Nicolas Mascot
email: nmascot@math.u-bordeaux1.fr

Computing modular Galois representations

. As a consequence, we can compute the values of τ (p) mod 2 11 • 3

8 • 10 19 for huge primes p. The representations we computed lie in the jacobian of modular curves of genus up to 22.

Introduction

Consider a non-CM newform f = q + n 2 a n q n ∈ S k Γ 1 (N) of weight k ∈ N 2 , level N ∈ N * , and nebentypus ε. Denote by K f = Q(a n , n 2) the number field spanned by its q-expansion coefficients. Let l be one of its finite primes, lying over some rational prime ∈ N, let K f,l be the corresponding completion, and let Z K f,l be its ring of integers. Thanks to P. Deligne [START_REF] Deligne | Formes modulaires et représentations ladiques[END_REF], we know that there exists a continuous -adic Galois representation

G Q -→ GL 2 (Z K f,l)
of the absolute Galois group G Q = Gal(Q/Q) of Q, which is unramified outside N , and such that for all rational primes p N , the image of the Frobenius element corresponding to any prime lying above p has characteristic polynomial

X 2 -a p X + ε(p)p k-1 ∈ Z K f,l [X].
Assume now that l has inertia degree 1. By reducing modulo l, we get a mod representation ρ f,l : G Q -→ GL 2 (F).

By [START_REF] Ribet | On l-adic representations attached to modular forms II[END_REF]theorem 2.1] and [Swi72, lemma 2], for almost every l, the image of this representation contains SL 2 (F), and in particular this representation is irreducible. In the rare case when the image of ρ f,l fails to contain SL 2 (F), we say that the representation degenerates. We will exclude the finitely many l for which ρ f,l degenerates from now on. For instance, if we choose f = ∆, according to [Swi72, corollary to theorem 4] the values of we exclude are 2, 3, 5, 7, 23 and 691.

Further assume now that k + 1 and that N . In this case, this mod representation can be constructed in a more concrete way as follows. Being an eigenform, f has a system of Hecke eigenvalues λ f :

T k,N -→ Z K f such that T f = λ f (T)f ∀ T ∈ T k,N ,
where T k,N = Z[T n , n 2] denotes the Hecke algebra acting on cuspforms of weight k and level N , and where Z K f is the ring of integers of K f . Reducing modulo l, we get a ring morphism λ f,l : T k,N -→ F . By a weight-lowering theorem (cf [Gro90, proposition 9.3 part 2]), there exists another ring morphism µ f,l : T 2, N -→ F such that λ f,l (T p) = µ f,l (T p) ∈ F for all rational

Of course, if we had k = 2 in the first place, there is no need to appeal to the weight-lowering theorem, and the subspace V f,l already exists in the -torsion of J 1 (N) instead of J 1 (N). This representation ρ f,l is unramified outside N (cf [DS05, theorem 9.6.5]). Furthermore, it follows from the Eichler-Shimura relation (cf [START_REF] Diamond | A first course in modular forms[END_REF]theorem 8.7.2]) that for p N , the image of any Frobenius element L/Q p by ρ f,l has characteristic polynomial

X 2 -a p X + ε(p)p k-1 ∈ F [X],
where a p and ε(p) have both been reduced modulo l. By the Brauer-Nesbitt theorem (cf [CR62, theorem 30.16]), ρ f,l is therefore isomorphic to the semisimplification of ρ f,l , so that ρ f,l is actually irreducible and thus realises ρ f,l indeed.

It is interesting to compute explicitly these Galois representations ρ f,l for several reasons:

• First, simply for the sake of the Galois representation itself.

• Next, because the number field L is an explicit solution with controlled ramification to the inverse Galois problem for the subgroup of GL 2 (F) made up of the matrices whose determinant is of the form ε(n)n k-1 , which often turns out to be the whole of GL 2 (F). It is for instance used as such by J. Bosman in [START_REF] Bosman | A polynomial with Galois group SL 2 (F 16)[END_REF] and [START_REF] Bosman | Modular forms applied to the computational inverse Galois problem[END_REF].

• The number field L is actually even a solution to the Gross problem, which asks to find a non-solvable Galois number field ramified at only one prime.

• Last but not least, because it gives a fast way of computing the qexpansion coefficients a p of f modulo l. Letting l vary and using Chinese remainders, we thus obtain a Schoof-like algorithm (cf [START_REF] Schoof | Counting points on elliptic curves over finite fields. Les Dix-huitièmes Journées Arithmétiques[END_REF]) to compute q-expansions of newforms, as bounds on the coefficients a p are well-known.

Computing these representations is the goal pursued by the book [START_REF]Computational aspects of modular forms and Galois representations[END_REF]. The idea is to approximate -torsion divisors representing the points of V f,l . To compute these torsion divisors, the book [START_REF]Computational aspects of modular forms and Galois representations[END_REF] suggests two approaches: a probabilistic one [START_REF] Couveignes | Computing V f modulo p[END_REF], which creates -torsion divisors by applying Hecke operators to random divisors on the modular curve over small finite fields, and a deterministic one [START_REF] Couveignes | Approximating V f over the complex numbers[END_REF], which relies on fast exponentiation to create approximations of torsion divisors on the modular curve over C. However, neither of these two methods is practical at all, although their theoretical complexities are polynomial in .

In [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF], J. Bosman presents a practical variant of the complex method. It uses an analytic continuation method (cf for instance [START_REF] Allgower | Introduction to numerical continuation methods[END_REF]) instead of fast exponentiation. To deal with the Abel-Jacobi map  : Div 0 X 1 (N) (C) → J 1 (N)(C), J. Bosman has to compute a lot of abelian integrals. This leads to precision problems as this requires summing q-series very close to the edge of the convergence disk, and because of the singular locus of , of which little is known. J. Bosman still manages to compute representations up to level 23, but he only gets projective Galois representations in PGL 2 (F) instead of GL 2 (F), which means he gets the coefficients a p mod l up to a sign only (cf for instance the table on the very first page of [START_REF]Computational aspects of modular forms and Galois representations[END_REF]).

It seems that the implementation [START_REF] Zeng | On the computation of coefficients of modular forms: the p-adic approach[END_REF] by J. Zeng of the probabilistic method suffers from the same limitations. J. Zeng computes polynomials defining projective representations, but seems not to compute actual coefficients.

In this paper, we present another improved, practical and deterministic version of the complex approximations approach, and we can prove this approach works since the singular locus of  is no longer a problem. It has far fewer precision issues, as it computes abelian integrals only along very short paths well inside the convergence disks, and uses K. Khuri-Makdisi's algorithms [START_REF] Khuri-Makdisi | Linear algebra algorithms for divisors on an algebraic curve[END_REF][START_REF] Khuri-Makdisi | Asymptotically fast group operations on Jacobians of general curves[END_REF] for fast exponentiation in the jacobian. Consequently, we get approximations of torsion divisors fairly easily. This allows us to compute the full Galois representations for the prime levels 17 29, which, to our knowledge, had never been done before. As a consequence, we can for instance find the signs which were missing in J. Bosman's results.

Like J. Bosman, we limit ourselves to prime levels for commodity, although our algorithm could easily be extended to general levels N . This implies that we can only use our algorithm to compute Galois representations attached to newforms of weight 2 and level , or to newforms of arbitrary even weight but of level 1. Typically, we use it on the newform ∆, which is of weight 12 and level 1. As the genus of X 1 () is 0 for 7, we will assume 11 throughout this paper. The genus of X 1 () is then g = (-5)(-7)

24

.

We should however stress the fact that the results we get in practice are not yet rigourously proved. Indeed, our method relies on numerical computations in C, so that we need a bound on the height of the result to prove it. Unfortunately, the best bounds we know (cf [EdJC11, section 11.7]) are impractical, whereas the results we have obtained let us think that these bounds are really not sharp. As a consequence, when we run our computations we use much less precision in C than required by these bounds, so as to still get interesting results, although not rigouroulsy proved.

