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We consider the development of accurate and efficient numerical methods for the solution
of the Vlasov-Landau equation describing a collisional plasma. The methods combine a
Lagrangian approach for the Vlasov solver with a fast spectral method for the solution of
the Landau operator. To this goal new modified spectral methods for the Landau integral
which are capable to capture correctly the Maxwellian steady state are introduced. A
particular care is devoted to the construction of Implicit-Explicit and Exponential Runge-
Kutta methods that permits to achieve high-order and efficient time integration of the
collisional step. Several numerical tests are reported which show the high accuracy of the
numerical schemes here presented.
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1. Introduction

Coulomb collisions between charged particles in a plasma play a relevant rule in sev-
eral applications ranging from laser and particle beam interactions with plasma (Pitale
1978; Ghanshyam & Tripathi 1993) to super-thermal radiation (Khabibrakhmanov &
Khazanov 2000) and ion transport in fusion reactors (Sydora et al. 2006).

The Landau or Landau-Fokker-Planck equation is a common kinetic model used to
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describe long range Coulombian interactions in a weakly ionized gas and is characterized
by a nonlinear partial integro-differential equation of the form

∂f

∂t
+ v · ∇xf + E(t, x) · ∇vf =

1

ε
Q(f, f), v ∈ R

3, x ∈ Ω ⊂ R
3, (1.1)

where the unknown distribution function f(t, x, v) depends on time t, position x and
velocity v of particles. In the above equation ε is the Knudsen number, E(t, x) the
electric field given by the solution of a normalized Poisson equation

E(t, x) = −∇xφ(t, x), ∆xφ(t, x) = 1 −
∫

R3

f(t, x, v)dv, (1.2)

and Q(f, f) is the Landau collision operator

Q(f, f)(v) = ∇v.

∫

R3

Φ(v − v∗) [∇v f(v)f(v∗) −∇v∗f(v∗)f(v)] dv∗. (1.3)

In (1.3) the dependence from (x, t) has been omitted for simplicity and Φ is a 3 × 3
nonnegative and symmetric matrix that depends on the particles interaction

Φ(v) = |v|γ+2S(v), γ ∈ R and S(v) = Id− v ⊗ v

|v|2 . (1.4)

Different values of γ lead to the classification in hard potentials γ > 0, Maxwellian
molecules γ = 0, or soft potentials γ < 0. The latter case involves the Coulombian case
γ = −3, which is of primary importance in plasma physics.

The structure of the Landau operator is similar to the classical Boltzmann collision
integral of rarefied gas dynamics (Cercignani 1988) and by standard arguments of ki-
netic theory one recovers the same physical properties such as the conservation of mass,
momentum and energy

∫

R3

Q(f, f)(v)





1
v
|v|2



 dv = 0

and the entropy production

dS(t)

dt
= − d

dt

∫

R3

f(t, v) ln(f(t, v))dv > 0.

This implies that the equilibrium states of the Landau operator, i.e. the functions satis-
fying Q(f, f) = 0, are given by local Maxwellians

M(v) =
ρ

(2 π kBT )3/2
exp

(

−|v − u|2
2 kBT

)

,

where kB is the Boltzmann’s constant, ρ the total mass, u the mean velocity and T the
temperature of the plasma given by

ρ =

∫

R3

f(v) dv, u =
1

ρ

∫

R3

f(v)v dv, T =
1

3ρ

∫

R3

f(v)(u− v)2 dv.

The Landau collision operator (1.3) is obtained as an approximation of the Boltzmann
collision operator for Coulomb interactions. In Coulomb collisions small angle collisions
play a more important role than collision resulting in large velocity changes. In such case
the Boltzmann collision operator has no meaning, due to the divergence of the integral,
even for smooth functions, a cut-off angular approximation is then used and the Landau
equation can be derived in the so called grazing collision limit (Landau 1936). Several
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rigorous mathematical derivation of the Landau equation have been performed, we men-
tion here the works of Arsen′ev (1989), Degond & Lucquin-Desreux (1992), Desvillettes
(1992), Rosenbluth et al. (1957) and Alexandre & Villani (2004). For a review of the
main mathematical aspects related to the equation we refer the reader to Villani (2002)
and the references therein.

From a numerical point of view, the development of grid-based methods for the Landau
equation represents a challenge in scientific computing. Most of the difficulties are due
to the multidimensional nature of the problem (a seven dimensional problem, six space
dimensions plus time) and to the structure of the collision integral which leads to the
so-called curse of dimensionality. In addition the numerical integration requires great
care since the collision term is at the basis of the macroscopic properties of the equation.

