.7 and the fact that α > −1 and α + β ≤ 1− θ to estimate
the integral over s. Observe that in the case where α+ β ≥ 1− θ, we get

(
−
∫

B(x0,2ℓ
√
t)
|At(f, g)|2 dµ

)1/2

. 2ℓβt
1−θ
2 ‖f‖Cα‖g‖Cβ .
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Coming back to the identity (B.16), with Proposition B.7 we have
∣∣∣R
(
A(f, g), h

)
− S(f, g, h)

)
(x0)

∣∣∣ .
(∫ 1

0
t(α+β+γ)/2 dt

t

)
‖f‖Cα‖g‖Cβ‖h‖Cγ

. ‖f‖Cα‖g‖Cβ‖h‖Cγ ,

since α+ β + γ > 0, uniformly for every x0 ∈M . We then conclude to
∥∥∥R
(
A(f, g), h

)
− S(f, g, h)

)∥∥∥
∞

. ‖f‖Cα‖g‖Cβ‖h‖Cγ .

Moreover, taking into account that we have Q
(1)
r P1

t = r
tQt for t ≥ r, we see that the

estimate (B.14) holds true (see thee proof of Proposition 3.6).
⊲

We then aim to have a similar commutator estimate in Sobolev spaces.

Proposition B.16. Assume the local Ahlfors regularity. Let α, β, γ be regularity exponents and
p ∈ (1,∞) with α ∈ (−1, 1 − θ), β ∈ (ν/p, 1− θ) and γ ∈ (−∞, 1]. If

2ν

p
< α+ β + γ and α+ γ <

ν

p

then, setting δ := (α+ β − ν
p ) ∧ 1 + γ − ν/p > 0 and assume that 2δ > β − ν/p. We have

(B.18)
∥∥C(f, g, h)

∥∥
W δ,p . ‖f‖Wα,p ‖g‖W β,p ‖h‖W γ,p ,

for every f ∈ Wα,p ,g ∈ W β,p and h ∈ W γ,p; so the commutator defines a trilinear map from
Wα,p ×W β,p ×W γ,p to W δ,p.

We follow the exact same proof as previously, so we keep the same notations and only focus
on the modifications.
Proof – Consider a generic term of the form

D(f, g, h) := R
(
A(f, g), h

)
− gR(f, h)

and prove the continuity estimate (B.18) for it. Aiming that, we split into two terms by
introducing the quantity

S(f, g, h) :=
∫ 1

0
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
· Ptg

) dt

t
.

for which we shall prove that we have both

(B.19)
∥∥gR(f, h)− S(f, g, h)

∥∥
W δ,p . ‖f‖Wα,p ‖g‖W β,p ‖h‖W γ,p

and

(B.20)
∥∥D(f, g, h) − S(f, g, h)

∥∥
W δ,p . ‖f‖Wα,p ‖g‖W β,p ‖h‖W γ,p .

Step 1 – proof of (B.19). We first prove a weaker version of the continuity estimate
(B.19), under the form of the inequality

(B.21)
∥∥gR(f, h)− S(f, g, h)

∥∥
p
. ‖f‖Wα,p ‖g‖W β,p ‖h‖W γ,p .

As previously, we have

(B.22)
(
gR(f, h)− S(f, g, h)

)
(x) =

∫ 1

0
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x) − Ptg

))
(x)

dt

t
,

for µ-almost every x ∈M . Since g ∈ Cβ, with β > ν/p then g ∈W β,p ⊂ Cβ−ν/p and so

‖Ptg − g‖∞ . t(β−ν/p)/2 ‖g‖W β,p .
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Hence
∣∣Ptg(y)− g(x)

∣∣ .
(√

t+ d(x, y)
)β−ν/p

‖g‖W β,p ,(B.23)

for every x, y ∈ M . Coming back to equation (B.22) and using Gaussian pointwise esti-
mates for the kernel of P1

t , we have for almost every x ∈M
∣∣∣P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)
∣∣∣

. t(β−ν/p)/2‖g‖W β,p

∑

ℓ≥0

e−c4ℓ

(
−
∫

2ℓB(x,
√
t)

∣∣√tΓ
(
P2
t f
)∣∣2 dµ

)1/2(
−
∫

2ℓB(x,
√
t)

∣∣√tΓ
(
P3
t h
)∣∣2 dµ

)1/2

.

So using Propositions B.8 and B.7, we deduce that
∣∣∣P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x) − Ptg

))
(x)
∣∣∣ . M[Lα/2f ](x)‖g‖W β,p‖h‖W β,pt(α+β+γ)/2−ν/p.

Then the continuity estimate (B.21) comes from integrating with respect to time, taking
into account the fact that α+ β + γ > 2ν

p .