Nevertheless, there are some easy tests which we performed so as to convince ourselves that our results are correct without any reasonable doubt. Namely, we checked that the discriminant of the polynomial F (X) defining the representation (see the next section) is of the form (-1) (-1)/2 v M 2 for some large v ∈ N and some M ∈ Q * coprime to , which is what we expect since the representation is supposed to be odd and the number field L it cuts out is supposed to ramify only at . Also, the fact that the resolvents Γ C (X) we compute (see next section) have rational coefficients with the expected form (we explain in section 3.7 that their denominators should all divide some known bound) hints that Gal(L/Q) indeed is isomorphic to a subgroup of GL 2 (F). Finally, we checked for a few small primes p that the values a p mod l which we obtain are correct, by computing a p by "classical" methods (e.g. using modular symbols, cf [START_REF] Stein | Modular forms, a computational approach[END_REF]) and reducing it modulo l.

In order to prove our results rigourously, we can appeal to Serre's conjecture [START_REF] Serre | Sur les représentations modulaires de degré 2 de Gal(Q/Q)[END_REF], which is now a theorem thanks to [START_REF] Khare | Wintenberger, Jean-Pierre, Serres modularity conjecture (I and II)[END_REF]. It would be enough to first prove that Gal(L/Q) is isomorphic to a subgroup of GL 2 (F) so that we are sure we are really dealing with a representation, then to make sure that this representation is odd so that Serre's conjecture applies, next to check that it has the correct level and weight, and finally that it corresponds to the right newform f . This is the approach followed by J. Bosman in [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF]. We have not succeeded in using it to prove our results yet, but we are working on it. We were for instance able to prove the correctness of the projective version of the representation ρ ∆,29 of level 29 attached to the newform f = ∆ which we computed (cf our results section): J. Klüners helped us to formally prove that we have the correct Galois group, we checked that the representation was odd, and that the subfield of Q fixed by the stabiliser of a line in V ∆,29 has discriminant 29 39 . By the results of [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF], this is enough to conclude.

In the next section, we present a quick review of our algorithm. Then, in section 3, we give a detailed description of the key steps. Finally, in the last section, we present actual computations of Galois representations and of coefficients of newforms, and we give complexity estimates.

Outline of the algorithm

Our first task consists in computing the period lattice Λ of X 1 (), which we do by integrating cuspforms along modular symbols. Using our knowledge of the action of the Hecke algebra on modular symbols, we then deduce an analytic representation of the -torsion subspace

V f,l ⊂ J 1 ()(C) = C g /Λ.
Next, we find a way to invert the Abel-Jacobi map , so that we may, for each x ∈ J 1 ()(C), find a null-degree divisor D x on X 1 () such that (D x) = x, and especially so for two -torsion divisor classes x 1 and x 2 forming a basis of the two-dimensional F -subspace V f,l . This is done as follows.

We first compute a high-precision floating point approximation of the period lattice Λ by computing a Z-basis of the homology H 1 X 1 ()(C), Z made up of modular symbols (cf [START_REF] Stein | Modular forms, a computational approach[END_REF] or [START_REF] Cremona | Algorithms for modular elliptic curves[END_REF]), along which we integrate term-by-term the q-expansions of a basis (ω i) 1 i g of cuspforms of weight 2 In order to get a very accurate result, this requires q-expanding the ω i to high precision, which we show how to do quickly below. Then, by computing the Hecke action on J 1 ()[], we can express our two divisor classes x 1 and x 2 as points of 1 Λ/Λ ⊂ C g /Λ.

Let x 1 be a lift of x 1 to C g . We next pick g points (P j) 1 j g on X 1 (), and, using Newton iteration, we compute another g points (P j) 1 j g with P j close to P j such that g j=1 P j P j ω i (τ)dτ

1 j g = x 1 2 m ,
where m ∈ N is large enough for Newton iteration to converge, and the integrals are taken along the short paths joining P j to P j . Thus, we get the divisor

D (m) 1 = g j=1 (P j -P j)
which satisfies 2 m D (m) 1

= x 1 . Then, using K. Khuri-Makdisi's algorithms [START_REF] Khuri-Makdisi | Linear algebra algorithms for divisors on an algebraic curve[END_REF][START_REF] Khuri-Makdisi | Asymptotically fast group operations on Jacobians of general curves[END_REF] to compute in the jacobian J 1 (), we double m times the divisor class of D (m) 1 , which yields an -torsion divisor D 1 representing x 1 . We apply the same process to get another -torsion divisor D 2 representing x 2 .

This way, we find -torsion divisors using only integrals along short paths which are well inside the convergence disks. Consequently we have far fewer precision problems than with J. Bosman's method [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF].

We thus now have two -torsion divisors D 1 and D 2 whose images by the Abel-Jacobi map form a basis of the -torsion subspace V f,l . We then compute all the reduced divisors D a,b ∼ aD 1 + bD 2 , a, b ∈ F , yielding a collection of 2 reduced divisors corresponding to the 2 points of V f,l , and evaluate a well-chosen Galois-equivariant map α : V f,l -→ Q in these points. The polynomial

F (X) = a,b∈F (a,b) =(0,0) X -α(D a,b)
then lies in Q[X]; we can recognise its coefficients using continued fractions. This polynomial encodes the Galois representation we are attempting to compute, in that its splitting field L over Q is the number field cut out by the representation ρ f,l , and Gal(L/Q) acts on its roots ϕ(D a,b) just like GL 2 (F) acts on (a, b) ∈ F 2 .

Our final task is to describe the image of Frobenius elements by this representation. For this, we adapt T. and V. Dokchitser's work [START_REF] Dokchitser | Identifying Frobenius elements in Galois groups[END_REF] to get resolvents

Γ C (X) ∈ Q[X], C similarity class of GL 2 (F)
such that for almost all rational primes p,

ρ f,l (Frob p) ∈ C ⇐⇒ Γ C Tr Ap/Fp a p h(a) = 0 mod p,
where Frob p denotes any Frobenius element of L at p, A p = F p [X]/ F (X) , a denotes the class of X in A p , and h is a polynomial (cf [START_REF] Dokchitser | Identifying Frobenius elements in Galois groups[END_REF] or section 3.7). We furthermore present a trick to reduce the amount of computations at this step.

Finally, we can use this to compute the coefficients a p of the q-expansion of f modulo l: a p mod l = Tr ρ f,l (Frob p) .

Detailed description of the steps

We first show in subsection 3.1 how to quickly compute a huge number of terms of the q-expansion at infinity of the cuspforms of weight 2 and level , and next, in 3.2, how to efficiently compute the period lattice of X 1 () to high precision using these q-expansions. Then, we explain in 3.3 how to use K. Khuri-Makdisi's algorithms [KM04, KM07] on X 1 (). Our method requires a careful choice of two Eisenstein series, as explained in 3.4. After this, we show in 3.5 how to compute an -torsion divisor. Finally, we explain in 3.6 how to construct a well-behaved function on the jacobian J 1 () and how to evaluate it at the -torsion divisors, and we conclude by describing in 3.7 an efficient way of computing the image of the Frobenius elements by the Galois representation.

Expanding the cuspforms of weight 2 to high precision

We will need to know the q-expansion of the newforms of weight 2 in order to compute the period lattice of the modular curve. Classical methods based on modular symbols (cf for instance [Ste07, chapter 3]) allow us to compute a moderate number of terms of these q-expansions. However, we will need to know the periods with very high accuracy, which requires computing a very large number of coefficients in these q-expansions. Consequently, as using classical methods for this, though possible, would be too slow, we present a new method to quickly compute a huge number of such coefficients. It proceeds roughly as follows :

• First, compute a moderate number of coefficients of the q-expansion of each cuspform ω.

• Then, use these coefficients to find a polynomial equation relating a modular function depending on ω to the modular invariant j, or some other modular function whose q-expansion is very easy to compute.

• Finally, use Newton iteration on this equation between q-series to compute a huge number of coefficients of the modular function depending on ω, and deduce those of ω.

Moreover, all this is done modulo some prime p so as to accelerate the computation by avoiding intermediate coefficient growth.