In contrast with the Boltzmann equation, where Monte Carlo methods play a major
rule in numerical simulations (see, for example, Pareschi & Russo (1999) for a survey on
Monte Carlo methods and Cercignani et al. (1994) for some rigorous mathematical re-
sults), the construction of efficient Monte Carlo methods for long-range interactions like
the Coulomb potential field is still not fully understood. Recently, important advance-
ments in this direction have been achieved by Bobylev & Nanbu (2000) where a Monte
Carlo simulation method has been derived directly from the Boltzmann equation in the
grazing collision approximation. The performance of Bobylev-Nanbu scheme has been
studied in details by Wang et al. (2008). Monte Carlo methods for collisional plasmas
have also been developed by Dimarco et al. (2010), while an hybrid method for accel-
erating the simulation of Coulomb collisions has been realized and numerically tested
in Caflisch et al. (2008). In addition, all these Monte Carlo method suffer from the two
typical limitations of probabilistic particle methods, namely the slow convergence rate
and the numerical noise in the solutions.

For these reasons, it is highly desirable to develop effective grid-based methods that
solve directly the partial differential equation (1.1). Due to the computational complexity
many papers are devoted to simplified situations, like in the isotropic case (Bobylev et al.
1980). The construction of conservative and entropic schemes for the space homogeneous
Landau equation has been proposed by Degond & Lucquin-Desreux (1994) and Buet
& Cordier (1998, 1999). These schemes are built in such a way that the main physical
properties are conserved at a discrete level. Positivity of the solution and discrete entropy
inequality are also satisfied. However, the direct implementation of such schemes is very
expensive since the computational cost increases roughly as n2, where n is the total
number of parameters used to represent the distribution function in the velocity space.
For this reason, several fast approximated algorithms, based on multipole expansions
(Lemou 1998) or multigrid techniques (Buet & Cordier 1998), have been proposed to
reduce the computational complexity. We refer also to Valentini et al. (2009), and the
references therein, for different numerical approaches.

An effective way to overcome the computational complexity of the Landau equation is
based on the use of spectral methods. Fourier-Galerkin methods have been recently pro-
posed for the Boltzmann (Pareschi & Russo 2000a; Pareschi & Perthame 1996; Mouhot
& Pareschi 2004, 2006; Filbet et al. 2006) and the Landau (Pareschi et al. 2000b,a; Fil-
bet & Pareschi 2002, 2003) collision operators (for related approaches in the Boltzmann
case we refer to Bobylev & Rjasanow (1997) and Gamba & Tharkabhushanam (2009)).
The main advantage of spectral schemes is that they permit to obtain spectrally accu-
rate solutions with a reduction of the quadratic cost n2 to n log2 n. The lack of discrete
conservations in the spectral scheme (mass is preserved, whereas momentum and energy
are approximated with spectral accuracy) is compensated by its higher accuracy and
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efficiency. A detailed comparison of the spectral scheme with the schemes proposed in
Buet et al. (1997); Lemou (1998) has been done in Buet et al. (1999).

The main goal of this paper is to present efficient numerical methods for a colli-
sional plasma by coupling a steady state preserving spectral technique (Filbet et al.
2014) for the collision term (1.3) with a Vlasov solver for the transport step (Son-
nendrücker 2013). In addition the solution of the collisional Landau term is performed
with asymptotic-preserving time integration methods which, among other, permits to
overcome the parabolic stiffness of the equation which relate the time step to the square
of the velocity mesh (Li et al. 2014). The above properties, as we will see, are essential
to perform efficiently space non homogeneous computations with high-order accuracy.

The rest of the article is organized as follows. In Section 2 we introduce different split-
ting methods to combine the Landau collisional step and the Vlasov-Poisson collisionless
step. The fast spectral solver is then presented and modified in order to achieve the steady
state preserving property. The semi-Lagrangian solvers used for the Vlasov-Poisson term
are then shortly reviewed. Section 3 is devoted to the issue of the time discretization
of the collisional phase. Efficient IMEX Runge-Kutta schemes and Exponential methods
which permits to avoid the parabolic stiffness of the Landau operator are introduced.
Their properties and relations with the corresponding fluid limit of the Vlasov-Landau
equation are then discussed. Finally in Section 4 several numerical tests for space homo-
geneous and space non homogeneous problems are presented. Some conclusions are then
reported in Section 5.

2. Numerical methods

Here we restrict ourselves to operator splitting based schemes. It is well-known, in fact,
that most numerical methods for collisional kinetic equation are based on a splitting in
time between particle transport and collisions. A major advantage of splitting schemes is
that they permits to embed a numerical method for the collision term in a pre-existing
Vlasov-Poisson solver. Alternative approaches are based on the use of Implicit-Explicit
Runge-Kutta schemes (Ascher et al. 1997; Pareschi & Russo 2005; Dimarco & Pareschi
2013), here we do not explore this direction and refer to Section 3.1.1 for a description
of such methods in the collisional step.