Let us then estimate the regularity of F := gR(f, h) − S(f, g, h). It is known (see [16,
Section 2.1.1],[5, Section 5.2] or [10, Proposition 9.7]) that

‖F‖W δ,p . ‖F‖p + ‖Sδ(F )‖p,
where Sδ is the Strichartz functional of index δ ∈ (0, 1):

Sδ(F )(x) :=



∫ 1

0
r−2δ

(
−
∫

B(x,r)
|F (x)− F (y)| dµ(y)

)2
dr

r




1/2

.

Fix r > 0 and two points x, y ∈M with d(x, y) ≤ r. Then as previously, we write

F (x)− F (y) =
(
g(x)R(f, h) − S(f, g, h)

)
(x)−

(
g(y)R(f, h) − S(f, g, h)(y)

)
(y)

=: U + V

with U defined by the formula
∫ r2

0

{
P1
t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(x)− P1

t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(y)− Ptg

))
(y)
} dt

t
,

and V by
∫ 1

r2

{
P1
t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(x)− P1

t

(
Γ(

√
tP2

t f,
√
tP3

t h) ·
(
g(y)− Ptg

))
(y)
} dt

t
.

By repeating previous arguments, we easily bound U as follows

U .

(∫ r2

0
t(α+β+γ)/2−ν/p

[
M[Q

(ε)
t Lα/2f ](x) +M[Q

(ε)
t Lα/2f ](y)

] dt
t

)
‖g‖W β,p‖h‖W γ,p ,

for some ε > 0 satisfying α+ ε < 1− θ.
For the second part, we use

|V | ≤ A+B

with A equal to
∣∣∣∣
∫ 1

r2

{
P1
t

(
Γ
(√
tP2

t f,
√
tP3

t h
)
·
(
g(x)− Ptg

))
(x)− P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h) ·
(
g(x)− Ptg

))
(y)
} dt
t

∣∣∣∣

and

B :=

∫ 1

r2

∣∣g(x) − g(y)
∣∣ ·
∣∣∣P1

t

(
Γ
(√
tP2

t f,
√
tP3

t h
))

(y)
∣∣∣
dt

t
.
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The last quantity is bounded (following the same estimates as previously since g ∈ Cβ−ν/p)
by

B . rβ−ν/p

(∫ 1

r2
t(α+γ−ν/p)/2M[Q

(ε)
t Lα/2f ](y)

dt

t

)
‖g‖W β,p‖h‖W γ,p .

For the quantity A, we combine the previous argument with the Hölder regularity of the
heat kernel, Lemma B.2, to get the upper bound

A .

(∫ 1

r2

(
r√
t

)1−θ

t(α+β+γ)/2−ν/pM[Q
(ε)
t Lα/2f ](y)

dt

t

)
‖g‖Wβ,p‖h‖Wγ,p .

The combination of all the previous estimates yields

|F (x)− F (y)| ≤ |U |+A+B

.

[(∫ r2

0
tδ/2

[
M[Q

(ε)
t Lα/2f ](x) +M[Q

(ε)
t Lα/2f ](y)

] dt
t

)

+

(∫ 1

r2

(
r√
t

)1−θ

tδ/2M[Q
(ε)
t Lα/2f ](y)

dt

t

)

+

(∫ 1

r2
rβ−ν/pt(α+γ−ν/p)/2M[Q

(ε)
t Lα/2f ](y)

dt

t

)]
‖g‖W β,p‖h‖W γ,p .

This estimate holds uniformly for every y ∈ B(x, r) and so can be averaged on this ball.
We then conclude by Hardy’s inequality (with δ > 0, δ < 1− θ and β > ν/p) that

Sδ(F ) .

(∫ 1

0

∣∣∣MM[Q
(ε)
t Lα/2f ]

∣∣∣
2 dt

t

)1/2

‖g‖W β,p‖h‖W γ,p .

Using Fefferman-Stein’s inequality and the Lp-boundedness of the vertical square function
(see Lemma B.4), we then deduce that

‖F‖W δ,p . ‖F‖p + ‖Sδ(F )‖p . ‖f‖Wα,p‖g‖W β,p‖h‖W γ,p ,

which concludes the proof of the continuity estimate (B.19).

Step 2 – proof of (B.20). We need to prove that we have

(B.24) (∗) :=
∥∥∥Lδ/2

(
R
(
A(f, g), h

)
− S(f, g, h)

)∥∥∥
p
. ‖f‖Wα,p‖g‖W β,p‖h‖W γ,p ,

where
(B.25)

R
(
A(f, g), h

)
−S(f, g, h) =

∫ 1

0
P1
t Γ

(√
t

{∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− Ptg · P2
t f

}
,
√
tP4

t h

)
dt

t
.

