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We explore the spin dynamics emerging from the Néel phase of the chain compound antiferro-
magnet BaCo2V2O8. Our inelastic neutron scattering study reveals unconventional discrete spin
excitations, so called Zeeman ladders, understood in terms of spinon confinement, due to the in-
terchain attractive linear potential. These excitations consist in two interlaced series of modes,
respectively with transverse and longitudinal polarization. The latter, which correspond to a lon-
gitudinal fluctuation of the ordered moment, have no classical counterpart and are related to the
zero-point fluctuations that weaken the ordered moment in weakly coupled quantum chains. Our
analysis reveals that BaCo2V2O8, with moderate Ising anisotropy and sizable interchain interactions,
remarkably fulfills the conditions necessary for the observation of discrete long-lived longitudinal ex-
citations.

PACS numbers: 75.10.Pq,75.30.Ds,75.50.Ee,78.70.Nx

The nature of the excitations in spin half antiferromag-
nets is a topic of considerable current interest in the field
of quantum magnetism. The one-dimensional (1D) case
is especially interesting as quantum fluctuations melt the
classical long-range Néel order. The ground state remains
disordered, with a spin excitation spectrum consisting in
a continuum composed of pairs of S = 1/2 excitations
called spinons, created or destroyed in pairs, like domain
walls in an Ising magnet. Physical realizations of 1D sys-
tems, however, eventually order at very low temperature,
owing to a small coupling between chains. The metamor-
phosis of the continuum of spinons that accompany this
dimensional cross-over towards a 3D state is an appealing
issue [1].

The three possible spin states S = ±1, 0 for a pair
of spinons transform upon ordering into two transverse
modes and a third collective excitation, which corre-
sponds to fluctuations parallel to the direction of the
ordered moment, hence a longitudinal mode. The ob-
servation of the latter is a key issue in condensed matter
studies, especially in magnetism with the case of Heisen-
berg quantum antiferromagnets [2–4], and beyond: If a
continuous symmetry is broken, transverse and longitu-
dinal modes are expected in the ordered phase, identified
as Goldstone and amplitude modes, respectively [5, 6].
The latter is the analog of what is known in particle the-
ory literature as the Higgs particle [4]. Its detection is
challenging, since it is generally overdamped because of
its decay into massless transverse excitations.

In parallel, another peculiarity of the 1D to 3D dimen-

sional cross-over is that, in the ordered state of quasi-
1D systems, each chain experiences an effective staggered
molecular field, which gives rise to a linear attractive po-
tential between spinons. The latter competes with their
propagating character and finally leads to their confine-
ment in bound states. A spectacular manifestation of
this effect in the case of Ising spins, initially described
by Shiba [7], is the quantization of the transverse excita-
tion continuum in a series of discrete lines below the Néel
temperature (TN ). This effect, called Zeeman ladder, was
proposed to explain the discretization of the excitations
observed in the ordered phase of CsCoCl3 and CsCoBr3

with Raman spectroscopy [7, 8]. Recently, a similar se-
ries of modes was also observed in the Ising ferromagnetic
chain compound CoNb2O6 [6, 9].

In this article, we introduce a new focus on this physics.
We examine the excitations of BaCo2V2O8, which real-
izes an XXZ quasi-1D spin 1

2 antiferromagnet, interme-
diate between the Ising and Heisenberg cases. By means
of inelastic neutron scattering, we describe below TN the
emergence of long-lived transverse and longitudinal ex-
citations, in the form of two well defined Zeeman lad-
ders. The exceptional stability of the longitudinal modes
is discussed in connexion with the presence of discretized
transverse excitations gapped by the Ising-like anisotropy
[5, 6].

