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Abstract

We present an algorithm to compute modular Galois represen-
tations attached to a newform f , and study the related problem of
computing the coefficients of f modulo a small prime `. To this end,
we design a practical variant of the complex approximations method
presented in [EC11]. Its efficiency stems from several new ingredi-
ents. For instance, we use fast exponentiation in the modular jaco-
bian instead of analytic continuation, which greatly reduces the need
to compute abelian integrals, since most of the computation handles
divisors. Also, we introduce an efficient way to compute arithmetically
well-behaved functions on jacobians, a method to expand cuspforms
in quasi-linear time, and a trick making the computation of the image
of a Frobenius element by a modular Galois representation more ef-
fective. We illustrate our method on the newforms ∆ and E4 ·∆, and
manage to compute for the first time the associated faithful represen-
tations modulo ` and the values modulo ` of Ramanujan’s τ function
at huge primes for ` ∈ {11, 13, 17, 19, 29}. In particular, we get rid of
the sign ambiguity stemming from the use of a projective representa-
tion as in [Bos07]. As a consequence, we can compute the values of
τ(p) mod 211 · 36 · 53 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 691 ≈ 2.8 · 1019 for
huge primes p. The representations we computed lie in the jacobian
of modular curves of genus up to 22.

∗IMB, Université Bordeaux 1, UMR 5251, F-33400 Talence, France. CNRS, IMB, UMR
5251, F-33400 Talence, France. INRIA, project LFANT, F-33400 Talence, France.
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1 Introduction

Consider a non-CM newform f = q +
∑

n>2 anq
n ∈ Sk

(
Γ1(N)

)
of weight

k ∈ N>2, level N ∈ N∗, and nebentypus ε. Denote by Kf = Q(an, n > 2) the
number field spanned by its q-expansion coefficients. Let l be one of its finite
primes, lying over some rational prime ` ∈ N, let Kf,l be the corresponding
completion, and let ZKf,l be its ring of integers. Thanks to P. Deligne [Del71],
we know that there exists a continuous `-adic Galois representation

GQ −→ GL2(ZKf,l)

of the absolute Galois group GQ = Gal(Q/Q) of Q, which is unramified
outside `N , and such that for all rational primes p - `N , the image of the
Frobenius element corresponding to any prime lying above p has character-
istic polynomial

X2 − apX + ε(p)pk−1 ∈ ZKf,l [X].

Assume now that l has inertia degree 1. By reducing modulo l, we get a
mod ` representation

ρf,l : GQ −→ GL2(F`).

By [Rib85, theorem 2.1] and [Swi72, lemma 2], for almost every l, the image
of this representation contains SL2(F`), and in particular this representation
is irreducible. In the rare case when the image of ρf,l fails to contain SL2(F`),
we say that the representation degenerates. We will exclude the finitely many
l for which ρf,l degenerates from now on. For instance, if we choose f = ∆,
according to [Swi72, corollary to theorem 4] the values of ` we exclude are 2,
3, 5, 7, 23 and 691.

Further assume now that ` > k + 1 and that ` - N . In this case, this
mod ` representation can be constructed in a more concrete way as follows.
Being an eigenform, f has a system of Hecke eigenvalues λf : Tk,N −→ ZKf
such that

Tf = λf (T )f ∀T ∈ Tk,N ,

where Tk,N = Z[Tn, n > 2] denotes the Hecke algebra acting on cuspforms of
weight k and level N , and where ZKf is the ring of integers of Kf . Reducing
modulo l, we get a ring morphism λf,l : Tk,N −→ F`. By a weight-lowering
theorem (cf [Gro90, proposition 9.3 part 2]), there exists another ring mor-
phism µf,l : T2,`N −→ F` such that λf,l(Tp) = µf,l(Tp) ∈ F` for all rational
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primes p. This other Hecke algebra T2,`N also acts on the jacobian J1(`N)
of the modular curve X1(`N), so we can consider the subspace

Vf,l =
⋂

T∈T2,`N

Ker
(
T − [µf,l(T )]

)∣∣
J1(`N)[`]

of the `-torsion of J1(`N). By [DS05, section 7.9], this subspace Vf,l is defined
over Q, and by [Edi92, theorem 9.2], it has dimension 2 as a vector space
over F`, so that the action of GQ on its points yields a Galois representation

ρ′f,l into GL2(F`) which cuts out the Galois number field L = QKer ρ′f,l =
Q(P, P ∈ Vf,l), as shown below :

GQ
ρ′f,l //

����

GL(Vf,l) ' GL2(F`).

Gal(L/Q)
+ �

99

Of course, if we had k = 2 in the first place, there is no need to appeal
to the weight-lowering theorem, and the subspace Vf,l already exists in the
`-torsion of J1(N) instead of J1(`N).

This representation ρ′f,l is unramified outside `N (cf [DS05, theorem
9.6.5]). Furthermore, it follows from the Eichler-Shimura relation (cf [DS05,

theorem 8.7.2]) that for p - `N , the image of any Frobenius element
(
L/Q
p

)
by ρ′f,l has characteristic polynomial

X2 − apX + ε(p)pk−1 ∈ F`[X],

where ap and ε(p) have both been reduced modulo l. By the Brauer-Nesbitt
theorem (cf [CR62, theorem 30.16]), ρf,l is therefore isomorphic to the semisim-
plification of ρ′f,l, so that ρ′f,l is actually irreducible and thus realises ρf,l
indeed.
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It is interesting to compute explicitly these Galois representations ρf,l for
several reasons:

• First, simply for the sake of the Galois representation itself.

• Next, because the number field L is an explicit solution with controlled
ramification to the inverse Galois problem for the subgroup of GL2(F`)
made up of the matrices whose determinant is of the form ε(n)nk−1,
which often turns out to be the whole of GL2(F`). It is for instance
used as such by J. Bosman in [Bos07a] and [Bos11].

• The number field L is actually even a solution to the Gross problem,
which asks to find a non-solvable Galois number field ramified at only
one prime.

• Last but not least, because it gives a fast way of computing the q-
expansion coefficients ap of f modulo l. Letting l vary and using Chi-
nese remainders, we thus obtain a Schoof-like algorithm (cf [Sch95]) to
compute q-expansions of newforms, as bounds on the coefficients ap are
well-known.

Computing these representations is the goal pursued by the book [EC11].
The idea is to approximate `-torsion divisors representing the points of Vf,l.
To compute these torsion divisors, the book [EC11] suggests two approaches:
a probabilistic one [CouC13], which creates `-torsion divisors by applying
Hecke operators to random divisors on the modular curve over small finite
fields, and a deterministic one [CouC12], which relies on fast exponentiation
to create approximations of torsion divisors on the modular curve over C.
However, neither of these two methods is practical at all, although their
theoretical complexities are polynomial in `.

In [Bos07], J. Bosman presents a practical variant of the complex method.
It uses an analytic continuation method (cf for instance [AG90]) instead of
fast exponentiation. To deal with the Abel-Jacobi map

 : Div0
(
X1(`N)

)
(C)→ J1(`N)(C),

J. Bosman has to compute a lot of abelian integrals. This leads to precision
problems as this requires summing q-series very close to the edge of the
convergence disk, and because of the singular locus of , of which little is
known. J. Bosman still manages to compute representations up to level 23,
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but he only gets projective Galois representations in PGL2(F`) instead of
GL2(F`), which means he gets the coefficients ap mod l up to a sign only (cf
for instance the table on the very first page of [EC11]).

It seems that the implementation [Zen12] by J. Zeng of the probabilistic
method suffers from the same limitations. J. Zeng computes polynomials
defining projective representations, but seems not to compute actual coeffi-
cients.

In this paper, we present another improved, practical and deterministic
version of the complex approximations approach, and we can prove this ap-
proach works since the singular locus of  is no longer a problem. It has far
fewer precision issues, as it computes abelian integrals only along very short
paths well inside the convergence disks, and uses K. Khuri-Makdisi’s algo-
rithms [KM04, KM07] for fast exponentiation in the jacobian. Consequently,
we get approximations of torsion divisors fairly easily. This allows us to com-
pute the full Galois representations for the prime levels 17 6 ` 6 29, which,
to our knowledge, had never been done before. As a consequence, we can for
instance find the signs which were missing in J. Bosman’s results.

Like J. Bosman, we limit ourselves to prime levels ` for commodity, al-
though our algorithm could easily be extended to general levels N . This
implies that we can only use our algorithm to compute Galois representa-
tions attached to newforms of weight 2 and level `, or to newforms of arbitrary
even weight but of level 1. Typically, we use it on the newform ∆, which is
of weight 12 and level 1. As the genus of X1(`) is 0 for ` 6 7, we will assume

` > 11 throughout this paper. The genus of X1(`) is then g = (`−5)(`−7)
24

.