2.1. Splitting methods

As it is usually done for a kinetic equation like (1.1) a simple first order time splitting
is obtained considering in a small time interval ∆t = [tn, tn+1] the numerical solution of
the space homogeneous collision phase C∆t(f

n)






∂f∗

∂t
=

1

ε
Q(f∗, f∗),

f∗(0, x, v) = fn(x, v),

(2.1)

and, the transport step T∆t(f
∗)







∂f∗∗

∂t
+ v · ∇xf

∗∗ + F (t, x) · ∇vf
∗∗ = 0,

f∗∗(0, x, v) = f∗(∆t, x, v).

(2.2)

The approximated value at time tn+1 is then given by

fn+1(x, v) = f∗∗(∆t, x, v) = T∆t (C∆t(f
n)) . (2.3)



Numerical methods for collisional plasma 5

Higher order splitting formulas can be derived in different ways (see Hairer et al.
(2010)). The well-known second order Strang splitting (Strang 1968) can be written as

C∆t/2(T∆t(C∆t/2(fn))). (2.4)

Unfortunately for splitting methods of order higher than two it can be shown that it’s
impossible to avoid negative time steps both in the transport as well as in the collision
(Hairer et al. 2010). Higher order formulas which avoid negative time stepping can be
obtained as suitable combination of splitting steps (Dia & Schatzman 1996). For example
a third order approximation is given by

2

3
[T∆t/2(C∆t(T∆t/2(fn))) + C∆t/2(T∆t(C∆t/2(fn)))] − 1

6
[T∆t(C∆t(f

n)) + C∆t(T∆t(f
n))],

(2.5)
which corresponds to take a combination of symmetrized Strang and first order splitting,
whereas a fourth order scheme reads

4

3
C∆t/4(T∆t/2(C∆t/2(T∆t/2(C∆t/4(fn))))) − 1

3
C∆t/2(T∆t(C∆t/2(fn))). (2.6)

Clearly all the above splitting methods admit the symmetric formulation obtained by
switching the transport and the collision operators. The crucial point is the numerical so-
lution to (2.1) because of the presence of the collision operator and the diffusive stiffness.
In the following, we first present the numerical approximation of the collision operator
using a fast spectral method which is capable to preserve exactly the Maxwellian steady
states. Next we recall some basic facts concerning the discretization of the Vlasov part.

2.2. Fast spectral methods for the Landau operator

Spectral methods for solving the Boltzmann equation have their roots in the works
of Pareschi & Perthame (1996) and Pareschi & Russo (2000a). Subsequently, their prop-
erties were studied in Pareschi & Russo (2000b) and in Filbet & Mouhot (2011). Related
approaches, based on the use of the Fourier transform have been introduced by Bobylev
& Rjasanow (1997, 1999) and Gamba & Tharkabhushanam (2009). The method has
been successfully extended to the Landau equation in Pareschi et al. (2000b,a); Filbet
& Pareschi (2002, 2003) together with the derivation of fast algorithms. On the con-
trary, fast algorithms for the Boltzmann case have been much more difficult to achieve
(Mouhot & Pareschi 2004, 2006). Finally, the connection between the two approaches in
the grazing limit has been studied in Pareschi et al. (2003); Gamba & Haack (2014).

In this section we first recall briefly the derivation of the method for the Landau
equation, the fast algorithm, and its mathematical properties (consistency and spectral
accuracy). Next, following the recent result in Filbet et al. (2014) we show how to modify
the spectral method in order to capture exactly the Maxwellian steady state without
loosing spectral accuracy.

2.2.1. The classical fast spectral method

We rewrite here the expression of the Landau integral in dimension d > 2 after the
change of variables q = v − v∗

Q(f, f)(v) = ∇v ·
∫

Rd

φ(q)[f(v − q)∇vf(v) − f(v)∇qf(v − q)] dq. (2.7)

We will assume the support of the distribution function is included in the ball B0(R)
centered in the origin and with radius R > 0. This assumption is clearly false in general,
but it is essential from a numerical point of view for any method that uses a finite velocity
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space for the representation of the distribution function. This is equivalent to assume that
the distribution function is truncated to zero for large velocities |v| > R. Moreover, it is
easy to prove that if supp(f(v)) ⊂ B0(R) then supp(Q(f, f)(v)) ⊂ B0(3R).

In order to write a spectral approximation to (2.7) we can consider the distribution
function f(v) restricted on the cube [−T, T ]3 with T > 3R, assuming f(v) = 0 on
[−T, T ]3 \ B0(R), and extend it by periodicity to a periodic function on [−T, T ]3. The
lower bound for T can be improved using the periodicity of the function and allowing
intersections of periods where the function f is zero, to get T > 2R (Pareschi et al.
2000b,a). Therefore, aliasing errors are avoided if the integration over R

d in (2.7) is
replaced by an integration over B0(2R). To simplify the notation let us take T = π and
hence R = π/2.