BaCo2V2O8 consists of screw chains of Co2+ running
along the fourfold c−axis of the body-centered tetragonal
structure [1]. These chains are weakly coupled yielding
an antiferromagnetic (AF) ordering (propagation vector
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kAF = (1, 0, 0) [12–14]) in zero field below TN ' 5.5 K
[15, 16]. The magnetic moment in the distorted octa-
hedral environment is described by a highly anisotropic
effective spin S = 1/2 [17] with gxy = 2.95 and gz = 6.2
[18], thus allowing quantum fluctuations [19]. The valid-
ity of this description is sustained by the observation of
the first crystal field level at 30 meV [14]. This physics
is described by the XXZ Hamiltonian:

H = J
∑
i

[ε
(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ Szi S

z
i+1] (1)

where, according to the analysis of the magnetization
curve [19], the intrachain AF interaction is J = 5.6 meV
and the anisotropy parameter is ε = 0.46.

The neutron experiment was performed on the
JCNS/CEA–CRG cold neutron three-axis spectrometer
IN12 at the Institut Laue-Langevin. A series of energy
scans at constant scattering vector Q was measured in
the Néel phase to obtain the spin dispersion parallel and
perpendicular to the chains.

Direct evidence for the emergence in the ordered
phase of unconventional dispersive excitations is shown in
Fig. 1. At the zone center Q = (2, 0, 2), a series of gapped
sharp modes ranging between about 1.5 and 6 meV, with
decreasing intensities as the energy increases, is observed
[see Fig. 1(b)]. These modes show a sizable dispersion
along the chain direction (see Fig. 1(a)). The presence of
an intense peak with an out-of-phase weaker dispersion
along the c−axis can also be noticed around 6–7 meV. As
expected for magnetic excitations, all these modes disap-
pear above TN [see Fig. 1(b)]. The relative Q dependence
of their intensities and their energy suggest that the peak
around 7 meV can be interpreted as an optical mode,
whereas the series of low energy excitations is acoustic-
like. The existence of both types of excitations is indeed
expected considering the 16 Co2+ ions per unit cell in a
classical picture. Yet, this intense mode could alterna-
tively be attributed to kinetic bound state of spinons or
bound state of pairs of spinons [6, 9].

In the following, however, we shall focus on the low
energy series, and first investigate their polarization. A
neutron scattering experiment is only sensitive to the spin
components perpendicular to Q. Since the ordered mo-
ment is along the c−axis, measurements with Q ‖ c re-
veal transverse excitations (‖ a and ‖ b) while measure-
ments with Q ‖ a disclose the superposition of transverse
(‖ b) and longitudinal (‖ c) excitations. Energy-scans
were thus measured at T = 1.6 K at various Q positions
(see Fig. 2). For Q = (0, 0, 2), a single series is observed.
As the scattering vector rotates towards the a direction,
a twin series of modes, shifted at slightly higher ener-
gies, rises progressively with an intensity that increases
with respect to the first series. These results prove un-
ambiguously the transverse (T ) nature of the first series
of discrete modes and the longitudinal (L) nature of the
second one.
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FIG. 1: (Color online) (a) Inelastic scattering intensity map
obtained from a series of Q-constant energy scans measured
at T = 1.6 K. The black line is a fit of the lowest mode of
the series, ET

1 , based on the assumption that its dispersion
follows the lower boundary 2ET

0 of the two spinon continuum
in the purely 1D case (see text). The grey lines indicate the
lower and upper boundaries of the corresponding continuum
using the fitted ε = 0.41 and J = 2.3 meV parameters [25].
(b) Energy scans measured at Q = (2, 0, 2) below and above
the Néel temperature.

An important characteristic of this quasi-1D chain sys-
tem is the strength of the interchain interactions. It can
be evidenced from the dispersion of the excitations per-
pendicular to the chain axis. Figure 3(c) presents the
energy dependence of the lowest energy mode of the T
and L series along a? obtained from the energy-scans
shown in Figs. 3(a,b). Although not visible for l = 1, a
sizable dispersion, of the order of 0.1 meV, is observed for
l = 2 with an expected minimum of the gapped mode at
the AF points. This peculiar l dependence suggests that
the coupling of Co spins belonging to adjacent chains
and shifted by c/2 should be taken into account, while
another exchange interaction in the diagonal direction fi-
nally stabilizes the observed magnetic structure [14, 20].