We should however stress the fact that the results we get in practice are
not yet rigourously proved. Indeed, our method relies on numerical compu-
tations in C, so that we need a bound on the height of the result to prove
it. Unfortunately, the best bounds we know (cf [EdJC11, section 11.7]) are
impractical, whereas the results we have obtained let us think that these
bounds are really not sharp. As a consequence, when we run our computa-
tions we use much less precision in C than required by these bounds, so as
to still get interesting results, although not rigouroulsy proved.

Nevertheless, there are some easy tests which we performed so as to con-
vince ourselves that our results are correct without any reasonable doubt.
Namely, we checked that the discriminant of the polynomial F (X) defining
the representation (see the next section) is of the form (−1)`(`−1)/2`vM2 for
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some large v ∈ N and some M ∈ Q∗ coprime to `, which is what we expect
since the representation is supposed to be odd and the number field L it
cuts out is supposed to ramify only at `. Also, the fact that the resolvents
ΓC(X) we compute (see next section) have rational coefficients with the ex-
pected form (we explain in section 3.7 that their denominators should all
divide some known bound) hints that Gal(L/Q) indeed is isomorphic to a
subgroup of GL2(F`). Finally, we checked for a few small primes p that the
values ap mod l which we obtain are correct, by computing ap by “classical”
methods (e.g. using modular symbols, cf [Ste07]) and reducing it modulo l.

In order to prove our results rigourously, we can appeal to Serre’s conjec-
ture [Ser87], which is now a theorem thanks to [KW09]. It would be enough
to first prove that Gal(L/Q) is isomorphic to a subgroup of GL2(F`) so that
we are sure we are really dealing with a representation, then to make sure that
this representation is odd so that Serre’s conjecture applies, next to check
that it has the correct level and weight, and finally that it corresponds to the
right newform f . This is the approach followed by J. Bosman in [Bos07]. We
have not succeeded in using it to prove our results yet, but we are working on
it. We were for instance able to prove the correctness of the projective version
of the representation ρ∆,29 of level 29 attached to the newform f = ∆ which
we computed (cf our results section): J. Klüners helped us to formally prove
that we have the correct Galois group, we checked that the representation
was odd, and that the subfield of Q fixed by the stabiliser of a line in V∆,29

has discriminant 2939. By the results of [Bos07], this is enough to conclude.

In the next section, we present a quick review of our algorithm. Then,
in section 3, we give a detailed description of the key steps. Finally, in the
last section, we present actual computations of Galois representations and of
coefficients of newforms, and we give complexity estimates.
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2 Outline of the algorithm

Our first task consists in computing the period lattice Λ of X1(`), which we
do by integrating cuspforms along modular symbols. Using our knowledge
of the action of the Hecke algebra on modular symbols, we then deduce
an analytic representation of the `-torsion subspace Vf,l ⊂ J1(`)(C) = Cg/Λ.
Next, we find a way to invert the Abel-Jacobi map , so that we may, for each
x ∈ J1(`)(C), find a null-degree divisor Dx on X1(`) such that (Dx) = x,
and especially so for two `-torsion divisor classes x1 and x2 forming a basis
of the two-dimensional F`-subspace Vf,l. This is done as follows.

We first compute a high-precision floating point approximation of the
period lattice Λ by computing a Z-basis of the homology H1

(
X1(`)(C),Z

)
made up of modular symbols (cf [Ste07] or [Cre97]), along which we integrate
term-by-term the q-expansions of a basis (ωi)16i6g of cuspforms of weight 2
In order to get a very accurate result, this requires q-expanding the ωi to
high precision, which we show how to do quickly below. Then, by computing
the Hecke action on J1(`)[`], we can express our two divisor classes x1 and
x2 as points of 1

`
Λ/Λ ⊂ Cg/Λ.

Let x̃1 be a lift of x1 to Cg. We next pick g points (Pj)16j6g on X1(`),
and, using Newton iteration, we compute another g points (P ′j)16j6g with P ′j
close to Pj such that

g∑
j=1

(∫ P ′
j

Pj

ωi(τ)dτ

)
16j6g

=
x̃1

2m
,

where m ∈ N is large enough for Newton iteration to converge, and the
integrals are taken along the short paths joining Pj to P ′j . Thus, we get the
divisor

D
(m)
1 =

g∑
j=1

(P ′j − Pj)

which satisfies 2m
[
D

(m)
1

]
= x1. Then, using K. Khuri-Makdisi’s algorithms

[KM04, KM07] to compute in the jacobian J1(`), we double m times the

divisor class of D
(m)
1 , which yields an `-torsion divisor D1 representing x1.

We apply the same process to get another `-torsion divisor D2 representing
x2.

This way, we find `-torsion divisors using only integrals along short paths
which are well inside the convergence disks. Consequently we have far fewer
precision problems than with J. Bosman’s method [Bos07].
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We thus now have two `-torsion divisors D1 and D2 whose images by
the Abel-Jacobi map form a basis of the `-torsion subspace Vf,l. We then
compute all the reduced divisors

Da,b ∼ aD1 + bD2, a, b ∈ F`,

yielding a collection of `2 reduced divisors corresponding to the `2 points
of Vf,l, and evaluate a well-chosen Galois-equivariant map α : Vf,l −→ Q in
these points. The polynomial

F (X) =
∏
a,b∈F`

(a,b)6=(0,0)

(
X − α(Da,b)

)

then lies in Q[X]; we can recognise its coefficients using continued fractions.
This polynomial encodes the Galois representation we are attempting to com-
pute, in that its splitting field L over Q is the number field cut out by the
representation ρf,l, and Gal(L/Q) acts on its roots ϕ(Da,b) just like GL2(F`)
acts on (a, b) ∈ F2

` .
Our final task is to describe the image of Frobenius elements by this

representation. For this, we adapt T. and V. Dokchitser’s work [Dok10] to
get resolvents

ΓC(X) ∈ Q[X], C similarity class of GL2(F`)

such that for almost all rational primes p,

ρf,l (Frobp) ∈ C ⇐⇒ ΓC
(

TrAp/Fp a
p h(a)

)
= 0 mod p,

where Frobp denotes any Frobenius element of L at p, Ap = Fp[X]/
(
F (X)

)
,

a denotes the class of X in Ap, and h is a polynomial (cf [Dok10] or section
3.7). We furthermore present a trick to reduce the amount of computations
at this step.

Finally, we can use this to compute the coefficients ap of the q-expansion
of f modulo l:

ap mod l = Tr ρf,l (Frobp) .
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3 Detailed description of the steps

We first show in subsection 3.1 how to quickly compute a huge number of
terms of the q-expansion at infinity of the cuspforms of weight 2 and level
`, and next, in 3.2, how to efficiently compute the period lattice of X1(`)
to high precision using these q-expansions. Then, we explain in 3.3 how to
use K. Khuri-Makdisi’s algorithms [KM04, KM07] on X1(`). Our method
requires a careful choice of two Eisenstein series, as explained in 3.4. After
this, we show in 3.5 how to compute an `-torsion divisor. Finally, we explain
in 3.6 how to construct a well-behaved function on the jacobian J1(`) and
how to evaluate it at the `-torsion divisors, and we conclude by describing
in 3.7 an efficient way of computing the image of the Frobenius elements by
the Galois representation.

3.1 Expanding the cuspforms of weight 2 to high pre-
cision

We will need to know the q-expansion of the newforms of weight 2 in order
to compute the period lattice of the modular curve. Classical methods based
on modular symbols (cf for instance [Ste07, chapter 3]) allow us to compute
a moderate number of terms of these q-expansions. However, we will need to
know the periods with very high accuracy, which requires computing a very
large number of coefficients in these q-expansions. Consequently, as using
classical methods for this, though possible, would be too slow, we present
a new method to quickly compute a huge number of such coefficients. It
proceeds roughly as follows :

• First, compute a moderate number of coefficients of the q-expansion of
each cuspform ω.

• Then, use these coefficients to find a polynomial equation relating a
modular function depending on ω to the modular invariant j, or some
other modular function whose q-expansion is very easy to compute.

• Finally, use Newton iteration on this equation between q-series to com-
pute a huge number of coefficients of the modular function depending
on ω, and deduce those of ω.
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Moreover, all this is done modulo some prime p so as to accelerate the
computation by avoiding intermediate coefficient growth.