More precisely, to compute these q-expansions to the precision O(q B), we first compute a generator of the Hecke algebra T 2, ⊗ Z Q, by picking a Hecke operator and testing whether it is a Q-algebra generator. This is easy as it amounts to check if its eigenvalues on S 2 Γ 1 () are all distinct. One can for instance proceed as follows : starting with n = 2, first check whether T n is a generator, if not then pick small integers λ m and check whether T n + n-1 m=2 λ m T m is a generator, and if still not increase n by 1 and start again. In an overwhelming majority of cases, it appears that at least one of T 2 and T 3 is a Q-algebra generator.

We can find a basis B = ε B ε of

S 2 Γ 1 () = ε even character mod S 2 (ε),
where B ε is a basis of S 2 (ε) consisting in forms which are not necessarily eigenforms 1 , but which are normalised, and whose q-expansion coefficients lie among the integers Z K of the common cyclotomic field

K = Q ζ (-1)/2 .
To make it easier to reduce mod p and lift back to K, we want p to split completely in K. Also, p should be chosen large enough for reduction mod p of the coefficients to be faithful. Deligne's bounds state that if q + n 2 a n q n is a newform of weight 2, then for all n ∈ N, we have |a n | σ d(n) √ n for every complex embedding σ, where d(n) denotes the number of positive divisors of n. These bounds may not apply to the forms in the bases B ε as they are not eigenforms, but using our knowledge of a generator of the Hecke algebra, we can compute for each ε a change of basis matrix from the basis B ε to a basis of eigenforms, then deduce from Deligne's bound a bound on the complex embeddings of the B first coefficients of the forms of B ε , and finally, compute a bound on the coefficients of these coefficients seen as polynomials in ζ (-1)/2 . We choose p = to be the smallest rational prime greater than twice this bound and such that p ≡ 1 mod (-1)/2. Then the (-1)/2-th cyclotomic polynomial splits completely over F p . Letting a i denote lifts to Z of its roots in F p , and p i = p, ζ (-1)/2 -a i , the prime p splits completely as

i p i in K.
Next, we compute the forms

E 4 = 1 + 240 +∞ n=1 σ 3 (n)q n , E 6 = 1 -540 +∞ n=1 σ 5 (n)q n , and u = 1 j = E 3 4 -E 2 6 1728E 2 6 in F p [[q]], as well as dj in q -2 F p [[q]]dq, to precision O(q B).
We then can compute the q-expansions of the forms ω with trivial nebentypus ε = 1 in B 1 as follows. Note that such a form ω has q-coefficients in Z.

Consider the form v = ωdq qdj ∈ Z[[q]
]. It has weight 0, so it is a rational function on X 1 (), which actually descends to a rational function on X 0 () because ε = 1. Its degree there is at most 2g 0 + + 1, where g 0 denotes the genus of X 0 (). Indeed, its degree is at most the number of zeroes of the 1-form ω dq q plus the number of poles of the 1-form dj. On the one hand, ω dq q has exactly 2g 0 -2 zeroes as it is regular. On the other hand, as dj has a double pole at the cusp on X(1), it has a pole of order e c + 1 at each cusp c of X 0 (), where e c is the ramification index of c. Summing over the two cusps of X 0 (), we thus see that dj has + 3 poles on X 0 (), hence the announced bound on the degree of v. Besides, u has degree exactly + 1 on X 0 (). Consequently, there exists an irreducible polynomial Φ(U, V) ∈ F p [U, V] of degree at most 2g 0 + + 1 in U and exactly + 1 in V such that Φ(u, v) ≡ 0 mod p. We compute this polynomial by linear algebra over F p in F p [[q]], using a moderately precise q-expansion of ω computed by classical algorithms. Then, by Newton iteration, we can compute v mod p, and hence ω mod p, to the precision O(q B), and finally lift the coefficients of ω back to Z.

Once this is done, we can compute the q-expansions of the forms ω with nontrivial nebentypus ε as follows. Let ω 0 ∈ B 1 be one of the g 0 forms 2 with trivial nebentypus whose q-expansion we have just computed. Then ω ω 0 is a rational function on X 1 () with nebentypus ε. We could thus proceed to find an equation Φ as previously by reasoning on X 1 () instead of X 0 (), but this would lead to very high degrees and hence would be too slow. Instead, notice that if r denotes the order of ε, then v = ω ω 0 r has trivial nebentypus, so descends to a function on X 0 (), of degree at most (2g 1 -2)r (-1)/2 , where g 1 = g denotes the genus of X 1 (), because it has degree at most (2g 1 -2)r over X 1 (). We can thus compute as previously for each p i an irreducible polynomial Φ(U, V) ∈ F p [U, V] of degree at most (2g-2)r (-1)/2 in U and exactly + 1 in V such that Φ(u, v) ≡ 0 mod p i . Next, we use Newton iteration as before to compute v mod p i , then take the r th root to recover ω mod p i , and finally lift back to K by Chinese remainders.

Finally, we apply to the q-expansions of the forms we have just computed the change of basis matrices from B ε to the basis of eigenforms which we computed in the beginning, so as to get the q-expansions of the newforms. This method is faster than the classical one for large B.

Theorem 1. For fixed prime level , the number of bit operations required to compute the q-expansion of the newforms in S 2 Γ 1 () to precision O(q B) with the algorithm described above is quasi-linear in B.

In comparison, the bit complexity of the classical algorithm based on modular symbols is at least quadratic in B, cf [Ste07, remark 8.3.3].

Proof. First notice that for fixed level , the change of basis matrices from the bases B ε to eigenforms are fixed, and so is the common field K = Q ζ (-1)/2 . Consequently, there exists some C > 0 not depending on B such that the coefficients of ζ (-1)/2 in the coefficients up to q B of the forms in the bases B ε are bounded by

M = C sup n<B d(n) √ n. We have M = O(B), because d(n) = O(n δ
) for every δ > 0, cf for instance [START_REF] Hardy | An introduction to the theory of numbers[END_REF]theorem 315]. If B is large enough, then M will be large too, so that by the prime number theorem for arithmetic progressions (cf for instance [START_REF] Soprounov | A short proof of the Prime Number Theorem for arithmetic progressions[END_REF]), there exists a prime number p ≡ 1 mod (-1)/2 lying between 2M and, say, 3M . We can find such a p in O(B log B log log B) bit operations by using the sieve of Eratosthenes (cf the proof of the [GG99, theorem 18.10 part ii]). Then arithmetic operations in the residue field F p will require O(log B) bit operations. Next, E 4 and E 6 can be computed mod p to precision O(q B) in O(B log B log log B) bit operations by using again the sieve of Eratosthenes, and u and dj can be computed in O(B log B) operations in F p with fast series arithmetic. As is fixed, computing the short q-expansions and finding the equations Φ, which are of fixed degree, takes fixed time. Then, one Newton iteration takes O(B log B) operations in F p with fast arithmetic, and reaching precision O(q B) requires O(log B) such iterations. Finally, we can lift back to K each coefficient because p > 2M . Each coefficient lift requires O(log B) bit operations, so lifting the forms requires O(B log B) bit operations, hence the result.

Computing the periods of X 1 ()

Computing the period lattice Λ amounts, by the Manin-Drinfeld theorem (cf [Lan95, chapter IV, theorem 2.1]), to compute integrals of newforms ω of weight 2 along modular symbols, such as

0 ∞ ω(τ)dτ.
These integrals can be computed by integrating q-expansions term by term. However, we have to split the integration path so that the resulting series converges. Furthermore, to increase the convergence speed, we need the path ends to lie well-inside the convergence disks.

To reduce the number of integrals we compute, we use the adjointness property of the Hecke operators with respect to the integration pairing between modular symbols and cuspforms. In general, the modular symbol {∞, 0} alone does not span the rational homology of the modular curve, even over T 2, ⊗ Q. As a consequence, we introduce other modular symbols, the twisted winding elements w p .