Next, we extracted the position of the modes in order
to investigate the bounding mechanism of the spinons.
The modes at Q = (0, 0, 2) and Q = (3, 0, 1) were fitted
up to 6 meV by a series of Gaussian functions (see Fig. 4).
Their full width at half maximum was obtained from a fit
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FIG. 2: (Color online) Q-constant energy scans, at various
Bragg positions shown in the inset (solid symbols), fitted by
a series of Gaussian functions (solid lines). This figure em-
phasizes two series of interlaced sharp T and L modes, the
latter arising and increasing in intensity when the Q-vector
rotates from the c−axis towards the a−axis direction.

of the lowest energy T and L modes and held constant to
the same value (0.2 meV) for the subsequent modes of the
series. It was necessary to add an increasing background
as the energy increases, probably due to a continuum of
excitations. For Q = (0, 0, 2), eight sharp T modes could
be extracted. For Q = (3, 0, 1), five T modes and five L
modes could be separated. The sixth and seventh modes
of the series were fitted by a unique Gaussian function
including the T and L modes too close in energy to be
separated. This analysis shows that the spacing between
the modes appears in a very nontrivial sequencing.

In order to interpret these results, a good starting point
is the pure 1D quasi-Ising limit [ε� 1 in Eq. (1)]. A state
containing two spinons is created by reversing one or sev-
eral adjacent spins from one of the 2 degenerate Néel
states. Two AF bonds are broken, yielding a state with
energy J , degenerate with all states resulting from re-
versing an arbitrary number of subsequent spins. These
states carry a spin Sz = ±1 for an odd number of re-
versed spins and Sz = 0 for an even number. As soon
as ε 6= 0, the excitation spectrum becomes a continuum
composed of such two domain walls which propagate in-
dependently. In this picture, the Sz = ±1 states form
transverse excitations, while the Sz = 0 states form lon-
gitudinal ones. This 1D domain wall picture and the
existence of a gapped continuum were first described by
Villain [21]. Shiba then showed that the introduction
of interchain couplings J ′, acting as a molecular field
hm, gives to the two domain wall s tates an additional
potential energy proportional to the distance comprised
between them. This causes the above mentioned quan-
tization of the excitation continuum which appears as a
series of discrete dispersing lines below the 3D ordering
temperature [7–9, 19].
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FIG. 3: (Color online) Q−constant energy scans measured
at 1.6 K (solid symbols) for (a) Q = (h, 0, 1) and (b) Q =
(h, 0, 2) scanning the lowest T and L modes of the series.
These modes are fitted by two Gaussian functions (solid lines),
yielding their dispersion curves along a? plotted in panel (c).
The solid lines are guide for the eyes.

The linear form of the confining potential imposes that
the sequence of excited modes should follow the negative
zeros of the Airy function Ai [9, 22–24]. We thus analyze,
at the bound state dispersion minima, the sequence of
their energies with:

ET,Lj = 2ET,L0 + α zj with j = 1, 2, 3, ... (2)

with Ai(−zj) = 0 and α ≈ (h2
mεJ)1/3 [9]. As shown

in the insets of Fig. 4, the energies of the T and L
modes were satisfactorily fitted to Eq. (2) for various Q,
validating the spinon confinement mechanism. The fit
yielded α ≈ 0.42 ± 0.03 meV, 2ETo ≈ 0.85 ± 0.15 meV,
and 2ELo ≈ 1.08 ± 0.05 meV [14]. In absence of any
microscopic model taking into account both arbitrary ε
and interchain interaction (Shiba’s model is valid only for
ε � 1), we then assume that the dispersion along c? of
the first bound state ET1 is roughly similar to that of the
lower boundary of the two-spinon continuum in the pure
1D case, namely 2ET0 . For any J and ε, this boundary is
given by [25]:

2ET0 (l) =


2I

1+κ

√
1 + κ2 − 2κ cosπl for l ≤ `κ

2I
1+κ sinπl for `κ ≤ l ≤ 1− `κ
2I

1+κ

√
1 + κ2 + 2κ cosπl for l ≥ 1− `κ

(3)