We approximate the distribution by a partial sum of a Fourier series,

fN(t, v) =
∑

k∈{−N,...,N}

f̂k(t)ei k·v, (2.8)

where k ∈ Z
d, N = (n, . . . , n) is a multi-integer, n is the number of half modes in each

direction and the k-th mode is given by

f̂k(t) =
1

(2π)d

∫

[−π,π]d
f(t, v)e−i k·vdv.

Now, substituting the approximation fN (t, v) in the operator QR, where QR is the Lan-
dau operator with cut-off over the relative velocity in the ball B0(π) we get

QR(fN , fN ) =
∑

k∈{−2N,...,2N}

Q̂R
k e

i k·v, (2.9)

with

Q̂R
k =

N∑

l+m=k

l,m=−N

f̂l f̂mβ̂(l,m), (2.10)

where β̂(l,m) = B̂(l,m) − B̂(m,m), and the Landau kernel modes B̂(l,m) are given by

B̂(l,m) =

∫

B0(π)

|g|γ+2

[

l2 −
(

l · g|g|

)2
]

eig·mdg. (2.11)

It can be proved that the coefficients B̂(l,m) are scalar quantities independent on the
function f which depend on |l+m| and |l−m| only (Pareschi et al. 2000b,a). Moreover,
for inverse power laws, taking C = (4π)(π)d+2+γ we have the bound

|B̂(l,m)| 6 C
3N2

d+ 2 + γ
. (2.12)

Note that B̂(l,m) grow with N2, and this is the cause of the stiffness observed in the
time integration of the equation (Filbet & Pareschi 2002, 2003). This reflects the fact
that the Landau equation suffers of the stiffness typical of diffusion equations. Stability
condition of grid based methods requires that the time step scales with the square of
the velocity mesh size. Time integration methods that overcome this problem will be the
subject of Section 3.

Let now PN : L2([−π, π]d) → IPN be the orthogonal projection upon the space of
trigonometric polynomials of degree N in v, IPN in the inner product of L2([−π, π]d).
Then the spectral method for the collision step (2.1), where we take ε = 1 for simplicity,
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can be written in equivalent form as

∂fN
∂t

= QR
N (fN , fN)

with initial data fN (v, t = 0) = f0,N (v) and

QR
N (fN , fN) := PNQ

R(fN , fN ), (2.13)

where QR(fN , fN ) is given by (2.9).
It is easy to verify that the spectral method preserves mass whereas variations of

momentum and energy are controlled by the spectral accuracy (Pareschi & Russo 2000a;
Pareschi et al. 2000b). By the arguments in Pareschi et al. (2000a) it is possible to prove
consistency and spectral accuracy of the method

Theorem 2.1. The spectral approximation of the collision operator defined by (2.9)-
(2.13) is such that the following properties hold

i) (consistency) Let f ∈ H2
p ([−π, π]d), then ∀ r > 0

||QR(f, f) −QR
N (fN , fN)||2 6 C

(

||f − fN ||H2
p

+
||QR(fN , fN )||Hr

p

N r

)

,

where C depends on ||f ||2.
ii) (spectral accuracy) Let f ∈ Hr

p([−π, π]d), r > 2 then

||QR(f, f) −QR
N (fN , fN)||2 6

C

N r−2

(

||f ||Hr
p

+ ||QR(fN , fN )||Hr
p

)

.

In the previous theorem Hr
p denotes the Sobolev space of periodic functions up to the r-

th order derivative over [−π, π]d. No information are available on the discrete equilibrium
states, the decay of the numerical entropy and the preservation of positivity. We mention
that spectral schemes where conservation are enforced by some kind of renormalization
procedure have been developed in (Pareschi & Perthame 1996; Bobylev & Rjasanow 1997;
Gamba & Tharkabhushanam 2009).

2.2.2. A fast summation method

First let us note that a direct computation of (2.10) has the same O(n2), n = N3, cost
of a conventional finite difference discretization applied to the Landau equation.

On the other hand we can rewrite (2.10) as

N∑

m=−N

f̂k−m f̂mB̂(k −m,m) −
N∑

m=−N

f̂k−m f̂mB̂(m,m), k = −N, . . . , N.

Clearly the second sum is a convolution sum and thus transform methods allow this term
to be evaluated in O(n log2 n) operations. For the details of the implementation of this
standard technique for spectral methods we refer the reader to Canuto et al. (1988).
Hence the most expensive part of the computation is represented by the first sum which
in general cannot be evaluated with fast algorithms.