More precisely, to compute these q-expansions to the precision O(qB), we
first compute a generator of the Hecke algebra T2,`⊗Z Q, by picking a Hecke
operator and testing whether it is a Q-algebra generator. This is easy as it
amounts to check if its eigenvalues on S2

(
Γ1(`)

)
are all distinct. One can

for instance proceed as follows : starting with n = 2, first check whether
Tn is a generator, if not then pick small integers λm and check whether
Tn +

∑n−1
m=2 λmTm is a generator, and if still not increase n by 1 and start

again. In an overwhelming majority of cases, it appears that at least one of
T2 and T3 is a Q-algebra generator.

We can find a basis B =
⊔
ε Bε of

S2

(
Γ1(`)

)
=

⊕
ε even character mod `

S2(ε),

where Bε is a basis of S2(ε) consisting in forms which are not necessarily
eigenforms1, but which are normalised, and whose q-expansion coefficients
lie among the integers ZK of the common cyclotomic field K = Q

(
ζ(`−1)/2

)
.

To make it easier to reduce mod p and lift back to K, we want p to split
completely in K. Also, p should be chosen large enough for reduction mod p
of the coefficients to be faithful. Deligne’s bounds state that if q+

∑
n>2 anq

n

is a newform of weight 2, then for all n ∈ N, we have |an|σ 6 d(n)
√
n for every

complex embedding σ, where d(n) denotes the number of positive divisors
of n. These bounds may not apply to the forms in the bases Bε as they are
not eigenforms, but using our knowledge of a generator of the Hecke algebra,
we can compute for each ε a change of basis matrix from the basis Bε to
a basis of eigenforms, then deduce from Deligne’s bound a bound on the
complex embeddings of the B first coefficients of the forms of Bε, and finally,
compute a bound on the coefficients of these coefficients seen as polynomials
in ζ(`−1)/2. We choose p 6= ` to be the smallest rational prime greater than
twice this bound and such that p ≡ 1 mod (`− 1)/2. Then the (`− 1)/2-th
cyclotomic polynomial splits completely over Fp. Letting ai denote lifts to Z
of its roots in Fp, and pi =

(
p, ζ(`−1)/2− ai

)
, the prime p splits completely as∏

i pi in K.

1If we used a basis of eigenforms, the common number field containing the Fourier
coefficients of all these forms could be much larger.
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Next, we compute the forms

E4 = 1 + 240
+∞∑
n=1

σ3(n)qn, E6 = 1− 540
+∞∑
n=1

σ5(n)qn, and u =
1

j
=
E3

4 − E2
6

1728E2
6

in Fp[[q]], as well as dj in q−2Fp[[q]]dq, to precision O(qB).
We then can compute the q-expansions of the forms ω with trivial neben-

typus ε = 1 in B1 as follows. Note that such a form ω has q-coefficients in Z.
Consider the form v = ωdq

qdj
∈ Z[[q]]. It has weight 0, so it is a rational function

on X1(`), which actually descends to a rational function on X0(`) because
ε = 1. Its degree there is at most 2g0 + `+ 1, where g0 denotes the genus of
X0(`). Indeed, its degree is at most the number of zeroes of the 1-form ω dq

q

plus the number of poles of the 1-form dj. On the one hand, ω dq
q

has exactly
2g0− 2 zeroes as it is regular. On the other hand, as dj has a double pole at
the cusp on X(1), it has a pole of order ec + 1 at each cusp c of X0(`), where
ec is the ramification index of c. Summing over the two cusps of X0(`), we
thus see that dj has ` + 3 poles on X0(`), hence the announced bound on
the degree of v. Besides, u has degree exactly `+ 1 on X0(`). Consequently,
there exists an irreducible polynomial Φ(U, V ) ∈ Fp[U, V ] of degree at most
2g0 + ` + 1 in U and exactly ` + 1 in V such that Φ(u, v) ≡ 0 mod p. We
compute this polynomial by linear algebra over Fp in Fp[[q]], using a mod-
erately precise q-expansion of ω computed by classical algorithms. Then,
by Newton iteration, we can compute v mod p, and hence ω mod p, to the
precision O(qB), and finally lift the coefficients of ω back to Z.

Once this is done, we can compute the q-expansions of the forms ω with
nontrivial nebentypus ε as follows. Let ω0 ∈ B1 be one of the g0 forms2 with
trivial nebentypus whose q-expansion we have just computed. Then ω

ω0
is a

rational function on X1(`) with nebentypus ε. We could thus proceed to find
an equation Φ as previously by reasoning on X1(`) instead of X0(`), but this
would lead to very high degrees and hence would be too slow. Instead, notice

that if r denotes the order of ε, then v =
(
ω
ω0

)r
has trivial nebentypus, so

descends to a function on X0(`), of degree at most (2g1−2)r
(`−1)/2

, where g1 = g

2Here, the method breaks down for ` = 13. Indeed, this is the only case in which g0 = 0
(remember we supposed ` > 11), so that there is no such form in this case. So, in this
special case ` = 13, classical methods to expand the forms should be used instead. This is
not a big problem, as this is a “small” case (g is only 2), so little accuracy is needed and
the whole Galois representation computation is quite fast anyway.
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denotes the genus of X1(`), because it has degree at most (2g1 − 2)r over
X1(`). We can thus compute as previously for each pi an irreducible polyno-

mial Φ(U, V ) ∈ Fp[U, V ] of degree at most (2g−2)r
(`−1)/2

in U and exactly ` + 1 in

V such that Φ(u, v) ≡ 0 mod pi. Next, we use Newton iteration as before to
compute v mod pi, then take the rth root to recover ω mod pi, and finally lift
back to K by Chinese remainders.

Finally, we apply to the q-expansions of the forms we have just computed
the change of basis matrices from Bε to the basis of eigenforms which we
computed in the beginning, so as to get the q-expansions of the newforms.

This method is faster than the classical one for large B.

Theorem 1. For fixed prime level `, the number of bit operations required
to compute the q-expansion of the newforms in S2

(
Γ1(`)

)
to precision O(qB)

with the algorithm described above is quasi-linear in B.

In comparison, the bit complexity of the classical algorithm based on
modular symbols is at least quadratic in B, cf [Ste07, remark 8.3.3].

Proof. First notice that for fixed level `, the change of basis matrices from the
bases Bε to eigenforms are fixed, and so is the common field K = Q

(
ζ(`−1)/2

)
.

Consequently, there exists some C > 0 not depending on B such that the
coefficients of ζ(`−1)/2 in the coefficients up to qB of the forms in the bases Bε
are bounded byM = C supn<B d(n)

√
n. We haveM = O(B), because d(n) =

O(nδ) for every δ > 0, cf for instance [HW08, theorem 315]. If B is large
enough, then M will be large too, so that by the prime number theorem for
arithmetic progressions (cf for instance [Sop10]), there exists a prime number
p ≡ 1 mod (`−1)/2 lying between 2M and, say, 3M . We can find such a p in
O(B logB log logB) bit operations by using the sieve of Eratosthenes (cf the
proof of the [GG99, theorem 18.10 part ii]). Then arithmetic operations in
the residue field Fp will require O(logB) bit operations. Next, E4 and E6 can
be computed mod p to precision O(qB) in O(B logB log logB) bit operations
by using again the sieve of Eratosthenes, and u and dj can be computed
in O(B logB) operations in Fp with fast series arithmetic. As ` is fixed,
computing the short q-expansions and finding the equations Φ, which are of
fixed degree, takes fixed time. Then, one Newton iteration takes O(B logB)
operations in Fp with fast arithmetic, and reaching precision O(qB) requires
O(logB) such iterations. Finally, we can lift back to K each coefficient
because p > 2M . Each coefficient lift requires O(logB) bit operations, so
lifting the forms requires O(B logB) bit operations, hence the result.
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3.2 Computing the periods of X1(`)

Computing the period lattice Λ amounts, by the Manin-Drinfeld theorem (cf
[Lan95, chapter IV, theorem 2.1]), to compute integrals of newforms ω of
weight 2 along modular symbols, such as∫ 0

∞
ω(τ)dτ.

These integrals can be computed by integrating q-expansions term by term.
However, we have to split the integration path so that the resulting series
converges. Furthermore, to increase the convergence speed, we need the path
ends to lie well-inside the convergence disks.

To reduce the number of integrals we compute, we use the adjointness
property of the Hecke operators with respect to the integration pairing be-
tween modular symbols and cuspforms. In general, the modular symbol
{∞, 0} alone does not span the rational homology of the modular curve,
even over T2,` ⊗Q. As a consequence, we introduce other modular symbols,
the twisted winding elements wp.