4

0

2 0 0

4 0 0

6 0 0

8 0 0

1 2 3 4 5 6
0

2 0 0

4 0 0

6 0 0

0 2 4 6 8 1 0
1
2
3
4
5

0 2 4 6 8 1 0
1
2
3
4
5

Q  =  ( 0 ,  0 ,  2 )

( b )  

Co
un

ts 
/ m

on
 40

00
00

0 (
~ 2

.4 
mi

n)
( a )

Q  =  ( 3 ,  0 ,  1 )

 
E n e r g y  ( m e V )

         

E j (m
eV

)

z j

T

          

E j (m
eV

)

z j

             

 

T
L

FIG. 4: (Color online) Energy scans measured (solid sym-
bols) for (a) Q = (0, 0, 2) and (b) Q = (3, 0, 1). These series
of sharp modes, as well as a broad contribution, were fitted
by Gaussian functions (red line for the global fit and black
lines for the individual Gaussian functions, see text). The
energies of the excitations extracted from the fits are plotted
in the insets as a function of the negative zeros zj of the Airy
function (see text). The lines are linear fits to the data.

with cos (π`κ) = κ, k′ = 1−κ
1+κ , k =

√
1− k′2, 1/ε =

cosh (πK ′/K), and J = Iπ/[K tanh (πK ′/K)] (K and
K ′ are the elliptic integrals of argument k and k′, re-
spectively) [26].

Fitting the dispersion along c∗ of ET1 − α z1 = 2ET0 (l)
with this model in several Brillouin zones gives J ≈
2.8 ± 0.4 meV and ε ≈ 0.41 ± 0.02 (see e.g. Fig. 1).
This analysis locates BaCo2V2O8 in the intermediate
anisotropic regime, in agreement with previous estima-
tions of ε [19, 27]. Note that J is twice smaller than the
estimation given in Refs. [18, 19]. Last, hm is directly
proportional to an effective interchain interaction J ′eff. A
quite strong value of hm ∼ 0.3 meV ∝ J ′eff can be inferred
from the determination of α. This somewhat larger value
than the ∼ 0.1 meV amplitude of the dispersion along a?

is probably due to the frustration between the various
interchain couplings [14].

It is worth noting that in the ε � 1 limit, the distin-
guishing feature of the L excitations is the existence of a
specific coupling with the Néel states. As the ε term ex-
changes two neighboring spins, the Néel state is directly
coupled to Sz = 0 excited states containing 2 reversed
spins. This makes the longitudinal modes more massive
(at higher energy) than their transverse counterpart, as
we observe in BaCo2V2O8. The ground state is then

an admixture of Sz = 0 two domain wall states added to
the Néel state, producing a weakening of the ordered mo-
ment. In the ε � 1 limit, the intensity of the L modes
should scale with ε2 [8], explaining why L excitations
were hardly observed in systems close to the Ising limit
such as CsCoCl3 and CsCoBr3 [7, 28]. The somehow
more isotropic character of BaCo2V2O8 (larger ε value)
however is expected to enhance the L modes.

In the limit of purely isotropic Heisenberg spins (ε =
1), a longitudinal mode is also expected [6]. It was for
instance observed, as a damped excitation, in the an-
tiferromagnetically ordered phases of spin 1

2 dimer sys-
tem TlCuCl3 [4], close to the pressure-induced ordering
transition, and of the quasi-1D Heisenberg spin 1

2 anti-
ferromagnet KCuF3 [29]. The longitudinal mode damp-
ing is usually attributed to its decay into a pair of gap-
less transverse spin waves. This longitudinal mode could
however not be resolved in another 1D material, namely
BaCu2Si2O7, which has a much weaker interchain cou-
pling [30]. A sufficiently strong dispersion perpendicular
to the chains was suggested to be necessary in order to
additionally stabilize such a damped longitudinal mode.
In BaCo2V2O8, we have indeed determined sizable in-
terchain couplings. Moreover, in contrast to the experi-
mental observation in KCuF3, the BaCo2V2O8 longitudi-
nal modes are remarkably intense and resolution limited.
The reason is probably that these longitudinal modes
cannot decay into transverse modes since the latter have
a large gap, due to the Ising-like anisotropy, and are dis-
cretized. It is worth noting that this discretization of lon-
gitudinal modes has been reported for the Higgs modes
in optical lattice of cold atoms due to confinement [3].