In the case of the Landau equation, however, B̂(l,m) splits as

B̂(l,m) := l2F̃ (m) −
d∑

p,q=1

lp lqIpq(m) = l2F̃ (m) − l I(m) lT ,
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where lT denotes the transpose of the vector l, I = (Ipq) is a d× d symmetric matrix

F̃ (m) =

∫

B0(π)

|g|2+γeig·mdg, (2.14)

Ipq(m) =

∫

B0(π)

|g|γgp gqeig·mdg, p, q = 1, . . . , d. (2.15)

Thus we can write

ψ̂(l,m) = l2F̃ (m) − l I(m) lT − B̂L(m,m). (2.16)

The resulting scheme requires the evaluation of 2d+ 2 convolution sums (the number of
distinct elements of I plus two single convolution sums for F̃ (m) and B̂L(m,m)). Hence,
the overall cost of the scheme is only O(n log2 n).

For the implementation of the algorithm we need to evaluate the quantities (2.14)-
(2.15). For simplicity, we will treat here only the two-dimensional case v ∈ R

2. We have

I11(m) =
1

2

[

F (|m|) +
m2

1 −m2
2

|m|2 G(|m|)
]

,

I22(m) =
1

2

[

F (|m|) − m2
1 −m2

2

|m|2 G(|m|)
]

, (2.17)

I12(m) = I21(m) =
m1m2

|m|2 G(|m|),

where

F̃ (m) = F (|m|) = 2π

∫ π

0

rγ+3J0(|m|r) dr, (2.18)

with J0 the Bessel function of order 0 and

G(|m|) =

∫ π

0

rγ+3

∫ 2π

0

cos(|m|r cosφ) cos(2φ) dφ dr. (2.19)

Thus the computation reduces simply to the computation of two one-dimensional in-
tegrals F (|m|) and G(|m|). These quantities can be computed very accurately once and
then stored in two bidimensional arrays. A similar reduction can be performed in the full
three dimensional case.

2.2.3. The steady state preserving spectral method

A major drawback of the method just described is the lack of conservations and, in
particular, the incapacity of the scheme to preserve the Maxwellian steady states of
the system. Renormalization strategies to recover the conservations have been proposed
by various authors (Pareschi & Perthame 1996; Bobylev & Rjasanow 1997; Gamba &
Tharkabhushanam 2009), however these do not guarantee the Maxwellian behavior of
the solution. A modified spectral method which is capable to overcome this difficulty has
been proposed recently in Filbet et al. (2014). Here we describe the method in the case
of the Landau operator.

Let us start from the decomposition

f = M + g, (2.20)

with M the local Maxwellian equilibrium and g such that
∫

R3 g φ dv = 0, φ = 1, v, |v|2.
When inserted into the Landau operator gives

Q(f, f) =  L(M, g) +Q(g, g), (2.21)
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where  L(M, g) = Q(g,M) +Q(M, g) and we used the fact that

Q(M,M) = 0. (2.22)

Note that the steady state of (2.21) is given by g ≡ 0. To illustrate the method let us
consider now the space homogeneous equation that we rewrite using the micro-macro
decomposition as

∂g

∂t
=  L(M, g) +Q(g, g),

f = M + g.
(2.23)

Using the same notations of the previous section we can write the Fourier-Galerkin
approximation

∂gN
∂t

=  LR
N (MN , gN) +QR

N (gN , gN ),

fN = MN + gN ,
(2.24)

where

MN := PNM, gN := PNg,  LR
N (MN , gN ) := PN  LR(MN , gN). (2.25)

It is immediate to see that gN ≡ 0 is an admissible local equilibrium of the spectral
scheme (2.24) and therefore fN = MN is a local equilibrium state.

It is interesting to observe that the only difference between scheme (2.24) and the usual
spectral method developed on the original formulation

∂fN
∂t

=
∂gN
∂t

= QR
N(fN , fN ),

=  LR
N (MN , gN ) +QR

N(gN , gN ) +QR
N (MN ,MN)

(2.26)

is due to the constant (in time) term

QR
N (MN ,MN ) 6= 0, (2.27)

which is spectrally close to 0 since from Theorem 2.1 for f = M we get

Lemma 2.1. For r > 2 we have

||QR
N(MN ,MN )||2 6

C

N r−2

(

||M ||Hr
p

+ ||QR(MN ,MN)||Hr
p

)

, ∀ r > 2. (2.28)

From the above estimate spectral accuracy of the steady state preserving method
follows immediately. Finally, from the computational viewpoint the new method can
be implemented through the same fast algorithm just described, simply by removing the
constant term (2.27) in the usual spectral method. In this way we avoid the accumulation
of errors and can take advantage of the fact that fN = MN is the steady state of the
numerical scheme.