More precisely, define (cf [BosC6, section 6.3]), for every p 6= ` prime or
p = 1, the twisted winding element

wp =
∑

a mod p

εp(a)

{
∞, a

p

}
∈M2

(
Γ1(`)

)
,

where εp =
(
·
p

)
denotes the Legendre symbol at p, which we define to

be 1 if p = 1 for convenience. We can write each basis element γj of
H1

(
X1(`)(C),Z

)
, seen as a linear form on S2

(
Γ1(`)

)
, as a T2,` ⊗ Q-linear

combination
γj =

∑
p

Tj,pwp, Tj,p ∈ T2,` ⊗Q.

We can then compute the periods using the adjointness property of the in-
tegration pairing with respect to Hecke operators as follows:∫
γj

ω(τ)dτ =

∫
∑
p Tj,pwp

ω(τ)dτ =
∑
p

∫
wp

(Tj,pω)(τ)dτ =
∑
p

λj,p

∫
wp

ω(τ)dτ,

where λj,p ∈ C denotes the eigenvalue of the newform ω for the Hecke oper-
ator Tj,p. Consequently, all we need is to compute the integrals

∫
wp
ω(τ)dτ .
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The Fricke involution W` transforms the form ω(τ) into 1
`τ2
ω
(−1
`τ

)
. It is

useful for our purpose because it can be used to map a point τ with small
imaginary part to −1

`τ
, which can have a much larger imaginary part. We read

in [BosC6, section 6.2] that if ω = q+
∑

n>2 anq
n ∈ S2

(
Γ1(`), ε

)
is a newform

with weight 2, level ` and character ε, then W`ω is the newform with weight
2, level ` and conjugate character ε defined by

W`ω = λ`(ω)

(
q +

∑
n>2

anq
n

)
,

where λ`(ω) is given by

λ`(ω) =

{ −a` if ε is trivial,
g(ε)a`
`

if ε is nontrivial,

where g(·) denotes the Gauss sum of a Dirichlet character. Moreover, if χ is
a Dirichlet character modulo p 6= `, then

ω ⊗ χ =
∑
n>1

anχ(n)qn.

is a cuspform of level `p2 by [AL78, proposition 3.1], and we have the formula

W`p2(ω ⊗ χ) =
g(χ)

g(χ)
ε(p)χ(−`) · (W`ω)⊗ χ.

An easy computation shows that∑
a mod p

χ(a)ω(τ + a/p) = g(χ)(ω ⊗ χ)(τ).

This yields the formula∫
wp

ω(τ)dτ = g(εp)

∫ 0

∞
(ω ⊗ εp)(τ)dτ

= g(εp)

(∫ i

p
√
`

∞
(ω ⊗ εp)(τ)dτ +

∫ 0

i

p
√
`

(ω ⊗ εp)(τ)dτ

)
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= g(εp)

(∫ i

p
√
`

∞
(ω ⊗ εp)(τ)dτ −

∫ i

p
√
`

∞
W`p2(ω ⊗ εp)(τ)dτ

)

=
g(εp)

2πi

+∞∑
n=1

(
an − ε(p)εp(−`)λ`(ω)an

)εp(n)

n

(
e
− 2π

p
√
`

)n
,

which allows us to compute the integral of a newform along a twisted winding
element, and thus to finally compute the period lattice of the modular curve

X1(`). We sum power series at q = e
− 2π

p
√
` for primes p, which has small

enough modulus to achieve fast convergence. We have indeed checked that
p 6 3 is very often sufficient for the wp to span the rational homology of the
modular curve over T2,`, and p 6 7 is enough for all levels ` 6 61, except for
` = 37 in which case we had to go up to p = 19.

3.3 Arithmetic in the jacobian J1(`)

In order to efficiently compute in the jacobian J1(`), we use K. Khuri-
Makdisi’s algorithms [KM04, KM07]. This requires choosing an effective
divisor D0 of degree d0 > 2g + 1 for which we know how to compute the
associated Riemann-Roch space

V = H0
(
X1(`), 3D0

)
.

A divisor class x ∈ J1(`) is then represented by an effective divisor D of
degree d0 such that the class of D −D0 is x, and D is itself represented by
the subspace

WD = H0
(
X1(`), 3D0 −D

)
⊂ V ;

in particular 0 ∈ J1(`) can be represented by

W0 = H0
(
X1(`), 2D0

)
⊂ V.

We also want D0 to be defined other Q, so that (WD)σ = WDσ for all σ ∈
AutC.

Let us first give an overview of how to find such a divisor D0. Our strategy
consists of choosing D0 = K + c1 + c2 + c3, where K is an effective canonical
divisor defined over Q and the ci are Q-rational cusps, so for us d0 is exactly
2g + 1. First, we compute the (g + 2)-dimensional space

V2 = H0
(
X1(`),Ω1(c1 + c2 + c3)

)
.
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This space is the direct sum of all the cusp forms of weight 2 and of the scalar
multiples of Eisenstein series e1,2 and e1,3 of weight 2 vanishing at all cusps
except c1 and c2 for e1,2 and except c1 and c3 for e1,3, so we have

V2 = S2

(
Γ1(`),C

)
⊕ Ce1,2 ⊕ Ce1,3 ⊂M2

(
Γ1(`),C

)
.

The point of this is that by picking a cusp form f0 ∈ S2

(
Γ0(`),Q

)
defined

over Q, we obtain a Galois-equivariant isomorphism

V2
∼−→ H0

(
X1(`), K + c1 + c2 + c3

)
f 7−→ f

f0

,

where K is the divisor of the differential 1-form over X1(`) associated to the
cuspform f0, which is indeed an effective canonical divisor. Now by [KM04,
lemma 2.2], the map

V ⊗3
2 −→ H0

(
X1(`), 3(K + c1 + c2 + c3)

)
f1 ⊗ f2 ⊗ f3 7−→

f1f2f3

f 3
0

is surjective. We may thus choose V to be the image of the multiplication
map

V ⊗3
2 −→ M6

(
Γ1(`),C

)
f1 ⊗ f2 ⊗ f3 7−→ f1f2f3

.

In this framework, the subspace W0 representing 0 ∈ J1(`) is the image of
the map

V ⊗2
2 −→ M6

(
Γ1(`),C

)
f1 ⊗ f2 7−→ f1f2f0

.

From now on, we will identify weight-6 modular form spaces with the cor-
responding modular function spaces obtained by dividing by f 3

0 without ex-
plicitly mentioning it.

We represent the weight-6 forms by their q-expansions at each cusp. To
compute these q-expansions, we start from the q-expansion at ∞, and apply
diamond operators and Fricke involutions in order to reach all the other
cusps, as explained below. We could also have represented forms by their
q-expansions at ∞ only, but we think using q-expansions at various cusps is
better for numerical stability. Also we will later need to be able to evaluate
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the forms at various points of the modular curve, hence it is better to know
the q-expansions at various places.

The modular curve X0(`) has exactly two cusps, namely Γ0(`) · ∞ and
Γ0(`) · 0, whereas the modular curve we are interested in, X1(`), has exactly
` − 1 cusps, half of which lie above Γ0(`) · ∞ while the other half lie above
Γ0(`) · 0. We call the former cusps above ∞ and the latter cusps above 0.
The cusps above 0 are all rational, whereas the cusps above ∞ make up a
single Galois orbit. Now, the diamond operators 〈d〉, d ∈ (Z/`Z)∗, which
correspond to the action of the quotient group Γ0(`)/Γ1(`) ' (Z/`Z)∗, map
the cusp Γ1(`) · ∞ onto the cusps above ∞, and the cusp Γ1(`) · 0 onto the
cusps above 0. Moreover, the Fricke operator W` swaps Γ1(`)·∞ and Γ1(`)·0.
We know how the Fricke operator acts on newforms of weight 2 (cf subsection
3.2 on the periods), and on Eisenstein series (cf next subsection 3.4). Besides,
all the forms we are dealing with have a nebentypus, so that the action of
any diamond operator 〈d〉 on their q-expansions is easy to compute : it boils
down to multiplying by the value of their character at d. Using these two
kinds of operators, we thus get the q-expansions of the newforms and of the
Eisenstein series at all cusps from their q-expansions at ∞.