It is finally very instructive to recall that BaCo2V2O8

has also raised recently much interest for its field-induced
behavior, describable in terms of Tomonaga-Luttinger
liquid physics [12, 13, 31]. An exotic magnetic ordered
phase, unknown in classical systems, is induced by a mag-
netic field applied parallel to the chain axis. A longitudi-
nal incommensurate spin density wave (amplitude of the
moments modulated along the field direction) is actually
stabilized thanks to the particular values of J ′ and ε [27].
Those ingredients, i.e., sizable interchain interactions and
intermediate anisotropic character, are the same as the
ones we have invoked to account for the quantized trans-
verse and longitudinal magnetic excitations, observed in
BaCo2V2O8. This material is thus a rare example of spin
1/2 system displaying spin longitudinal modes, of pure
quantum origin, in both the dynamical and the field-
induced static regimes.

To summarize, our inelastic neutron scattering experi-
ment has revealed unconventional spin excitations in the
Ising-like chain antiferromagnet BaCo2V2O8: They are
quantized due to a weak interchain coupling and consist
of two series of both transverse and remarkably strong
longitudinal Zeeman ladders. We propose that the sta-
bilization of these longitudinal modes is enabled by the
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moderate Ising anisotropy prohibiting their decay into
the gapped and discretized transverse modes.
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[4] Ch. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F.
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SUPPLEMENTAL MATERIAL

1. Crystalline and magnetic structures of
BaCo2V2O8

BaCo2V2O8crystallizes in the centrosymmetric tetrag-
onal body-centered I41/acd (No. 142) space group, with
a = 12.444 Å, c = 8.415 Å, and eight chemical formu-
las per unit cell [1]. The 16 magnetic Co2+ ions of the
unit cell are equivalent (Wyckoff site 16f). The spin-
3/2 Co2+ ions (effective spin-1/2) are arranged in edge-
sharing CoO6 octahedra forming screw chains, running
along the c−axis, and separated by non-magnetic V5+

and Ba2+ ions (see Fig. 1 in Ref. [2]). Figure 5 shows
one of the two domains of the antiferromagnetic (AF)
structure determined in a previous single-crystal neutron
diffraction experiment at H = 0 and T = 1.8 K [2].
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FIG. 5: (Color online) Magnetic structure in the Néel phase
of BaCo2V2O8determined at H = 0 and T = 1.8 K [2]. The
two types of chains are plotted in projection along the c−axis
using two different colours: red for the chains described by a
41 screw axis, blue for those described by a 43 axis (the ar-
rows indicate the sense of rotation on increasing z). For each
Co2+ ion of the unit cell, the direction of the spin, ’+’ or ’-’,
along the c−axis is indicated, as well as the z atomic coordi-
nate. This figure presents one of the two magnetic domains;
the other domain is simply obtained by reverting all spins in
one type of chain, e.g., the blue ones. Notice the ’diagonal’
interchain AF coupling between the chains of the same type
(e.g., between the 2 Co2+ ions located at z = 3

8
in the two

labelled red chains, located at z = 7
8

in the two blue ones).

The dominant interaction is the intrachain nearest
neighbor AF exchange coupling (occurring between two
Co2+ ions of the same chain located at z = n/8 and
z = n/8 + 1/4, with n integer). This interaction imposes
an AF ordering along the chains with the spins parallel

to the chain c−axis. Looking at the crystalline and AF
structures, the dominant interchain interaction is very
probably AF along the ’diagonal’ direction a± b, that is
between two Co atoms of the same type of chain (blue
or red chains) located at the same z. This explains the
stabilization of the observed two magnetic domains. The
various exchange interactions occurring between the two
types of chains have been described in details in Ref. [3]
and were shown to yield an effective ’parallel’ (i.e., along
the a and b directions) interchain coupling of negligible
weight as compared to that of the ’diagonal’ interaction.