More precisely, define (cf [BosC6, section 6.3]), for every p = prime or p = 1, the twisted winding element

w p = a mod p p (a) ∞, a p ∈ M 2 Γ 1 () ,
where p = • p denotes the Legendre symbol at p, which we define to be 1 if p = 1 for convenience. We can write each basis element γ j of H 1 X 1 ()(C), Z , seen as a linear form on

S 2 Γ 1 () , as a T 2, ⊗ Q-linear combination γ j = p T j,p w p , T j,p ∈ T 2, ⊗ Q.
We can then compute the periods using the adjointness property of the integration pairing with respect to Hecke operators as follows:

γ j ω(τ)dτ = p T j,p wp ω(τ)dτ = p wp (T j,p ω)(τ)dτ = p λ j,p wp ω(τ)dτ,
where λ j,p ∈ C denotes the eigenvalue of the newform ω for the Hecke operator T j,p . Consequently, all we need is to compute the integrals wp ω(τ)dτ .

The Fricke involution W transforms the form ω(τ) into 1 τ 2 ω -1 τ . It is useful for our purpose because it can be used to map a point τ with small imaginary part to -1 τ , which can have a much larger imaginary part. We read in [BosC6, section 6.2] that if ω = q + n 2 a n q n ∈ S 2 Γ 1 (), ε is a newform with weight 2, level and character ε, then W ω is the newform with weight 2, level and conjugate character ε defined by

W ω = λ (ω) q + n 2 a n q n ,
where λ (ω) is given by

λ (ω) = -a if ε is trivial, g(ε)a if ε is nontrivial,
where g(•) denotes the Gauss sum of a Dirichlet character. Moreover, if χ is a Dirichlet character modulo p = , then

ω ⊗ χ = n 1 a n χ(n)q n .
is a cuspform of level p 2 by [AL78, proposition 3.1], and we have the formula

W p 2 (ω ⊗ χ) = g(χ) g(χ) ε(p)χ(-) • (W ω) ⊗ χ.
An easy computation shows that

a mod p χ(a)ω(τ + a/p) = g(χ)(ω ⊗ χ)(τ).
This yields the formula

wp ω(τ)dτ = g(p) 0 ∞ (ω ⊗ p)(τ)dτ = g(p) i p √ ∞ (ω ⊗ p)(τ)dτ + 0 i p √ (ω ⊗ p)(τ)dτ = g(p) i p √ ∞ (ω ⊗ p)(τ)dτ - i p √ ∞ W p 2 (ω ⊗ p)(τ)dτ = g(p) 2πi +∞ n=1 a n -ε(p) p (-)λ (ω)a n p (n) n e -2π p √ n ,
which allows us to compute the integral of a newform along a twisted winding element, and thus to finally compute the period lattice of the modular curve X 1 (). We sum power series at q = e -2π

p √

for primes p, which has small enough modulus to achieve fast convergence. We have indeed checked that p 3 is very often sufficient for the w p to span the rational homology of the modular curve over T 2, , and p 7 is enough for all levels 61, except for = 37 in which case we had to go up to p = 19.

Arithmetic in the jacobian J 1 ()

In order to efficiently compute in the jacobian J 1 (), we use K. Khuri-Makdisi's algorithms [START_REF] Khuri-Makdisi | Linear algebra algorithms for divisors on an algebraic curve[END_REF][START_REF] Khuri-Makdisi | Asymptotically fast group operations on Jacobians of general curves[END_REF]. This requires choosing an effective divisor D 0 of degree d 0 2g + 1 for which we know how to compute the associated Riemann-Roch space

V = H 0 X 1 (), 3D 0 .
A divisor class x ∈ J 1 () is then represented by an effective divisor D of degree d 0 such that the class of D -D 0 is x, and D is itself represented by the subspace

W D = H 0 X 1 (), 3D 0 -D ⊂ V ;
in particular 0 ∈ J 1 () can be represented by

W 0 = H 0 X 1 (), 2D 0 ⊂ V.
We also want D 0 to be defined other Q, so that (

W D) σ = W D σ for all σ ∈ Aut C.
Let us first give an overview of how to find such a divisor D 0 . Our strategy consists of choosing D 0 = K + c 1 + c 2 + c 3 , where K is an effective canonical divisor defined over Q and the c i are Q-rational cusps, so for us d 0 is exactly 2g + 1. First, we compute the (g + 2)-dimensional space

V 2 = H 0 X 1 (), Ω 1 (c 1 + c 2 + c 3) .
This space is the direct sum of all the cusp forms of weight 2 and of the scalar multiples of Eisenstein series e 1,2 and e 1,3 of weight 2 vanishing at all cusps except c 1 and c 2 for e 1,2 and except c 1 and c 3 for e 1,3 , so we have

V 2 = S 2 Γ 1 (), C ⊕ Ce 1,2 ⊕ Ce 1,3 ⊂ M 2 Γ 1 (), C .
The point of this is that by picking a cusp form f 0 ∈ S 2 Γ 0 (), Q defined over Q, we obtain a Galois-equivariant isomorphism

V 2 ∼ -→ H 0 X 1 (), K + c 1 + c 2 + c 3 f -→ f f 0 ,
where K is the divisor of the differential 1-form over X 1 () associated to the cuspform f 0 , which is indeed an effective canonical divisor. Now by [KM04, lemma 2.2], the map

V ⊗3 2 -→ H 0 X 1 (), 3(K + c 1 + c 2 + c 3) f 1 ⊗ f 2 ⊗ f 3 -→ f 1 f 2 f 3 f 3 0 is surjective.
We may thus choose V to be the image of the multiplication map

V ⊗3 2 -→ M 6 Γ 1 (), C f 1 ⊗ f 2 ⊗ f 3 -→ f 1 f 2 f 3 .
In this framework, the subspace W 0 representing 0 ∈ J 1 () is the image of the map

V ⊗2 2 -→ M 6 Γ 1 (), C f 1 ⊗ f 2 -→ f 1 f 2 f 0 .
From now on, we will identify weight-6 modular form spaces with the corresponding modular function spaces obtained by dividing by f 3 0 without explicitly mentioning it.

We represent the weight-6 forms by their q-expansions at each cusp. To compute these q-expansions, we start from the q-expansion at ∞, and apply diamond operators and Fricke involutions in order to reach all the other cusps, as explained below. We could also have represented forms by their q-expansions at ∞ only, but we think using q-expansions at various cusps is better for numerical stability. Also we will later need to be able to evaluate the forms at various points of the modular curve, hence it is better to know the q-expansions at various places.

The modular curve X 0 () has exactly two cusps, namely Γ 0 () • ∞ and Γ 0 () • 0, whereas the modular curve we are interested in, X 1 (), has exactly -1 cusps, half of which lie above Γ 0 () • ∞ while the other half lie above Γ 0 () • 0. We call the former cusps above ∞ and the latter cusps above 0. The cusps above 0 are all rational, whereas the cusps above ∞ make up a single Galois orbit. Now, the diamond operators d , d ∈ (Z/ Z) * , which correspond to the action of the quotient group Γ 0 ()/Γ 1 () (Z/ Z) * , map the cusp Γ 1 () • ∞ onto the cusps above ∞, and the cusp Γ 1 () • 0 onto the cusps above 0. Moreover, the Fricke operator W swaps Γ 1 ()•∞ and Γ 1 ()•0. We know how the Fricke operator acts on newforms of weight 2 (cf subsection 3.2 on the periods), and on Eisenstein series (cf next subsection 3.4). Besides, all the forms we are dealing with have a nebentypus, so that the action of any diamond operator d on their q-expansions is easy to compute : it boils down to multiplying by the value of their character at d. Using these two kinds of operators, we thus get the q-expansions of the newforms and of the Eisenstein series at all cusps from their q-expansions at ∞.