3.4 Finding the appropriate Eisenstein series

We now explain how to choose the Eisenstein series e1,2 and e1,3. Let us first
review some facts about Eisenstein series of weight 2 in general (not neces-
sarily prime) level N . From [DS05, chapter 4], we know that the Eisenstein
subspace of M2

(
Γ1(N),C

)
has a basis formed of the Eisenstein series

Gψ,ϕ
2 (τ) =

u−1∑
r=0

v−1∑
s=0

u−1∑
t=0

ψ(r)ϕ(s)
∑

(c,d)∈Z2

c≡rv mod N
d≡s+tv mod N

1

(cτ + d)2
,

where ψ and ϕ are Dirichlet characters not both trivial, of the same parity,
and of respective conductors u and v such that uv = N exactly, and of

G2(Nτ)−NG2(Nτ), where G2(τ) =
∑
c∈Z

∑
d∈Z

(c,d)6=(0,0)

1

(cτ + d)2
.
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We furthermore have the q-expansions at ∞

Eψ,ϕ
2 (τ) = −1u=1

1

2

v−1∑
a=0

ϕ(a)a
(a
v

+ 1
)

+ 2
+∞∑
n=1

∑
m>0
m|n

ψ(n/m)ϕ(m)m

 qn,

where 1u=1 is 1 if u = 1 and 0 else, Eψ,ϕ
2 is the normalisation of Gψ,ϕ

2 defined
by the relation

Gψ,ϕ
2 =

−4π2g(ϕ)

v2
Eψ,ϕ

2 ,

and where g(·) denotes the Gauss sum of a Dirichlet character, and

E2(τ) = 1− 24
+∞∑
n=1

∑
m>0
m|n

m

 qn, G2 =
π2

3
E2.

Also, Gψ,ϕ
2 ∈ M2

(
Γ1(N), ψϕ

)
has nebentypus ψϕ, where ψϕ is seen as a

Dirichlet character modulo N , whereas G2(τ)−NG2(Nτ) has trivial neben-
typus. In what follows, we will not use G2(τ)−NG2(Nτ) at all.

Consequently, in the case when N = ` is prime, we are left with only two
cases, namely Gχ,1

2 and G1,χ
2 , where χ is a nontrivial even Dirichlet character

modulo `. Both have nebentypus χ, and Gχ,1
2 vanishes at ∞ while G1,χ

2 does
not.

We easily check the formula

Gψ,ϕ
2 (τ) =

∑
(c,d)∈Z2

ψ(c)ϕ(d)

(vcτ + d)2
,

from which it is clear that

WNG
ψ,ϕ
2 =

u

v
ψ(−1)Gϕ,ψ

2 ,

and thus

WNE
ψ,φ
2 =

g(ψ)

g(ϕ)

v

u
ψ(−1)Eφ,ψ

2 .

We construct Eisenstein series e1,2 and e1,3 as linear combinations of the
Eχ,1

2 ’s and the E1,χ
2 ’s, because they have nicer q-expansions than their G-

counterparts. First, we choose the cusps c1, c2 and c3 to be c1 = Γ1(`)·0, c2 =
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〈2〉c1, and c3 = 〈3〉c1, so that they are all Q-rational. They are also all distinct
since ` > 11. The form f0 ∈ S2

(
Γ0(`),Q

)
being defined over Q because its q-

expansion at the Q-rational cusp Γ1(`) · 0 has rational coefficients, its divisor
K is defined over Q, and so is our divisor D0 = K + c1 + c2 + c3. Next, we
have from the above formulae

W`E
χ,1
2 =

g(χ)

`
E1,χ

2 and W`E
1,χ
2 =

`

g(χ)
Eχ,1

2 ,

from which we read that Eχ,1
2 vanishes at the cusps above ∞ but not at

the cusps above 0, while the opposite stands true for E1,χ
2 . Consequently we

construct e1,2 and e1,3 as linear combinations of the Eχ,1
2 only. Now, it follows

easily from the orthogonality relations between Dirichlet characters that the
Eisenstein series

e1,2 =
∑
χ even
χ 6=1

1− χ(2)

g(χ)
`−1∑
a=0

χ(a)a
(a
`

+ 1
)Eχ,1

2

and

e1,3 =
∑
χ even
χ 6=1

1− χ(3)

g(χ)
`−1∑
a=0

χ(a)a
(a
`

+ 1
)Eχ,1

2

are the ones we were looking for, that is to say e1,2 vanishes at all cusps but
c1 and c2, and e1,3 vanishes at all cusps but c1 and c3.
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3.5 Computing an `-torsion divisor

Recall that our goal is to find null-degree divisors D1 and D2 representing
a basis of the eigenplane Vf,l ⊂ J1(`)[`]. From our knowledge of the period
lattice Λ and of a generator of the Hecke algebra T2,`, we can express the
basis vectors xk, k ∈ {1, 2} of Vf,` as points in the analytic model Cg/Λ of
the jacobian J1(`)(C). Lift xk to x̃k ∈ Cg. We will use Newton iteration to
compute 2g points Pj and P ′j , 1 6 j 6 g, with each P ′j close to Pj, such that

g∑
j=1

(∫ P ′
j

Pj

ωi(τ)dτ

)
16j6g

=
x̃k
2m
. (?)

Here m ∈ N is an integer, and we introduced the 2m factor so as to help the
Newton iteration to converge by ensuring that for each j, P ′j stays well-inside
the coordinate disk containing Pj, namely the q-disk centered at the cusp cj
(see below). The integral from Pj to P ′j is understood to be along a path
which stays inside this disk, so that the left-hand side of (?) is well-defined
in Cg. In practice we use m ≈ 10.

More precisely, first pick g (not necessarily distinct) cusps c1, · · · , cg. For
each of these cusps, we have an analytic map, the “q-coordinate” around cj

κj : E −→ X1(`)(C),

where E stands for the open unit disk in C, which maps 0 to the cusp cj and
which is a local diffeomorphism. Next, choose g complex numbers q1, · · · ,
qg of small moduli, so that each point Pj = κj(qj) is close to the cusp cj.
Consider another vector of g small complex numbers δ1, · · · , δg. We want to
adjust this vector so that (?) be satisfied with P ′j = κj(qj +δj). In a nutshell,
the overall map we apply Newton iteration to is

U
∏
κj−→ X1(`)g −→ Div0X1(`) −→ Cg

(δj)16j6g 7−→ (P ′j)16j6g 7−→
g∑
j=1

(P ′j − Pj) 7−→
g∑
j=1

(∫ P ′
j

Pj

ωi(τ)dτ

)
16j6g

,

where U ⊂ E is a neighbourhood of 0 ∈ Eg such that (qj+δj)16j6g remains in
Eg for all (δj)16j6g ∈ U . The differential of this map is given by the newforms
fi themselves evaluated at the P ′j , so using it for Newton iteration presents
no difficulty.
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Once this is done, we want to double the divisor class of

D
(m)
k =

g∑
j=1

(P ′j − Pj)

m times, using K. Khuri-Makdisi’s algorithms. This is however not imme-
diate, as these algorithms can only deal with divisors of the form D − D0,
where D is an effective divisor of degree d0, and D0 and d0 are defined in
the beginning of the section 3.3. To work around this, we fix what we call a
padding divisor, that is to say an effective divisor C of degree d0− g = g+ 1,
we feed the divisors

∑g
j=1 P

′
j +C −D0 and

∑g
j=1 Pj +C −D0 which are in-

deed of the form D−D0 to K. Khuri-Makdisi’s algorithm, and then use this
algorithm to subtract these two divisor classes. Feeding a divisor D−D0 to
K. Khuri-Makdis’s algorithm is easy : it amounts to computing the subspace
WD = H0

(
X1(`), 3D0 − D

)
of V = H0

(
X1(`), 3D0

)
consisting of functions

of V which vanish at D. We do so by evaluating the q-series in the basis of
V at the points of D and by doing linear algebra. Because we will have to
evaluate q-series at C, it proves convenient to choose a divisor C supported
by cusps, hence the notation C.

Finally, once the divisor D
(m)
k is processed, we apply K. Khuri-Makdisi’s

chord algorithm x 7→ −2x on it, yielding (−2)m[D
(m)
k ] = ±xk. The ± sign

is not a problem, because we get a basis vector for Vf,l no matter what the
sign is, and this is all we actually need.