2.3. Semi-Lagrangian schemes for the Vlasov equation

In this paragraph we give a short overview of semi-Lagrangian method we employ to
discretize the left hand side of the Vlasov-Landau equation (1.1). The semi-Lagrangian
methods use, as classical finite volume methods, a fixed mesh in space and in veloc-
ity space but they take advantage of the knowledge of the exact solution of the linear
transport process which characterizes the kinetic equations. In general, the advantages
of these methods are related to the fact that they can be quite easily designed in order to
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possess many desired properties such as positivity, physical conservations and robustness
when dealing with large velocities. More in details, they do not suffer of the time step
restrictions which are typical of other classes of schemes, thus the CFL conditions are
normally only imposed in order to keep errors sufficiently small.

Several different semi-Lagrangian approaches have been developed in the past Boris
& Book (1973); Cheng & Knorr (1976) and more recently Carrillo & Vecil (2007); Qiu
& Shu (2011); Ayuso et al. (2011); Heath et al. (2012); Cheng et al. (2012); Crouseilles
et al. (2010); Sonnendrücker et al. (1999); Filbet et al. (2001); Valentini et al. (2007)
which address the particular problem of solving Vlasov type kinetic equations by this
kind of techniques. Here we recall the basic features of the method used and we refer to
the above references and the recent introductory notes by Sonnendrücker (2013) for a
more complete overview of this class of methods.

We consider the left hand side of equation (1.1)

∂f

∂t
+ v · ∇xf + E(t, x) · ∇vf = 0, v ∈ R

3, x ∈ Ω ⊂ R
3. (2.29)

The above equation can be solved by means of semi-Lagrangian methods by employing
again time splitting techniques which separates the transport in the physical space by
the transport in the velocity space. A first order splitting scheme reads as







∂f∗

∂t
+ v · ∇xf

∗ = 0,

f∗(0, x, v) = fn(x, v),

(2.30)

and






∂f∗∗

∂t
+ E∗∗ · ∇vf

∗∗ = 0,

f∗∗(0, x, v) = f∗(∆t, x, v),

(2.31)

with fn+1(x, v) = f∗∗(x, v) and En+1(x) = E∗∗(x) = −∇xφ
∗∗(x). In the above scheme,

the electric potential is computed by solving the Poisson equation after the transport
step, which means −∆xφ

∗∗(x) =
∫

R3 f
∗∗(0, x, v)dv =

∫

R3 f
∗(∆t, x, v)dv. To solve the

Poisson equation we used a classical finite difference fourth order discretization. As in
the case of collisions, high order splitting can be used as well to increase the accuracy
with respect to time. In practice, in the numerical test section we employed a second
order Strang splitting (2.4) and a fourth order time splitting (2.6) method. The most
common reconstruction techniques found in literature are cubic splines, Hermite or La-
grange polynomials. In our computations we employed cubic spline reconstructions. In
the one dimensional setting the cubic spline interpolation f∆x of a function f is defined
by a cubic function f∆x ∈ P3([I]) on each interval I of length ∆x in which the space is
discretized with f∆x(xj) = f(xj) and f∆x ∈ C2(I). Writing f∆x using the cubic B-spline
basis we get

f∆x(x) =

N−1∑

h=0

ahS
3(x− xh) (2.32)

where N are the number of points of the mesh and the coefficients ah are given by the
interpolation conditions

f(xj) = f∆x(xj) =

M−1∑

h=0

ahS
3(xj − xh) (2.33)
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while the cubic B-spline basis is defined by

S3(x) =
1

6







(2 − |x|/∆x3), if ∆x < |x| < 2∆x

4 − 6(|x|/∆x)2 + 3(|x|/∆x)3, if 0 < |x| < ∆x

0, otherwise.

(2.34)

3. A penalization technique for efficient time integration

In this section we focus on the development of efficient numerical time integrators
for solving the space homogeneous Landau equation, the full solution of the collisional
Vlasov equation being obtained by means of splitting techniques as the ones described in
Section 2.1. The time discretization of the collision term brings new numerical difficulties
to the problem. They can be summarized by:

1. Parabolic stiffness : the Landau operator is generically a diffusive operator, and if
one uses explicit methods, typically a time constraint ∆t ∼ ∆v2 is expected.

2. Strong collisions regimes : When one deals with strong collisional regimes the Knud-
sen number ε tends to 0 which leads to a fast convergence to the equilibrium state. In
these situations the stability of standard explicit methods is related to time steps of order
∆t ∼ ε.

These two issues combined cause typically time steps restrictions of type ∆t ∼ ε∆v2,
which determine a tremendous computational cost in practical computations. In the
following, we present two efficient strategies which permit to overcome these difficulties
leading to high order in time schemes. As the time scale imposed by ε always comes with
the time scale imposed by ∆v2, numerically one could simply set ε = 1 and derive the
schemes in this general setting.