2. Sample and additional neutron scattering data

The BaCo2V2O8single-crystal used in the inelastic
neutron scattering (INS) experiments was grown at In-
stitut Néel (Grenoble, France) by the floating zone
method [4]. A 5 cm long cylindrical crystal rod, of about
3 mm diameter, was obtained, with the growth axis at
about 60◦ from the c−axis. An about 1 cm thick slice
was cut perpendicular to the c−axis.

For the neutron experiment performed on the IN12
spectrometer and described in the article, the sample was
mounted in a standard cryostat with the b−axis vertical.
The final wave vector kf was fixed at 1.5 Å−1 and the
higher order contamination was removed using a velocity
selector placed before the monochromator.

Additional INS data are presented in Fig. 6. This
figure reports measurements obtained on the CEA-
CRG thermal neutron three-axis spectrometer IN22 at
the Institut Laue-Langevin high-flux reactor, Grenoble,
France. The sample was mounted in a standard cryostat
with the b−axis vertical and the final wave vector kf was
fixed at 3.84 Å−1. Pyrolytic graphite (002) monochroma-
tor and analyzer were used, while the λ/2 contamination
was suppressed by using a graphite filter on the inci-
dent neutron beam. These measurements show a non-
dispersive mode at 30 meV whose intensity decreases
with |Q| and which dramatically broadens at high tem-
perature. It is ascribable to the first crystal field level of
the Co2+ atoms. Note that an alternative explanation of
the intense longitudinal modes observed in BaCo2V2O8

could be associated to the true S = 3/2 nature of the
Co2+ spin with large anisotropy as described in Ref. [5].
This explanation is however rather unlikely in view of t
he high energy value of the first crystal field level.

3. Additional details about the data analysis

The magnetic Bragg peaks corresponding to the anti-
ferromagnetic structure of BaCo2V2O8 with k = (0, 0, 1)
appear at Q = (h+ 1, k, l) with h+ k+ l even (condition
due to the I type of the lattice). Table I summarizes, for
the scattering vectors shown in Fig. 2, the values of α,
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FIG. 6: (Color online) Q−constant energy scans (open sym-
bols) measured at various scattering vectors Q = (4, 0, l) at
T = 1.6 K and kf = 3.84 Å−1 on IN22, and fitted by a Gaus-
sian function (solid lines). The absence of dispersion for this
30 meV excitation, together with its huge broadening at high
temperature (solid black circles), evidence its crystal field na-
ture.

TABLE I: Threshold energies 2ET
0 and 2EL

0 , coefficient α, and
agreement factor r2 for the transverse (T ) and longitudinal
(L) modes at four different Bragg positions. As the result of
the fit slightly depends on the number of modes considered,
this number nmodes is specified.