3.6 Evaluating the torsion divisors

We must construct a Galois-equivariant function α ∈ Q
(
J1(`)

)
which can be

efficiently evaluated at every point x ∈ Vf,l given in Khuri-Makdisi form. We
then evaluate α in each nonzero point of Vf,l, and form the polynomial

F (X) =
∏
x∈Vf,l
x 6=0

(
X − α(x)

)
∈ Q[X]

which defines the Galois representation ρf,l. In order to recognise its coef-
ficients as rational numbers, we compute the continued fraction expansion
of each of them until we find a huge term. Clearly, the lower the height of
F (X) the better, as it requires less precision in C. This means one should
use an evaluation function α which is arithmetically well-behaved. In order
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to try to quantify this, we may look at the class of its divisor of poles (or
zeroes) in the Néron-Severi group of J1(`).

The approach used in [CEC3], [EdiC14], [Bos07] and [Zen12] consists in
selecting a rational function ξ on X1(`) defined over Q and extending it to
J1(`) by

Ξ: J1(`) 99K C
g∑
i=1

Pi − gO 7−→
g∑
i=1

ξ(Pi),

where O ∈ X1(`)(Q) is an origin for the Abel-Jacobi map. The divisor of the
poles of this function Ξ is

(Ξ)∞ =
∑

Q pole of ξ

τ ∗[Q−O]Θ,

where Θ is the theta divisor on J1(`) associated to the Abel-Jacobi map with
origin O. We thus see that (Ξ)∞ is the sum of deg ξ translates of Θ. If
we are to let this function Ξ play the role of α, then we want it to be be
arithmetically well-behaved, so that ξ should be chosen to have degree as low
as possible. However, this degree is at least the gonality of X1(`), which is
roughly proportional to g (cf [Abr96, remark 0.2]).

We introduce a radically different method, which can be used on every
algebraic curve X to construct a function α ∈ Q

(
Jac(X)

)
. Let us denote the

genus of X by g. Every point x ∈ Jac(X) can be written [Ex − gO], where
Ex is an effective divisor of degree g on X which is generically unique, and
O ∈ X is a fixed point. Let Π be a fixed divisor on X of degree 2g. Then
the space H0(X,Π−Ex) is generically 1-dimensional over C, say spanned by
tx ∈ C(X). The divisor of tx is of the form (tx) = −Π + Ex + Rx, where Rx

is a residual effective divisor of degree g on X, which is the image of Ex by
the reflection

RΠ : Picg(X) −→ Picg(X)
[E] 7−→ [Π− E].

Let A and B be two points on X disjoint from the support of Π. We can
then define

α : Jac(X) 99K C
x 7−→ tx(A)

tx(B)
.
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This map is well-defined only on a Zariski-dense subset of Jac(X) because
of the genericity assumptions, and it is defined over Q if X, Π, A, B and O
are defined over Q. Moreover, it is much better-behaved than the function
Ξ used in the classical approach :

Theorem 2. The divisor of poles of α is the sum of only two translates of
the Θ divisor.

Proof. α has a pole at x ∈ Jac(X) if and only if [Ex − gO] or [Rx − gO]
are on the support of τ ∗[B−O]Θ. But [Rx − gO] is the image of [Ex − gO]

by the involution RΠ = τ[Π−2gO] ◦ [−1] defined above, and [−1]∗Θ = τ ∗KΘ is
the translate of Θ by the image K of the canonical class, cf [HS00, theorem
A.8.2.1.i].

This is even in some sense optimal, as by the Riemann-Roch theorem
for abelian varieties (cf [HS00, theorem A.5.3.3]), no nonconstant function
on Jac(X) has a single translate of Θ as divisor of poles, whereas a generic
curve X has NS

(
Jac(X)

)
= ZΘ.

In order to use this on the modular curve X1(`), there is a difficulty we
have to overcome. In K. Khuri-Makdisi’s algorithms, a divisor class x ∈ J1(`)
is represented by a subspace WD = H0

(
X1(`), 3D0−D

)
⊂ V , where D is an

effective divisor of degree d0 = 2g + 1 such that [D −D0] = x, but such a D
is far from being unique — by the Riemann-Roch theorem, there is a whole
(g + 1)-dimensional projective space of them ! Thus, the first thing to do is
to rigidify the representation WD of x into a representation which depends
on x only. To do this, we compute the sub-subspace

WD,red = H0
(
X1(`), 3D0 −D − C1

)
⊂ WD,

where C1 is a fixed effective divisor of degree d1 = 2d0−g, so that WD,red will
generically be 1-dimensional by the Riemann-Roch theorem. Letting sD ∈ V
be such that sD spans WD,red over C, we know that the divisor of sD is of
the form

(sD) = −3D0 +D + C1 + ED,

where ED is some effective divisor of degree g. Again by the Riemann-Roch
theorem, ED is generically alone in its linear equivalence class. But on the
other hand, if WD and WD′ both represent the same point x ∈ J1(`)(C),
then D ∼ D′, so that ED ∼ ED′ as D0 and C1 are fixed. Consequently, we
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generically have ED = ED′ , which shows that ED only depends on x and not
on D, so that the process WD 7→ ED is the rigidification we are looking for.
We then use a trick à la Khuri-Makdisi: we first compute

sD · V = {sDv, v ∈ V } = H0
(
X1(`), 6D0 −D − C1 − ED

)
,

after which we compute

H0
(
X1(`), 3D0 − C1 − ED

)
= {v ∈ V | vWD ⊂ sD · V },

all of this by linear algebra as in [KM04, KM07]. Next, we fix another effec-
tive divisor C2 of degree d2 = d0+1−g, so that the subspace H0

(
X1(`), 3D0−

C1−C2−ED
)

of the previously computed space H0
(
X1(`), 3D0−C1−ED

)
is generically one-dimensional. Letting Π = 3D0 − C1 − C2, we thus have
computed a function tD ∈ C

(
X1(`)

)
such that

CtD = H0
(
X1(`),Π− ED

)
,

as wanted. This allows us to compute the map α, which will be defined over
Q if C1, C2, A and B are. As in the previous section, it proves convenient to
choose the divisors C1 and C2 to be supported by cusps, so that the q-series
are effortless to evaluate, hence the notation C1 and C2.

Evaluating α on Vf,l, we may thus hope to get a defining polynomial
F (X) of logarithmic height g/2 times less than if we had used the classical
approach.
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3.7 Finding the Frobenius elements

After evaluating a suitable function in the torsion divisors representing the
points of Vf,l \ {0}, we get a polynomial F (X) ∈ Q[X] of degree `2 − 1
whose decomposition field is the field L fixed by the kernel of the Galois
representation. It is thus a Galois number field, and its Galois group over
Q is embedded by the representation as a subgroup of GL2(F`). In order
to completely specify the Galois representation, we would like to know the
image of the Frobenius elements Frobp in GL2(F`). We now explain how
to compute the similarity class of the image of Frobp for almost all rational
primes p (clearly, we have to exclude p = `, as L is ramified at `, but we
will shortly see that we actually have to exclude finitely many other primes
as well). This can be used to get congruence relations modulo ` on the
coefficients ap of the cuspform f , by looking at the trace of the similarity
class of Frobp.

3.7.1 The Dockchitsers’ resolvents

For this, we use Tim and Vladimir Dokchitser’s work [Dok10]. Denoting by
(ai)16i<`2 the roots of F in L, if h(X) ∈ Z[X] is a polynomial with integer
coefficients, then for each similarity class C ⊂ GL2(F`), the resolvent

ΓC(X) =
∏
σ∈C

(
X −

n∑
i=1

h(ai)σ(ai)

)

lies in Q[X]. Furthermore, these resolvents ΓC(X) are pairwise coprime over
Q for a generic choice of h(X) amongst the polynomials of degree at most
`2 − 2 with coefficients in Z. Let p be a rational prime such that F is p-
integral and squarefree modulo p. Define u = Tr Fp[X]

F (X)
/Fp

h(a)ap ∈ Fp, where

a denotes the class of X in the quotient algebra Fp[X]/
(
F (X)

)
. Then the

resolvents ΓC are also p-integral, and we have the implication

ρf,l(Frobp) ∈ C =⇒ ΓC(u) = 0 mod p.

If the resolvents ΓC are indeed pairwise coprime over Q, and if p is very
large, then it is likely that they remain pairwise coprime modulo p, and then
we have the criterion

ρf,l(Frobp) ∈ C ⇐⇒ ΓC(u) = 0 mod p,
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which allows us to find out which similarity class ρf,l(Frobp) lies in. If, how-
ever, the resolvents fail to be pairwise coprime modulo p, then ΓC(u) may
vanish for several C, so that we cannot tell where ρf,l(Frobp) lies. Nonethe-
less, as the primary goal of our computations is to find the coefficients ap of
the q-expansion of f modulo l, and as naive methods compute ap for small
p in almost no time, the only case we are really interested in is the case in
which p is extremely large, and in this case it is extremely likely that the
resolvents ΓC(X) remain pairwise coprime modulo p if they are pairwise co-
prime over Q. In practice, we choose h(X) = X2, which has always yielded
resolvents ΓC(X) which are pairwise coprime over Q.