3.1. Removing the parabolic stiffness

The problem we address is the following

∂tf = Q(f), v ∈ R
3. (3.1)

with Q

Q(f) = ∇v ·
∫

R3

Φ(v − v∗)[f(v∗)∇vf(v) − f(v)∇v∗f(v∗)]dv∗. (3.2)

The Landau operator is a diffusive-type operator with eigenvalues expanding to infinity
analytically and to O(1/∆v2) numerically. This causes the so-called parabolic stiffness
∆t ∼ (∆v)2 which one encounters if standard explicit schemes are employed. On the
other hand, standard implicit methods which exhibit larger stability regions and thus
allow bigger time steps, cannot be used in this situation, since the numerical complexity
related to the discretization of Q makes impossible, in practice, its inversion.

In order to construct schemes which permit to avoid the stiffness of the collision oper-
ator and its numerical inversion, we introduce a suitable penalization operator which is
easier to invert with respect to the original operator. In order to guarantee an efficient,
high order and consistent with the limit ε→ 0 scheme, the penalization operator P needs
to satisfy the following criteria:
• P should share the same equilibrium state of the original operator Q, i.e. the func-

tions f such that Q(f) = 0 are also such that P (f) = 0. This property guarantees the
correct and stable solution for infinite times.
• P should preserve the first three moments, that is:

∫
[
1, v, v2

]T
P (f)dv = 0. (3.3)
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This requirement is imposed in order to preserve mass, momentum and energy in the
evolution of the system as the original operator Q does.
• P should have a diffusive character which permits to capture the diffusive behaviors

of the original operator Q.
• P should be easy to invert.
The simplest operator which fulfills all the above characteristics is the so-called Fokker-

Planck operator:

P (f) = µ∇v ·
(

M∇v

(
f

M

))

. (3.4)

Here µ is a numerical constant, and M is the Maxwellian function that shares the first
three moments with f . This operator has been recently used as a penalization operator
in Jin & Yan (2011) for constructing asymptotically stable schemes.

Thus, the original equation (3.1) is modified in

∂tf = [Q(f) − P (f)]
︸ ︷︷ ︸

non-stiff

+

stiff
︷ ︸︸ ︷

P (f)
.
= R(f) + P (f). (3.5)

Now, thanks to this reformulation, the first term, denoted by R, has most of its parabolic
scale canceled out, and is expected to be non-stiff, or comparably less stiff, while the
second term, albeit diffusive, is easy to be inverted. Starting from the above reformulation
in the following we propose two different approaches both leading to accurate and stable
time discretizations which avoid the parabolic stiffness: Implicit-Explicit Runge-Kutta
(IMEX) methods, and exponential Runge-Kutta (ERK) methods. We conclude this part
with some comments about the choice of the parameter µ.

Remark 3.1 (On the choice of µ). As we will made more clear after the introduc-
tion of the details of the time integrators, larger is µ more stable is the scheme. On the
other hand, large values of µ causes largers errors. This is due to the fact that larger is
µ more important becomes the contribution of the penalization operator P with respect to
the original operator Q. Thus, as suggested in Jin & Yan (2011) a good balance betweem
stability and numerical error can be

µ = µ0 max
v

Λ(DΦ(f)). (3.6)

Here µ0 is a constant such that µ0 >
1
2 while Λ(DΦ) is the spectral radius of the positive

symmetric matrix DΦ, with DΦ(f) defined by

DΦ(f) =

∫

Φ(v − v∗)f∗dv∗. (3.7)

We remind to Jin & Yan (2011) for details about this particular choice and other possible
choices for µ.

3.1.1. IMEX-RK scheme

The idea behind the IMEX-RK schemes is to construct a framework which permit to
discretize with high order of accuracy a given equation treating with different Runge-
Kutta schemes the different terms which appears in the equation. Thus, in the case of
equation (3.5) the idea is to treat explicitly the non stiff part (the part due to the dif-
ference of the original operator and the penalization one, R in equation (3.1)), while
to treat implicitly the easier to invert penalized operator. The IMEX-RK strategy dates
back to Ascher et al. (1997) where they have been employed for parabolic partial differen-
tial equations, successively they were extended in Pareschi & Russo (2005) to hyperbolic
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relaxation systems. Early examples also include Jin (1995) and Caflisch et al. (1997).
Recently they have been designed to achieve asymptotic preservation for the Boltzmann
equation in the fluid limit without requiring the inversion of the collision operator, see Fil-
bet & Jin (2010) and Dimarco & Pareschi (2012, 2013).

One of the simplest example of IMEX-RK is obtained connecting the forward and
backward Euler method leading to a first order accurate and uniformly stable scheme

fn+1 − fn

∆t
= Rn + Pn+1. (3.8)

As in the homogeneous case M is constant we can rewrite the above equation as

(I− ∆tP) fn+1 = fn + ∆tRn, (3.9)

with Rn .
= R(fn) = Q(fn) − P (fn) and Pn+1 = P (fn+1) = P · fn+1.