Finding the appropriate Eisenstein series

We now explain how to choose the Eisenstein series e 1,2 and e 1,3 . Let us first review some facts about Eisenstein series of weight 2 in general (not necessarily prime) level N . From [DS05, chapter 4], we know that the Eisenstein subspace of M 2 Γ 1 (N), C has a basis formed of the Eisenstein series

G ψ,ϕ 2 (τ) = u-1 r=0 v-1 s=0 u-1 t=0 ψ(r)ϕ(s) (c,d)∈Z 2 c≡rv mod N d≡s+tv mod N 1 (cτ + d) 2 ,
where ψ and ϕ are Dirichlet characters not both trivial, of the same parity, and of respective conductors u and v such that uv = N exactly, and of

G 2 (N τ) -N G 2 (N τ), where G 2 (τ) = c∈Z d∈Z (c,d) =(0,0) 1 (cτ + d) 2 .
We furthermore have the q-expansions at ∞

E ψ,ϕ 2 (τ) = -1 u=1 1 2 v-1 a=0 ϕ(a)a a v + 1 + 2 +∞ n=1    m>0 m|n ψ(n/m)ϕ(m)m    q n ,
where 1 u=1 is 1 if u = 1 and 0 else, E ψ,ϕ 2 is the normalisation of G ψ,ϕ 2 defined by the relation

G ψ,ϕ 2 = -4π 2 g(ϕ) v 2 E ψ,ϕ 2 ,
and where g(•) denotes the Gauss sum of a Dirichlet character, and

E 2 (τ) = 1 -24 +∞ n=1    m>0 m|n m    q n , G 2 = π 2 3 E 2 . Also, G ψ,ϕ 2 ∈ M 2 Γ 1 (N)
, ψϕ has nebentypus ψϕ, where ψϕ is seen as a Dirichlet character modulo N , whereas G 2 (τ) -N G 2 (N τ) has trivial nebentypus. In what follows, we will not use G 2 (τ) -N G 2 (N τ) at all.

Consequently, in the case when N = is prime, we are left with only two cases, namely G χ,1 2 and G 1,χ 2 , where χ is a nontrivial even Dirichlet character modulo . Both have nebentypus χ, and G χ,1 2 vanishes at ∞ while G 1,χ 2 does not.

We easily check the formula

G ψ,ϕ 2 (τ) = (c,d)∈Z 2 ψ(c)ϕ(d) (vcτ + d) 2 ,
from which it is clear that

W N G ψ,ϕ 2 = u v ψ(-1)G ϕ,ψ 2 ,
and thus

W N E ψ,φ 2 = g(ψ) g(ϕ) v u ψ(-1)E φ,ψ 2 .
We construct Eisenstein series e 1,2 and e 1,3 as linear combinations of the E χ,1 2 's and the E 1,χ 2 's, because they have nicer q-expansions than their Gcounterparts. First, we choose the cusps c 1 , c 2 and c 3 to be c 1 = Γ 1 ()•0, c 2 = 2 c 1 , and c 3 = 3 c 1 , so that they are all Q-rational. They are also all distinct since 11. The form f 0 ∈ S 2 Γ 0 (), Q being defined over Q because its qexpansion at the Q-rational cusp Γ 1 () • 0 has rational coefficients, its divisor K is defined over Q, and so is our divisor D 0 = K + c 1 + c 2 + c 3 . Next, we have from the above formulae

W E χ,1 2 = g(χ) E 1,χ 2 and W E 1,χ 2 = g(χ) E χ,1 2 ,
from which we read that E χ,1 2 vanishes at the cusps above ∞ but not at the cusps above 0, while the opposite stands true for E 1,χ 2 . Consequently we construct e 1,2 and e 1,3 as linear combinations of the E χ,1 2 only. Now, it follows easily from the orthogonality relations between Dirichlet characters that the Eisenstein series

e 1,2 = χ even χ =1 1 -χ(2) g(χ) -1 a=0 χ(a)a a + 1 E χ,1 2 and e 1,3 = χ even χ =1 1 -χ(3) g(χ) -1 a=0 χ(a)a a + 1 E χ,1

Computing an -torsion divisor

Recall that our goal is to find null-degree divisors D 1 and D 2 representing a basis of the eigenplane V f,l ⊂ J 1 ()[]. From our knowledge of the period lattice Λ and of a generator of the Hecke algebra T 2, , we can express the basis vectors x k , k ∈ {1, 2} of V f, as points in the analytic model C g /Λ of the jacobian J 1 ()(C). Lift x k to x k ∈ C g . We will use Newton iteration to compute 2g points P j and P j , 1 j g, with each P j close to P j , such that

g j=1 P j P j ω i (τ)dτ 1 j g = x k 2 m . ()
Here m ∈ N is an integer, and we introduced the 2 m factor so as to help the Newton iteration to converge by ensuring that for each j, P j stays well-inside the coordinate disk containing P j , namely the q-disk centered at the cusp c j (see below). The integral from P j to P j is understood to be along a path which stays inside this disk, so that the left-hand side of () is well-defined in C g . In practice we use m ≈ 10.

More precisely, first pick g (not necessarily distinct) cusps c 1 , • • • , c g . For each of these cusps, we have an analytic map, the "q-coordinate" around c j

κ j : E -→ X 1 ()(C),
where E stands for the open unit disk in C, which maps 0 to the cusp c j and which is a local diffeomorphism. Next, choose g complex numbers q 1 , • • • , q g of small moduli, so that each point P j = κ j (q j) is close to the cusp c j . Consider another vector of g small complex numbers δ 1 , • • • , δ g . We want to adjust this vector so that () be satisfied with P j = κ j (q j + δ j). In a nutshell, the overall map we apply Newton iteration to is

U κ j -→ X 1 () g -→ Div 0 X 1 () -→ C g (δ j) 1 j g -→ (P j) 1 j g -→ g j=1 (P j -P j) -→ g j=1 P j P j ω i (τ)dτ 1 j g
, where U ⊂ E is a neighbourhood of 0 ∈ E g such that (q j +δ j) 1 j g remains in E g for all (δ j) 1 j g ∈ U . The differential of this map is given by the newforms f i themselves evaluated at the P j , so using it for Newton iteration presents no difficulty.

Once this is done, we want to double the divisor class of

D (m) k = g j=1 (P j -P j)
m times, using K. Khuri-Makdisi's algorithms. This is however not immediate, as these algorithms can only deal with divisors of the form D -D 0 , where D is an effective divisor of degree d 0 , and D 0 and d 0 are defined in the beginning of the section 3.3. To work around this, we fix what we call a padding divisor, that is to say an effective divisor C of degree d 0 -g = g + 1, we feed the divisors g j=1 P j + C -D 0 and g j=1 P j + C -D 0 which are indeed of the form D -D 0 to K. Khuri-Makdisi's algorithm, and then use this algorithm to subtract these two divisor classes. Feeding a divisor D -D 0 to K. Khuri-Makdis's algorithm is easy : it amounts to computing the subspace W D = H 0 X 1 (), 3D 0 -D of V = H 0 X 1 (), 3D 0 consisting of functions of V which vanish at D. We do so by evaluating the q-series in the basis of V at the points of D and by doing linear algebra. Because we will have to evaluate q-series at C, it proves convenient to choose a divisor C supported by cusps, hence the notation C.

Finally, once the divisor D (m) k is processed, we apply K. Khuri-Makdisi's chord algorithm x → -2x on it, yielding (-2) m [D (m) k] = ±x k . The ± sign is not a problem, because we get a basis vector for V f,l no matter what the sign is, and this is all we actually need.

Evaluating the torsion divisors

We must construct a Galois-equivariant function α ∈ Q J 1 () which can be efficiently evaluated at every point x ∈ V f,l given in Khuri-Makdisi form. We then evaluate α in each nonzero point of V f,l , and form the polynomial

F (X) = x∈V f,l x =0 X -α(x) ∈ Q[X]
which defines the Galois representation ρ f,l . In order to recognise its coefficients as rational numbers, we compute the continued fraction expansion of each of them until we find a huge term. Clearly, the lower the height of F (X) the better, as it requires less precision in C. This means one should use an evaluation function α which is arithmetically well-behaved. In order to try to quantify this, we may look at the class of its divisor of poles (or zeroes) in the Néron-Severi group of J 1 ().