To compute the resolvents ΓC(X), we first start by computing the roots
ai, which we already know to a mildly high precision, to a very high precision
in C by using Newton iteration. Then, we compute complex approximations
of the resolvents ΓC(X) by enumerating matrices in the similarity classes
of GL2(F`). Finally, we recognise their coefficients as rational numbers, us-
ing our knowledge of an a priori multiple of their denominators, namely
d|C|(1+deg h), where d is a common denominator for the coefficients of F (X).

Once the resolvents are computed, it is easy to deduce what ρf,l(Frobp)
is similar to, and hence to compute the coefficient ap of f modulo l.

3.7.2 The quotient representation trick

Unfortunately, these computations, although simple, can be rather slow be-
cause they require performing operations on very high precision approxima-
tions of certain complex numbers. For instance, in level ` = 29, about 5
million decimal digits after the decimal point are required to compute the re-
solvents. However, a simple trick allows us, in most cases, to sharply reduce
the amount of computations needed. Indeed, we have not yet used the fact
that we know in advance what the determinant of the image of the Frobe-
nius element Frobp is, namely ε(p)pk−1, where k and ε denote respectively
the weight and the nebentypus of the newform f .

The idea is then to compute a quotient representation, that is to say
the representation ρf,l composed with the projection map from GL2(F`) onto
one its quotient groups. The coarser the chosen quotient group, the smaller
the computation, so we should use a quotient just fine enough to be able
to lift correctly an element back to GL2(F`) based on the knowledge of its
determinant. Thus PGL2(F`) for instance is slightly too coarse, because
the knowledge of the image of a matrix in PGL2(F`) and of its determinant
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only determines this matrix up to sign — this is the very reason why J.
Bosman, for computing only the projective Galois representation, determined
the coefficients ap of f only up to sign in [Bos07]. In the light of this example,
it is clear that the right quotient to consider is

G̃L2(F`) = GL2(F`)/S,

where S is the largest subgroup of F∗` . This subgroup S is the subgroup made
up of the elements of odd order in F∗` , that is to say, the 2′-subgroup of F∗` .

Computing the associated quotient Galois representation

GQ
ρf,l // GL2(F`) // // G̃L2(F`)

then amounts to describing the Galois action on the quotient space

Ṽf,l = Vf,l/S.

We thus first begin by computing the polynomial F̃ (X) ∈ Q[X] defining Ṽf,l
by tracing the roots α(x), x ∈ Vf,l of F (X) along their orbits under S :

F̃ (X) =
∏

Sx∈Ṽf,l
x 6=0

(
X −

∑
s∈S

α(sx)

)
.

This new polynomial has the same height as the original F (X), but its degree
is |S| times smaller.

We must then compute the resolvents ΓC̃(X) for each conjugacy class C̃

of G̃L2(F`). As the subgroup S of GL2(F`) is central, these conjugacy classes
are easy to describe.

Lemma 3. Let π : GL2(F`) // // G̃L2(F`) denote the projection map, let

g̃ ∈ G̃L2(F`), and let g ∈ GL2(F`) such that π(g) = g̃. Then π induces a
bijection

πg : Conjugacy class of g
∼−→ Conjugacy class of g̃

hgh−1 7−→ π(hgh−1).

28



Proof. It is clear that the image of the conjugacy class of g by π is exactly the
conjugacy class of g̃, so that πg is well-defined and surjective. To show that
πg is also injective, let h1, h2 ∈ GL2(F`) such that π(h1gh

−1
1 ) = π(h2gh

−1
2 ),

that is to say such that h1gh
−1
1 = sh2gh

−1
2 for some s ∈ S. We must prove

that h1gh
−1
1 = h2gh

−1
2 . By taking determinants, we see that det s = 1. As s

is scalar, this implies s = ±1. Since −1 6∈ S, we conclude that s = 1, and
therefore h1gh

−1
1 = h2gh

−1
2 .

A resolvent ΓC̃(X) has therefore exactly the same degree as (each of)
the corresponding ΓC(X), so we must still use the same very high precision
in C to compute it. However, we have now |S| times less such resolvents to
compute. Furthermore, the roots

∑n
i=1 h(ai)σ(ai) of these resolvents actually

take |S|2 less time to compute, since they are defined by sums |S| times
shorter and there are |S| times less of them.

Using these resolvents ΓC̃(X), we can then compute the conjugacy class

of the image of the Frobenius element Frobp in G̃L2(F`) as above, and, since
−1 6∈ S, we can deduce the similarity class of the image of the Frobenius
element in GL2(F`) using our knowledge of its determinant. Consequently,
with this trick, we can still compute the full, non-quotient representation
ρf,l, and we have saved a factor |S|2 in the computation of the roots of the
resolvent, and a factor |S| in their expansion and in the identification of their
coefficients as rational numbers. Since

|S| = `− 1

2ord2(`−1)
,

this prevents this final step of the Galois representation computation from
being the slowest one, see the complexity section after the results.
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4 Results

We have implemented the above algorithms in [SAGE, version 5.3], and have
run them on PlaFRIM, the Bordeaux 1 university computing cluster.

As our algorithms compute the full Galois representation, we get results
which are more complete than the ones from [Bos07]. For instance, picking
` = 19 (which implies dealing with genus g = 7), we can compute the Galois
representation ρ∆,19 modulo 19 associated to the newform

f = ∆ = q

+∞∏
n=1

(1− qn)24 =
+∞∑
n=1

τ(n)qn

of level 1 and weight 12, find the similarity class in GL2(F19) of the images
of Frobenius elements, and hence find the signs which were missing in the
table on the very first page of [EC11] :

• The image of the Frobenius at p = 101000+1357 is similar to

[
17 1
0 17

]
,

therefore τ(101000 + 1357) ≡ −4 mod 19,

• The image of the Frobenius at p = 101000 + 7383 is similar to

[
1 1
0 1

]
,

therefore τ(101000 + 7383) ≡ +2 mod 19,

• The image of the Frobenius at p = 101000+21567 is similar to

[
11 1
0 11

]
,

therefore τ(101000 + 21567) ≡ +3 mod 19,

• The image of the Frobenius at p = 101000+27057 is similar to

[
10 0
0 9

]
,

therefore τ(101000 + 27057) ≡ 0 mod 19,

• The image of the Frobenius at p = 101000+46227 is similar to

[
0 14
1 0

]
,

therefore τ(101000 + 46227) ≡ 0 mod 19,

• The image of the Frobenius at p = 101000+57867 is similar to

[
17 0
0 2

]
,

therefore τ(101000 + 57867) ≡ 0 mod 19,
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• The image of the Frobenius at p = 101000+64749 is similar to

[
13 1
0 13

]
,

therefore τ(101000 + 64749) ≡ +7 mod 19,

• The image of the Frobenius at p = 101000+68367 is similar to

[
14 0
0 5

]
,

therefore τ(101000 + 68367) ≡ 0 mod 19,

• The image of the Frobenius at p = 101000+78199 is similar to

[
15 1
0 15

]
,

therefore τ(101000 + 78199) ≡ −8 mod 19,

• The image of the Frobenius at p = 101000+128647 is similar to

[
0 8
1 0

]
,

therefore τ(101000 + 128647) ≡ 0 mod 19.

The surprising number of occurrences of non-semi-simple matrices — by
the Chebotarev theorem, non-semi-simple matrices should occur with density
about 1/` only — and of τ(p) ≡ 0 mod 19 above can be explained by the fact
that J. Bosman purposely chose special values of p (cf [BosC7, section 7.4]).
For instance, for the other few first primes above 101000, we have computed
the following:
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p Similarity class of
(
L/Q
p

)
τ(p) mod 19

101000 + 453

[
15 0
0 10

]
6

101000 + 2713

[
11 0
0 4

]
15

101000 + 4351

[
6 0
0 4

]
10

101000 + 5733

[
16 0
0 1

]
17

101000 + 10401

[
0 15
1 8

]
8

101000 + 11979

[
16 0
0 13

]
10

101000 + 17557

[
0 5
1 11

]
11

101000 + 22273

[
13 0
0 1

]
14

101000 + 24493

[
14 0
0 10

]
5

101000 + 25947

[
0 4
1 5

]
5

101000 + 29737

[
0 12
1 7

]
7

101000 + 41599

[
18 0
0 15

]
14

This agrees with the Chebotarev theorem.