Using Lemma B.4 with the L1-L∞ off-diagonal estimates of P1
t , we deduce that quantity

(∗) is estimated by

(∗) .
∑

ℓ≥0

2−ℓδ

∥∥∥∥∥∥

(∫ 1

0
t−δ

(
−
∫

B(x0,2ℓ
√
t)
|At(f, g)|2 dµ

)(
−
∫

B(x0,2ℓ
√
t)
|
√
tΓP3

t h|2 dµ
)
dt

t

)1/2
∥∥∥∥∥∥
p

,

with

At(f, g) :=
√
tΓ

(∫ 1

0
P2
t Q1

s

(
Q2

sf · P3
s g
) ds
s

− PtgP2
t f

)
.
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Following the reasoning in the previous proof of Proposition B.15, by combining with
Proposition B.8 we can obtain that for almost every x0
(
−
∫

B(x0,2ℓ
√
t)
|At(f, g)|2 dµ

)1/2

. 2ℓ(β−ν/p)t(β−ν/p)/2M[Q
(ε)
t (tL)α/2f ](x0)‖g‖W β,p

+ t(1−θ)/2M[Q
(ε)
1 Lα/2f ](x0)‖g‖W β,p .

Hence, since 2δ > β − ν/p we obtain

(∗) . ‖g‖W β,p‖h‖W γ,p





∥∥∥∥∥

(∫ 1

0
M[Q

(ε)
t Lα/2f ]2

dt

t

)1/2
∥∥∥∥∥
p

+ ‖f‖p



 .

We then conclude to (B.24) by the Fefferman-Stein inequality and Lemma B.4.
⊲

B.3.3. Composition estimates The above continuity estimates are the main estimates used in
the main part of this work to prove the paralinearisation and

composition estimates for paraproduct. We state these results here in Hölder and Sobolev
spaces under our relaxed assumptions and leave the reader the task of checking that the proofs
of section 3.4 are easily adapted.

Theorem B.17. Fix an integer b ≥ 2 and a nonlinearity F ∈ C3
b .

(a) Let α ∈ (0, 1 − θ) be given. For every f ∈ Cα, we have F(f) ∈ Cα and

RF (f) := F(f)−Π
(b)

F′(f)
(f) ∈ C2α.

More precisely,
∥∥∥F(f)−Π

(b)
F′(f)(f)

∥∥∥
C2α

. ‖F‖C3
b

(
1 + ‖f‖2Cα

)
.

If F ∈ C4
b , then the remainder term RF (f) is Lipschitz with respect to f , in so far as we

have
∥∥RF(f)−RF(g)

∥∥
C2α . ‖F‖C4

b

(
1 + ‖f‖Cα + ‖g‖Cα

)2 ‖f − g‖Cα .

(b) Fix p ∈ (1,∞). For every α ∈ (ν/p, 1− θ) and every f ∈Wα,p, we have F(f) ∈Wα,p and

RF (f) := F(f)−Π
(b)

F′(f)
(f) ∈W 2α−ν/p,p.

More precisely
∥∥∥F(f)−Π

(b)

F′(f)
(f)
∥∥∥
W 2α−ν/p,p

. ‖F‖C3
b

(
1 + ‖f‖2Wα,p

)
.

If F ∈ C4
b , then the remainder term RF (f) is Lipschitz with respect to f .

Let us now examine the composition of two paraproducts. Note that for u ∈ Cα and v ∈ Cβ ,
with α ∈ (0, 1), β ∈ (0, α], we have uv ∈ Cβ.

About the composition of paraproducts, Theorem 3.8 in Hölder spaces still holds since it
only relies on the Gaussian estimate (UE); its Sobolev counterpart also holds.

Theorem B.18. (a) Fix an integer b ≥ 2, α ∈ (0, 1), β ∈ (0, α] and consider u ∈ Cα and
v ∈ Cβ. Then for every f ∈ Cα, we have

Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f) ∈ Cα+β
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with ∥∥∥Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f)
∥∥∥
Cα+β

. ‖f‖Cα ‖u‖Cα‖v‖Cβ .

(b) Fix an integer b ≥ 2 and p ∈ (1,∞). For α ∈ (0, 1) and β ∈ (ν/p, α], consider u ∈ Wα,p

and v ∈W β,p. Then for every f ∈Wα,p, we have

Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f) ∈Wα+β−2ν/p,p

with ∥∥∥Π(b)
u

(
Π(b)

v (f)
)
−Π(b)

uv (f)
∥∥∥
Wα+β−2ν/p,p

. ‖f‖Wα,p ‖u‖Wα,p‖v‖W β,p .