The approach used in [START_REF] Couveignes | First description of the algorithms[END_REF], [START_REF] Edixhoven | Computing the residual Galois representations[END_REF], [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF] and [START_REF] Zeng | On the computation of coefficients of modular forms: the p-adic approach[END_REF] consists in selecting a rational function ξ on X 1 () defined over Q and extending it to J 1 () by Ξ :

J 1 () C g i=1 P i -gO -→ g i=1 ξ(P i),
where O ∈ X 1 ()(Q) is an origin for the Abel-Jacobi map. The divisor of the poles of this function Ξ is

(Ξ) ∞ = Q pole of ξ τ * [Q-O] Θ,
where Θ is the theta divisor on J 1 () associated to the Abel-Jacobi map with origin O. We thus see that (Ξ) ∞ is the sum of deg ξ translates of Θ. If we are to let this function Ξ play the role of α, then we want it to be be arithmetically well-behaved, so that ξ should be chosen to have degree as low as possible. However, this degree is at least the gonality of X 1 (), which is roughly proportional to g (cf [Abr96, remark 0.2]).

We introduce a radically different method, which can be used on every algebraic curve X to construct a function α ∈ Q Jac(X) . Let us denote the genus of X by g. Every point x ∈ Jac(X) can be written [E x -gO], where E x is an effective divisor of degree g on X which is generically unique, and O ∈ X is a fixed point. Let Π be a fixed divisor on X of degree 2g. Then the space H 0 (X, Π -E x) is generically 1-dimensional over C, say spanned by t x ∈ C(X). The divisor of t x is of the form (t x) = -Π + E x + R x , where R x is a residual effective divisor of degree g on X, which is the image of E x by the reflection

R Π : Pic g (X) -→ Pic g (X) [E] -→ [Π -E].
Let A and B be two points on X disjoint from the support of Π. We can then define α : Jac(X)

C x -→ tx(A) tx(B) .
This map is well-defined only on a Zariski-dense subset of Jac(X) because of the genericity assumptions, and it is defined over Q if X, Π, A, B and O are defined over Q. Moreover, it is much better-behaved than the function Ξ used in the classical approach :

Theorem 2. The divisor of poles of α is the sum of only two translates of the Θ divisor.

Proof. α has a pole at x ∈ Jac(X) if and only if

[E x -gO] or [R x -gO] are on the support of τ * [B-O] Θ. But [R x -gO] is the image of [E x -gO] by the involution R Π = τ [Π-2gO] • [-1] defined above, and [-1] * Θ = τ * K Θ is the translate of Θ by the image K of the canonical class, cf [HS00, theorem A.8.2.1.i].
This is even in some sense optimal, as by the Riemann-Roch theorem for abelian varieties (cf [HS00, theorem A.5.3.3]), no nonconstant function on Jac(X) has a single translate of Θ as divisor of poles, whereas a generic curve X has NS Jac(X) = ZΘ.

In order to use this on the modular curve X 1 (), there is a difficulty we have to overcome. In K. Khuri-Makdisi's algorithms, a divisor class x ∈ J 1 () is represented by a subspace W D = H 0 X 1 (), 3D 0 -D ⊂ V , where D is an effective divisor of degree d 0 = 2g + 1 such that [D -D 0] = x, but such a D is far from being unique -by the Riemann-Roch theorem, there is a whole (g + 1)-dimensional projective space of them ! Thus, the first thing to do is to rigidify the representation W D of x into a representation which depends on x only. To do this, we compute the sub-subspace

W D,red = H 0 X 1 (), 3D 0 -D -C 1 ⊂ W D ,
where C 1 is a fixed effective divisor of degree d 1 = 2d 0 -g, so that W D,red will generically be 1-dimensional by the Riemann-Roch theorem. Letting s D ∈ V be such that s D spans W D,red over C, we know that the divisor of s D is of the form

(s D) = -3D 0 + D + C 1 + E D ,
where E D is some effective divisor of degree g. Again by the Riemann-Roch theorem, E D is generically alone in its linear equivalence class. But on the other hand, if W D and W D both represent the same point x ∈ J 1 ()(C), then D ∼ D , so that E D ∼ E D as D 0 and C 1 are fixed. Consequently, we

generically have E D = E D , which shows that E D only depends on x and not on D, so that the process W D → E D is the rigidification we are looking for.

We then use a trick à la Khuri-Makdisi: we first compute

s D • V = {s D v, v ∈ V } = H 0 X 1 (), 6D 0 -D -C 1 -E D ,
after which we compute

H 0 X 1 (), 3D 0 -C 1 -E D = {v ∈ V | vW D ⊂ s D • V },
all of this by linear algebra as in [START_REF] Khuri-Makdisi | Linear algebra algorithms for divisors on an algebraic curve[END_REF][START_REF] Khuri-Makdisi | Asymptotically fast group operations on Jacobians of general curves[END_REF]. Next, we fix another effective divisor C 2 of degree d 2 = d 0 +1-g, so that the subspace

H 0 X 1 (), 3D 0 - C 1 -C 2 -E D of the previously computed space H 0 X 1 (), 3D 0 -C 1 -E D is generically one-dimensional. Letting Π = 3D 0 -C 1 -C 2 , we thus have computed a function t D ∈ C X 1 () such that Ct D = H 0 X 1 (), Π -E D ,
as wanted. This allows us to compute the map α, which will be defined over

Q if C 1 , C 2 ,
A and B are. As in the previous section, it proves convenient to choose the divisors C 1 and C 2 to be supported by cusps, so that the q-series are effortless to evaluate, hence the notation C 1 and C 2 .

Evaluating α on V f,l , we may thus hope to get a defining polynomial F (X) of logarithmic height g/2 times less than if we had used the classical approach.

Finding the Frobenius elements

After evaluating a suitable function in the torsion divisors representing the points of V f,l \ {0}, we get a polynomial F (X) ∈ Q[X] of degree 2 -1 whose decomposition field is the field L fixed by the kernel of the Galois representation. It is thus a Galois number field, and its Galois group over Q is embedded by the representation as a subgroup of GL 2 (F). In order to completely specify the Galois representation, we would like to know the image of the Frobenius elements Frob p in GL 2 (F). We now explain how to compute the similarity class of the image of Frob p for almost all rational primes p (clearly, we have to exclude p = , as L is ramified at , but we will shortly see that we actually have to exclude finitely many other primes as well). This can be used to get congruence relations modulo on the coefficients a p of the cuspform f , by looking at the trace of the similarity class of Frob p .

The Dockchitsers' resolvents

For this, we use Tim and Vladimir Dokchitser's work [START_REF] Dokchitser | Identifying Frobenius elements in Galois groups[END_REF]. Denoting by

(a i) 1 i< 2 the roots of F in L, if h(X) ∈ Z[X]
is a polynomial with integer coefficients, then for each similarity class C ⊂ GL 2 (F), the resolvent

Γ C (X) = σ∈C X - n i=1 h(a i)σ(a i) lies in Q[X]
. Furthermore, these resolvents Γ C (X) are pairwise coprime over Q for a generic choice of h(X) amongst the polynomials of degree at most 2 -2 with coefficients in Z. Let p be a rational prime such that F is pintegral and squarefree modulo p. Define u = Tr Fp[X] F (X) /Fp h(a)a p ∈ F p , where a denotes the class of X in the quotient algebra F p [X]/ F (X) . Then the resolvents Γ C are also p-integral, and we have the implication

ρ f,l (Frob p) ∈ C =⇒ Γ C (u) = 0 mod p.
If the resolvents Γ C are indeed pairwise coprime over Q, and if p is very large, then it is likely that they remain pairwise coprime modulo p, and then we have the criterion

ρ f,l (Frob p) ∈ C ⇐⇒ Γ C (u) = 0 mod p,
which allows us to find out which similarity class ρ f,l (Frob p) lies in. If, however, the resolvents fail to be pairwise coprime modulo p, then Γ C (u) may vanish for several C, so that we cannot tell where ρ f,l (Frob p) lies. Nonetheless, as the primary goal of our computations is to find the coefficients a p of the q-expansion of f modulo l, and as naive methods compute a p for small p in almost no time, the only case we are really interested in is the case in which p is extremely large, and in this case it is extremely likely that the resolvents Γ C (X) remain pairwise coprime modulo p if they are pairwise coprime over Q. In practice, we choose h(X) = X 2 , which has always yielded resolvents Γ C (X) which are pairwise coprime over Q.