Q i 2Ei
0 (meV) α (meV) r2 nmodes

(0, 0, 2) T 1.00( 8) 0.386(11) 0.9946 8

0.85( 8) 0.419(13) 0.9962 5

0.79( 6) 0.435(12) 0.9978 4

(2, 0, 2) T 0.79( 9) 0.427(18) 0.9948 4

(2, 0, 1) T 0.77( 8) 0.430(15) 0.9956 5

0.72( 9) 0.418(13) 0.9972 4

(3, 0, 1) T 0.71( 9) 0.435(16) 0.9946 5

0.66(11) 0.448(22) 0.9930 4

(2, 0, 2) L 1.10( 8) 0.407(16) 0.9955 4

(2, 0, 1) L 1.08( 7) 0.404(12) 0.9966 5

1.03( 7) 0.444(18) 0.9954 4

(3, 0, 1) L 1.13( 9) 0.392(15) 0.9941 5

1.06( 6) 0.413(11) 0.9978 4

2ET0 and 2EL0 obtained by fitting to Eq. (2) the positions
in energy of the transverse (T) and longitudinal (L) dis-
crete modes [see the insets of Figs. 4(a,b) for instance].
The number of modes included in the fits (4 to 8 starting
from the lowest energy ones) was varied in order to esti-
mate the error bars. The small dispersion of the results
comes from the fact that, as in CoNb2O6 [see Fig. 3(b) in
Ref. [6]], the energies of the modes do not vary perfectly
linearly with the negative zeros of the Airy functions.
Note that the threshold energies 2ET0 and 2EL0 , as well
as the coefficient α, do not depend on the Bragg posi-

tion. The fitted values, averaged on the various fit s, are:
2ET0 = 0.85 ± 0.15 meV, 2EL0 = 1.08 ± 0.05 meV, and
α = 0.42± 0.03 meV.
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ERRATUM

In our recent letter (see pages 1 to 5), we have
presented neutron scattering experiments performed on
the Ising-like antiferromagnetic chain BaCo2V2O8. We
showed that in the ordered phase, the spin excitation
spectrum consists in two interlaced series of longitudi-
nal and transverse spinon bound states confined by the
inter-chain linear potential.
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FIG. 7: (Color online) Inelastic scattering intensity map ob-
tained from a series of Q-constant energy scans measured at
T = 1.6 K. The solid black line is the new fit to the low-
est mode of the series, ET

1 , based on the assumption that its
dispersion follows the lower boundary 2ET

0 of the two spinon
continuum in the purely 1D case. The dashed black line comes
from the folding of the previous dispersion due to the inter-
chain couplings. Only the lower boundary of the continuum
for the pure 1D model is plotted in this figure (grey solid line),
the upper one being above the measured energy range. The
white dash-dotted lines materialize the splitted anti-crossing
branches (phenomenological fit).

To extract the parameters of a model Hamiltonian,
we proposed a fit of the lowest mode of the series, ET1 ,
using the analytical formula given by Bougourzi et al.
(Ref. [22] of our letter). Unfortunately, this fit was made
assuming a wrong underlying periodicity of the magnetic
structure, neglecting the body-centered type of the unit
cell. In this erratum, we correct the fit of the excitation
spectrum by taking into account the correct periodicity
of the magnetic structure.

Actually, Q = (2, 0, l) with l = 2 corresponds to a
zone center (ZC) while that with l = 3 corresponds to
an antiferromagnetic (AF) position. We now impose the
minimum and the maximum of the dispersion to be at
the AF and ZC positions, respectively, in order to have
the correct periodicity (see solid black curve shown in
Fig. 1 of the present erratum). This fit yields larger
values for the intrachain coupling, J = 4.8 ± 0.2 meV
(instead of 2.8 meV) in better agreement with the esti-
mation of Kimura et al., J = 5.6 meV (Refs. [20,21] of
our letter). This also slightly changes the values of the
anisotropy parameter, ε = 0.56 ± 0.05 (instead of 0.41)
and of the molecular field hm (thus of the interchain cou-
pling): hm '

√
α3/(εJ) ' 0.2 meV (instead of 0.3 meV).

This interchain coupling causes a folding of the disper-
sion curve (not present in the case of the 1D model of
Bougourzi et al.), yielding the second dispersion curve
plotted with a dashed black line, whose minimum is
now at the ZC position. The two branches interact at
l = 2.5 producing an anti-crossing splitting of about 2.2
meV (white dash-dotted curves in Fig. 1). Another con-
sequence of this new fit is that some spectral weight is
now expected up to about 11 meV and that the strong
excitation around 6 − 7 meV is now well accounted for
by the dispersion of the first transverse modes.

To conclude, this corrected model yields a better agree-
ment between the neutron diffraction results and the
magnetization measurements of Kimura et al.. It also
gives a better understanding of our complete inelastic
scattering intensity map, without affecting the main re-
sults and conclusion of our letter.
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