B.3.4. Schauder estimates Proposition 3.10 gives an elementary proof in our setting of a
Schauder-type estimate about the regularizing character of the con-

volution operation with the operators P
(b)
s . The same properties hold in our minimal setting

since hey only rely on Gaussian property (UE) and the semigroup structure, together with a
Sobolev version which we state here without proof as it can be proved along the lines of proof
of proposition 3.10. (Another approach can be also obtained by interpolating between the
trivial case ε = 1 and the limit case ε = 0. The latter case ε = 0, corresponds exactly to the
so-called Lp maximal regularity which has been the topic of a huge literature, see for example
[40] where the Gaussian upper estimates (UE) are used.)

Proposition B.19. (a) Consider β ∈ R and ε ∈ (0, 1). For every T > 0 and v ∈ CTCβ, the

function V (t) :=
∫ t
0 P

(b)
t−sv(s) ds belongs to CTCβ+2−2ε with
∥∥V (t)

∥∥
Cβ+2−2ε . T ε sup

s∈[0,t]

∥∥v(s)
∥∥
Cβ

and ∥∥V
∥∥
C

(β+2−2ε)/2
T L∞ . T ε ‖v‖CT Cβ .

So ∥∥Jf
∥∥
Lα
T
. T ε ‖f‖CT Cα−2+2ε .

(b) Consider β ∈ R, p ∈ (1,∞) and ε ∈ (0, 1). For every T > 0 and v ∈ CTW
β,p, the function

V (t) :=
∫ t
0 P

(b)
t−sv(s) ds belongs to CTW

β+2−2ε,p with
∥∥V (t)

∥∥
W β+2−2ε,p . T ε sup

s∈[0,t]

∥∥v(s)
∥∥
W β,p

and ∥∥V
∥∥
C

(β+2−2ε)/2
T Lp . T ε ‖v‖CTW β,p.

B.4. Resolution of PAM in such a 2-dimensional

setting

Building on the estimates proved in this Ap-
pendix, it is elementary to introduce and study
paracontrolled distributions in Hölder and Sobolev

spaces along the lines of Subsections 4.1 and 4.2, in the present extended setting. Its applica-
tion to the parabolic Anderson model equation (PAM) is also almost straightforward as we only
need to check that the renormalization procedure explained in details in subsection 5.3 under
the (Lip) assumption can be run here as well. This is indeed the case if the exponent q0 in
the gradient assumption (Gq0) is large enough, as this assumption yields some ”Lq1-Gaussian”
estimates for every q1 < q0.
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Let us compute, as an example, an integral of type

Is,t :=

∫
Γxpt(x, y)Γxps(x, z) dµ(x),

where pt is the heat kernel of e
−tL, and s < t. By (B.1) with the local Ahlfors regularity, there

exists a positive constant c such that we have

Is,t . t
− ν

2q′1 s
− ν

2q′1

(∫
ec

d(x,y)2

t ec
d(x,z)2

s dµ(x)

)1− 2
q1

. t
− ν

2q1 s
− ν

2q1

(∫
Gt(x, y)Gs(x, z) dµ(x)

)1− 2
q1

. t
− ν

2q1 s
− ν

2q1 Gt+s(y, z)
ν
2

(
1− 2

q1

)
,

where we used Lemma A.5. So with respect to Subsection 5.3, where (Lip) was assumed and
where Is,t would be estimated by Gs+t(y, z), we now have the estimate

Is,t .

(
(t+ s)2

ts

) ν
2q1

Gt+s(y, z),

involving an extra factor
(
(t+s)2

ts

) ν
2q1 . Since all the conditions on the exponents were open

conditions in Subsection 5.3, we may allow a small loss if it is small enough. As a consequence,
we deduce that if q1 can be chosen large enough then we may adapt and repeat the renormal-
ization procedure of the white noise in Hölder and Sobolev spaces. The latter condition on q1
is equivalent to taking q0 big enough.

We summarize this result under the following form, which gives an analogue of theorem 1.2.

Theorem B.20. Assume the local Ahlfors regularity of dimension 2, as well as (P2), (Gq0) and
(DGq,θ) for q0 large enough and θ small enough. Fix p > 2 a large enough exponent.

Let ξ stand for a time-independent weighted noise in space, and set ξε := Pεξ, and X
ε(t) =∫ t

0 Pt−s

(
ξε
)
ds.

(a) The pair
(
ξε,Xε

)
converges in probability in some space (in the Hölder scaling (Cs)s or

Sobolev scaling (W s,p)) to some extended noise (ζ,X), with ζ = ξ, and Π(X, ζ) well-
defined in the above sense.

(b) Furthermore, if uε stands for the solution of the renormalized equation

(B.26) ∂tu
ε + Luε = F

(
uε
)
ξε − cε F′(uε

)
F(uε), uε(0) = u0

where cε(·) := E

[
Π
(
L−1ξε, ξε

)
(·)
]
is a deterministic real-valued function on M , then uε

converges in probability to the solution u of (gPAM) associated with (ζ,X), in some space
whose definition depends on whether or not F is linear.
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