To compute the resolvents Γ C (X), we first start by computing the roots a i , which we already know to a mildly high precision, to a very high precision in C by using Newton iteration. Then, we compute complex approximations of the resolvents Γ C (X) by enumerating matrices in the similarity classes of GL 2 (F). Finally, we recognise their coefficients as rational numbers, using our knowledge of an a priori multiple of their denominators, namely d |C|(1+deg h) , where d is a common denominator for the coefficients of F (X).

Once the resolvents are computed, it is easy to deduce what ρ f,l (Frob p) is similar to, and hence to compute the coefficient a p of f modulo l.

The quotient representation trick

Unfortunately, these computations, although simple, can be rather slow because they require performing operations on very high precision approximations of certain complex numbers. For instance, in level = 29, about 5 million decimal digits after the decimal point are required to compute the resolvents. However, a simple trick allows us, in most cases, to sharply reduce the amount of computations needed. Indeed, we have not yet used the fact that we know in advance what the determinant of the image of the Frobenius element Frob p is, namely ε(p)p k-1 , where k and ε denote respectively the weight and the nebentypus of the newform f .

The idea is then to compute a quotient representation, that is to say the representation ρ f,l composed with the projection map from GL 2 (F) onto one its quotient groups. The coarser the chosen quotient group, the smaller the computation, so we should use a quotient just fine enough to be able to lift correctly an element back to GL 2 (F) based on the knowledge of its determinant. Thus PGL 2 (F) for instance is slightly too coarse, because the knowledge of the image of a matrix in PGL 2 (F) and of its determinant only determines this matrix up to sign -this is the very reason why J. Bosman, for computing only the projective Galois representation, determined the coefficients a p of f only up to sign in [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF]. In the light of this example, it is clear that the right quotient to consider is

GL 2 (F) = GL 2 (F)/S,
where S is the largest subgroup of F * . This subgroup S is the subgroup made up of the elements of odd order in F * , that is to say, the 2 -subgroup of F * .

Computing the associated quotient Galois representation

G Q ρ f,l / / GL 2 (F) / / / / GL 2 (F)
then amounts to describing the Galois action on the quotient space

V f,l = V f,l /S.
We thus first begin by computing the polynomial F (X) ∈ Q[X] defining V f,l by tracing the roots α(x), x ∈ V f,l of F (X) along their orbits under S :

F (X) = Sx∈ V f,l x =0 X - s∈S α(sx) .
This new polynomial has the same height as the original F (X), but its degree is |S| times smaller. We must then compute the resolvents Γ C (X) for each conjugacy class C of GL 2 (F). As the subgroup S of GL 2 (F) is central, these conjugacy classes are easy to describe.

Lemma 3. Let π : GL 2 (F) / / / / GL 2 (F) denote the projection map, let g ∈ GL 2 (F), and let g ∈ GL 2 (F) such that π(g) = g. Then π induces a bijection

π g : Conjugacy class of g ∼ -→ Conjugacy class of g hgh -1
-→ π(hgh -1).

Proof. It is clear that the image of the conjugacy class of g by π is exactly the conjugacy class of g, so that π g is well-defined and surjective. To show that π g is also injective, let h 1 , h 2 ∈ GL 2 (F) such that π(h 1 gh -1 1) = π(h 2 gh -1 2), that is to say such that h 1 gh -1 1 = sh 2 gh -1 2 for some s ∈ S. We must prove that h 1 gh -1 1 = h 2 gh -1 2 . By taking determinants, we see that det s = 1. As s is scalar, this implies s = ±1. Since -1 ∈ S, we conclude that s = 1, and therefore h 1 gh -1 1 = h 2 gh -1 2 . A resolvent Γ C (X) has therefore exactly the same degree as (each of) the corresponding Γ C (X), so we must still use the same very high precision in C to compute it. However, we have now |S| times less such resolvents to compute. Furthermore, the roots n i=1 h(a i)σ(a i) of these resolvents actually take |S| 2 less time to compute, since they are defined by sums |S| times shorter and there are |S| times less of them.

Using these resolvents Γ C (X), we can then compute the conjugacy class of the image of the Frobenius element Frob p in GL 2 (F) as above, and, since -1 ∈ S, we can deduce the similarity class of the image of the Frobenius element in GL 2 (F) using our knowledge of its determinant. Consequently, with this trick, we can still compute the full, non-quotient representation ρ f,l , and we have saved a factor |S| 2 in the computation of the roots of the resolvent, and a factor |S| in their expansion and in the identification of their coefficients as rational numbers. Since |S| = -1 2 ord 2 (-1) , this prevents this final step of the Galois representation computation from being the slowest one, see the complexity section after the results.

Results

We have implemented the above algorithms in [SAGE, version 5.3], and have run them on PlaFRIM, the Bordeaux 1 university computing cluster.

As our algorithms compute the full Galois representation, we get results which are more complete than the ones from [START_REF] Bosman | On the computation of Galois representations associated to level one modular forms[END_REF]. For instance, picking = 19 (which implies dealing with genus g = 7), we can compute the Galois representation ρ ∆,19 modulo 19 associated to the newform

f = ∆ = q +∞ n=1 (1 -q n) 24 = +∞ n=1 τ (n)q n
of level 1 and weight 12, find the similarity class in GL 2 (F 19) of the images of Frobenius elements, and hence find the signs which were missing in the table on the very first page of [START_REF]Computational aspects of modular forms and Galois representations[END_REF] :

• The image of the Frobenius at p = 10 1000 +1357 is similar to 17 1 0 17 , therefore τ (10 1000 + 1357) ≡ -4 mod 19,

• The image of the Frobenius at p = 10 1000 + 7383 is similar to 1 1 0 1 , therefore τ (10 1000 + 7383) ≡ +2 mod 19,

• The image of the Frobenius at p = 10 1000 +21567 is similar to 11 1 0 11 , therefore τ (10 1000 + 21567) ≡ +3 mod 19,

• The image of the Frobenius at p = 10 1000 +27057 is similar to 10 0 0 9 , therefore τ (10 1000 + 27057) ≡ 0 mod 19,

• The image of the Frobenius at p = 10 1000 +46227 is similar to 0 14 1 0 , therefore τ (10 1000 + 46227) ≡ 0 mod 19,

• The image of the Frobenius at p = 10 1000 +57867 is similar to 17 0 0 2 , therefore τ (10 1000 + 57867) ≡ 0 mod 19,

• The image of the Frobenius at p = 10 1000 +64749 is similar to 13 1 0 13 , therefore τ (10 1000 + 64749) ≡ +7 mod 19,

• The image of the Frobenius at p = 10 1000 +68367 is similar to 14 0 0 5 , therefore τ (10 1000 + 68367) ≡ 0 mod 19,

• The image of the Frobenius at p = 10 1000 +78199 is similar to 15 1 0 15 , therefore τ (10 1000 + 78199) ≡ -8 mod 19,

• The image of the Frobenius at p = 10 1000 +128647 is similar to 0 8 1 0 , therefore τ (10 1000 + 128647) ≡ 0 mod 19.

The surprising number of occurrences of non-semi-simple matrices -by the Chebotarev theorem, non-semi-simple matrices should occur with density about 1/ only -and of τ (p) ≡ 0 mod 19 above can be explained by the fact that J. Bosman purposely chose special values of p (cf [BosC7, section 7.4]). For instance, for the other few first primes above 10 This agrees with the Chebotarev theorem.