32



The computation times were as follows: computing the q-expansion of
the cuspforms and the Eisenstein series

(
to O(q5000)

)
, the period lattice, and

finally initialising K. Khuri-Makdisi’s algorithms by computing the spaces
V and W0 took 11 minutes, computing the two 19-torsion divisors took 24
minutes each, and computing all the points in the F19-plane spanned by them
took about 40 minutes. We found a polynomial F (X) ∈ Q[X] defining the
representation, of degree 360 = 192 − 1 and with a common denominator
of 142 decimal digits, and finally, computing the resolvents ΓC̃(X) took a
little less than 20 minutes thanks to the quotient representation trick and
to massive parallelisation, after which deducing the similarity classes of the
image of a Frobenius element at p ≈ 101000 takes about 30 minutes. Overall,
the whole computation thus lasted about 2 hours, thanks to parallelisation.
We used a precision of 1500 bits in C to compute the defining polynomial
F (X), and a precision of 600 kbits to compute the resolvents ΓC̃(X).

Level ` = 23 (genus g = 12)

The Galois representation modulo ` = 23 associated to f = ∆ degenerates
since its image is a subgroup of GL2(F23) isomorphic to S3 ([Gro90, top of
section 17]). This phenomenon is related to Ramanujan-type congruences
for τ(n) mod 23, cf [EdiC1, top of page 5]. The prime ` = 23 is indeed one
of the finitely many primes we have to exclude for f = ∆, as we mentioned
in the beginning of the introduction. As a consequence, we computed the
representation associated to the newform f = E4∆ of level 1 and weight 16
instead. We obtained a defining polynomial F (X) of degree 528 = 232 − 1
with a common denominator of 508 decimal digits. Computing the period
lattice took a little less than 2 hours, computing each of the two 23-torsion
divisors took 5 hours and a half, and computing the F23-plane spanned by
them took a little more than 11 hours. Overall, getting the polynomial F (X)
took less than 20 hours. After having computed the resolvents ΓC(X), we
got the following results, where we denote the Fourier coefficients of E4∆ by
τ16(n) :
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p Similarity class of
(
L/Q
p

)
τ16(p) mod 23

101000 + 453

[
15 0
0 5

]
20

101000 + 1357

[
19 0
0 15

]
11

101000 + 2713

[
0 2
1 12

]
12

101000 + 4351

[
0 12
1 16

]
16

101000 + 5733

[
18 0
0 14

]
9

101000 + 7383

[
13 0
0 6

]
19

101000 + 10401

[
0 16
1 19

]
19

101000 + 11979

[
15 0
0 7

]
22

101000 + 17557

[
0 22
1 15

]
15

101000 + 21567

[
0 17
1 15

]
15

101000 + 22273

[
17 0
0 5

]
22
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p Similarity class of
(
L/Q
p

)
τ16(p) mod 23

101000 + 24493

[
8 0
0 5

]
13

101000 + 25947

[
21 0
0 13

]
11

101000 + 27057

[
8 0
0 2

]
10

101000 + 29737

[
0 6
1 11

]
11

101000 + 41599

[
20 0
0 7

]
4

101000 + 46227

[
9 0
0 2

]
11

101000 + 57867

[
0 2
1 7

]
7

101000 + 64749

[
0 12
1 7

]
7

101000 + 68367

[
0 20
1 21

]
21

101000 + 78199

[
0 2
1 17

]
17

101000 + 128647

[
6 0
0 4

]
10
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Level ` = 29 (genus g = 22)

We have also computed the polynomial F (X) for the Galois representation
modulo ` = 29 associated to f = ∆, which took about 10 days. This
polynomial has degree 840 = 292 − 1, and a common denominator of 1793
decimal digits. Computing the periods took a little more than 6 hours,
computing each of the two 29-torsion divisors took 120 hours, and computing
the F29-plane spanned by them took about 100 hours.

Then, thanks to the quotient representation trick, computing the resol-
vents ΓC̃(X) took about 60 hours, and finally, deducing the image of the
Frobenius at the same primes p ≈ 101000 as in level 19 took 2 hours. Overall,
the whole computation thus took less than two weeks.

We used a precision of 15 kbits in C for the computation of the defining
polynomial F (X), and a precision of 18 Mbits for the computation of the
resolvents ΓC̃(X).

Our results are the following :
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p Similarity class of
(
L/Q
p

)
τ(p) mod 29

101000 + 453

[
0 5
1 21

]
21

101000 + 1357

[
0 28
1 8

]
8

101000 + 2713

[
0 9
1 11

]
11

101000 + 4351

[
0 26
1 0

]
0

101000 + 5733

[
20 0
0 2

]
22

101000 + 7383

[
19 0
0 10

]
0

101000 + 10401

[
7 0
0 2

]
9

101000 + 11979

[
0 7
1 7

]
7

101000 + 17557

[
0 2
1 0

]
0

101000 + 21567

[
23 0
0 3

]
26

101000 + 22273

[
0 26
1 14

]
14
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p Similarity class of
(
L/Q
p

)
τ(p) mod 29

101000 + 24493

[
0 13
1 4

]
4

101000 + 25947

[
27 0
0 15

]
13

101000 + 27057

[
0 6
1 7

]
7

101000 + 29737

[
23 0
0 10

]
4

101000 + 41599

[
13 0
0 5

]
18

101000 + 46227

[
0 26
1 22

]
22

101000 + 57867

[
13 0
0 11

]
24

101000 + 64749

[
0 1
1 15

]
15

101000 + 68367

[
0 3
1 3

]
3

101000 + 78199

[
17 0
0 14

]
2

101000 + 128647

[
0 27
1 24

]
24

Putting together the results in level ` = 19 and ` = 29, we see that
τ(p) 6= 0 for each value of p we have tested. This agrees with Lehmer’s
conjecture.

38



Complexity estimates

The most time-consuming part of the computation of the polynomial F (X) ∈
Q[X] defining the representation is the arithmetic in the jacobian J1(`). To
perform these operations, K. Khuri-Makdisi’s algorithms rely on linear alge-
bra on matrices of size O(g)×O(g); as g = O(`2), and we have O(`2) points
to compute in the jacobian, this implies a complexity of O(`8) operations
in C to compute the Galois representation. Let H be the logarithm of the
common denominator of F (X), so that computing F (X) with our method
requires a precision of O(H) bits in C. Then the complexity of our method

to find F (X) is Õ(`8H) bit operations. The experiments we have run seem
to indicate that H is O(`3), but we do not try to refine this estimate, because
we do not know a proven sharp bound on H.

Next, if we do not use the quotient representation trick (cf section 3.7.2),
computing a root

∑n
i=1 h(ai)σ(ai) of a Dokchitsers’ resolvent ΓC(X) requires

O(n) = O(`2) operations in C. As there is one such root for each σ ∈
GL2(F`), computing all these roots requires O(`6) operations in C. Then,

computing a resolvent ΓC(X) from its roots requires Õ
(

deg ΓC(X)
)

= Õ(`2)
operations in C using a fast Fourier transform. As there are O(`2) similarity
classes in GL2(F`), we see that computing all the resolvents ΓC(X) from

their roots requires Õ(`4) operations in C. Thus computing all the resolvents
overall requires O(`6) operations in C, the slow part being the computation
of their roots. The precision in C we have to work at for this is O(`2H),
so that the total complexity of the computation of the resolvents ΓC(X) is

Õ(`8H) bit operations, which is the same as the rest of the computation.
However, with the quotient representation trick, computing the resolvent

roots
∑n

i=1 h(ai)σ(ai) requires only O(`6/|S|2) = O(`4`2
2) operations in C,

where `2 = 2ord2(`−1) is the 2-primary part of `, and then computing the
resolvents ΓC̃(X) from these roots takes only Õ(`4/|S|) = Õ(`3`2) operations

in C. Therefore, computing the resolvents ΓC̃(X) overall requires Õ(`6`2
2H)

bit operations, since the precision in C we have to work at is still O(`2H).
So, for instance, the use of this trick allows us to reduce the complexity of
the computation of the resolvents ΓC̃(X) by a factor `2 if we restrict to the
primes ` ≡ −1 mod 4. Note that restricting to such ` does not worsen the
complexity of the computation of coefficients ap of f by Chinese remainders.
On the other hand, in the worst cases ` = 2λ + 1 for some λ ∈ N, this trick
unfortunately does not help at all.
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