The computation times were as follows: computing the q-expansion of the cuspforms and the Eisenstein series to O(q 5000) , the period lattice, and finally initialising K. Khuri-Makdisi's algorithms by computing the spaces V and W 0 took 11 minutes, computing the two 19-torsion divisors took 24 minutes each, and computing all the points in the F 19 -plane spanned by them took about 40 minutes. We found a polynomial F (X) ∈ Q[X] defining the representation, of degree 360 = 19 2 -1 and with a common denominator of 142 decimal digits, and finally, computing the resolvents Γ C (X) took a little less than 20 minutes thanks to the quotient representation trick and to massive parallelisation, after which deducing the similarity classes of the image of a Frobenius element at p ≈ 10 1000 takes about 30 minutes. Overall, the whole computation thus lasted about 2 hours, thanks to parallelisation. We used a precision of 1500 bits in C to compute the defining polynomial F (X), and a precision of 600 kbits to compute the resolvents Γ C (X).

Level = 23 (genus g = 12)

The Galois representation modulo = 23 associated to f = ∆ degenerates since its image is a subgroup of GL 2 (F 23) isomorphic to S 3 ([Gro90, top of section 17]). This phenomenon is related to Ramanujan-type congruences for τ (n) mod 23, cf [EdiC1, top of page 5]. The prime = 23 is indeed one of the finitely many primes we have to exclude for f = ∆, as we mentioned in the beginning of the introduction. As a consequence, we computed the representation associated to the newform f = E 4 ∆ of level 1 and weight 16 instead. We obtained a defining polynomial F (X) of degree 528 = 23 2 -1 with a common denominator of 508 decimal digits. Computing the period lattice took a little less than 2 hours, computing each of the two 23-torsion divisors took 5 hours and a half, and computing the F 23 -plane spanned by them took a little more than 11 hours. Overall, getting the polynomial F (X) took less than 20 hours. After having computed the resolvents Γ C (X), we got the following results, where we denote the We have also computed the polynomial F (X) for the Galois representation modulo = 29 associated to f = ∆, which took about 10 days. This polynomial has degree 840 = 29 2 -1, and a common denominator of 1793 decimal digits. Computing the periods took a little more than 6 hours, computing each of the two 29-torsion divisors took 120 hours, and computing the F 29 -plane spanned by them took about 100 hours. Then, thanks to the quotient representation trick, computing the resolvents Γ C (X) took about 60 hours, and finally, deducing the image of the Frobenius at the same primes p ≈ 10 1000 as in level 19 took 2 hours. Overall, the whole computation thus took less than two weeks.

We used a precision of 15 kbits in C for the computation of the defining polynomial F (X), and a precision of 18 Mbits for the computation of the resolvents Γ C (X). Putting together the results in level = 19 and = 29, we see that τ (p) = 0 for each value of p we have tested. This agrees with Lehmer's conjecture.

Complexity estimates

The most time-consuming part of the computation of the polynomial F (X) ∈ Q[X] defining the representation is the arithmetic in the jacobian J 1 (). To perform these operations, K. Khuri-Makdisi's algorithms rely on linear algebra on matrices of size O(g) × O(g); as g = O(2), and we have O(2) points to compute in the jacobian, this implies a complexity of O(8) operations in C to compute the Galois representation. Let H be the logarithm of the common denominator of F (X), so that computing F (X) with our method requires a precision of O(H) bits in C. Then the complexity of our method to find F (X) is O(8 H) bit operations. The experiments we have run seem to indicate that H is O(3), but we do not try to refine this estimate, because we do not know a proven sharp bound on H.

Next, if we do not use the quotient representation trick (cf section 3.7.2), computing a root n i=1 h(a i)σ(a i) of a Dokchitsers' resolvent Γ C (X) requires O(n) = O(2) operations in C. As there is one such root for each σ ∈ GL 2 (F), computing all these roots requires O(6) operations in C. Then, computing a resolvent Γ C (X) from its roots requires O deg Γ C (X) = O(2) operations in C using a fast Fourier transform. As there are O(2) similarity classes in GL 2 (F), we see that computing all the resolvents Γ C (X) from their roots requires O(4) operations in C. Thus computing all the resolvents overall requires O(6) operations in C, the slow part being the computation of their roots. The precision in C we have to work at for this is O(2 H), so that the total complexity of the computation of the resolvents Γ C (X) is O(8 H) bit operations, which is the same as the rest of the computation.

However, with the quotient representation trick, computing the resolvent roots n i=1 h(a i)σ(a i) requires only O(6 /|S| 2) = O(4 2 2) operations in C, where 2 = 2 ord 2 (-1) is the 2-primary part of , and then computing the resolvents Γ C (X) from these roots takes only O(4 /|S|) = O(3 2) operations in C. Therefore, computing the resolvents Γ C (X) overall requires O(6 2 2 H) bit operations, since the precision in C we have to work at is still O(2 H). So, for instance, the use of this trick allows us to reduce the complexity of the computation of the resolvents Γ C (X) by a factor 2 if we restrict to the primes ≡ -1 mod 4. Note that restricting to such does not worsen the complexity of the computation of coefficients a p of f by Chinese remainders. On the other hand, in the worst cases = 2 λ + 1 for some λ ∈ N, this trick unfortunately does not help at all.

 Fourier coefficients of E 4 ∆ by τ 16 (n) :

	Level = 29 (genus g = 22)	
	p 10 1000 + 453 p 10 1000 + 1357 10 1000 + 24493 10 1000 + 2713 10 1000 + 25947 10 1000 + 4351 10 1000 + 27057 10 1000 + 5733 10 1000 + 29737 10 1000 + 7383 10 1000 + 41599 10 1000 + 10401 10 1000 + 46227 10 1000 + 11979 10 1000 + 57867 10 1000 + 17557 10 1000 + 64749 10 1000 + 21567 10 1000 + 68367 10 1000 + 22273 10 1000 + 78199 10 1000 + 128647	Similarity class of L/Q p Similarity class of L/Q p 15 0 0 5 8 0 0 5 19 0 0 15 21 0 0 13 0 2 1 12 8 0 0 2 0 12 1 16 0 6 1 11 18 0 0 14 20 0 0 7 13 0 0 6 9 0 0 2 0 16 1 19 0 2 1 7 15 0 0 7 0 12 1 7 0 22 1 15 0 20 1 21 0 17 1 15 0 2 1 17 17 0 0 5 6 0 0 4	τ 16 (p) mod 23 τ 16 (p) mod 23 20 13 11 11 12 10 16 11 9 4 19 11 19 7 22 7 15 21 15 17 22 10
		35	

If we used a basis of eigenforms, the common number field containing the Fourier coefficients of all these forms could be much larger.

Here, the method breaks down for = 13. Indeed, this is the only case in which g 0 = 0 (remember we supposed 11), so that there is no such form in this case. So, in this special case = 13, classical methods to expand the forms should be used instead. This is not a big problem, as this is a "small" case (g is only 2), so little accuracy is needed and the whole Galois representation computation is quite fast anyway.

are the ones we were looking for, that is to say e 1,2 vanishes at all cusps but c 1 and c 2 , and e 1,3 vanishes at all cusps but c 1 and c

.

Acknowledgements

I would like to heartily thank my advisor J.-M. Couveignes for offering me this beautiful subject to work on. More generally, I would like to thank people from the Bordeaux 1 university's IMB for their support, with special thoughts to B. Allombert, K. Belabas, H. Cohen and A. Enge, as well as the PlaFRIM team. Finally, I thank B. Edixhoven for his remarks on earlier versions of this article, A. Page for helping me to make explicit the similarity classes in GL 2 (F), J. Klüners for his interest and assistance in formally proving that the polynomials I computed have the expected Galois group, and T. Selig for proofreading my English.

This research was supported by the French ANR-12-BS01-0010-01 through the project PEACE, and by the DGA maîtrise de l'information. Experiments presented in this paper were carried out using the PlaFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from LABRI and IMB and other entities: Conseil Régional d'Aquitaine, FeDER, Université de Bordeaux and CNRS (see https://plafrim.bordeaux.inria.fr/).