Higher order of accuracy can be obtained by properly combining two Runge-Kutta
schemes one for the explicit and one for the implicit part. The schemes are, in general,
defined thanks to the so-called double Butcher tableaux

c̃ Ã

w̃T

c A

wT
, (3.10)

in which Ã and A represent the coefficients of respectively the explicit and the implcit
Runge-Kutta scheme while w̃ and w are the so called coefficients of the numerical solution.
Thus, an IMEX-RK scheme reads

{

f (i) = fn + ∆t
∑i−1

j=1 ãijR
(j) + ∆t

∑ν
j=1 aijP

(j)

fn+1 = fn + ∆t
∑ν

i=1 w̃iR
(i) + ∆t

∑ν
i=1 wiP

(i),
. (3.11)

where f (i) are commonly called the stages of the R-K scheme. Since the first R-K scheme
is explicit, Ã is lower-triangular. On the other hand, A is in general a full matrix. This
indicates the implicit character of the second R-K scheme. However, in most of the
applications, one restricts to diagonally implicit Runge - Kutta (DIRK) schemes, that is
aij = 0, for j > i. This is sufficient to show that R is really treated explicitly in the global
IMEX Runge-Kutta scheme. In a compact form, this class of scheme can be rewritten as

{

F = fne+ ∆tÃ ·R(F ) + ∆tA · P (F )

fn+1 = fn + ∆tw̃T ·R(F ) + ∆twT · P (F )
, (3.12)

where the notations used above are

e = (1, ..., 1)T , F = (f (1), · · · , f (ν))T , R(F ) =
[

R(f (1)), · · · , R(f (ν))
]T

,

P (F ) =
[

P (f (1)), · · · , P (f (ν))
]T

=
[

P · f (1),P · f (2), · · ·P · f (ν)
]

.

Again we point out that P (f (i)) = P · f (i) due to the fact that M is constant in the
homogeneous case and the same holds for the full Vlasov equation thanks to the splitting
approach. Finally, as expected, we point out that the two Butcher tableaux are not
decoupled, in fact in order to get a prescribed order of accuracy coupled order conditions
should be satisfied in addition to the traditional order conditions given by the classical
Runge-Kutta method. We refer the readers to Ascher et al. (1997); Pareschi & Russo
(2005) and more recently to Dimarco & Pareschi (2013) for details.

For a detailed analysis of the stability properties of the penalized IMEX-RK schemes
in the context of the Landau operator we remind to Li et al. (2014).
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3.1.2. Exponential Runge-Kutta method

The exponential Runge-Kutta (ERK) methods represent an alternative approach with
respect to the IMEX-RK methods which permit to get uniformly stable schemes which
avoid the parabolic stiffness of the Landau operator. A general picture of ERK methods
applied to parabolic PDE can be found in Hochbruck & Ostermann (2010), in the context
of kinetic equations, these schemes were initially used by Dimarco & Pareschi (2011) for
constructing asymptotic preserving schemes for the homogeneous Boltzmann equation,
and successively extended to the inhomogeneous case by Li & Pareschi (2014), while
ERK methods applied to multi-species kinetic equations and to the quantum case can
be found in Li & Yang (2014) and Hu et al. (2014).

As for the IMEX-RK case, the idea consists in reformulating the homogeneous Landau
equation (3.1) in such a way that the use of classical explicit Runge-Kutta method onto
the modified equation makes the schemes uniformly stable for all possible choices of ∆v
and ∆t. The reformulation employed is the following

∂t
(
e−tPf

)
= −P

[
e−tPf

]
+ e−tP[Q(f)] = e−tP [Q(f) − P · f ] . (3.13)

where we used the following property of the Fokker-Planck operator P (f) = P · f

etPf =

(

I + tP +
t2

2
P
2 + · · ·

)

f, (3.14)

with etP a linear operator on f which commutes with P since in the homogeneous case the
Maxwellian distribution is a constant function. Let observe that the same properties can
be used in the non homogeneous case thanks to a splitting approach between the Vlasov
terms and the Landau ones which causes the Maxwellian distribution to be considered
constant during the solution of the collision step.

Now, using for instance the forward Euler scheme with the reformulated equation
(3.13) leads to

e−∆tPfn+1 = fn + ∆t (Qn − Pn) . (3.15)

This can be rewritten, since M is constant, as

fn+1 −M = e∆tP (fn −M) + ∆te∆tP (Qn − Pn) . (3.16)

From the above equation one can observe that since all the eigenvalues of P lie on the
negative side of the real line, and the one with biggest absolute value is about 1

∆v2 ,
as ∆v → 0, the numerical solution is bounded for any choices of ∆t. Moreover, the
exponential term pushes the two terms on the right hand side of (3.16) to zero, leading
to the convergence of f to the Maxwellian state M .

Higher order schemes (of ν-th order) can be derived applying directly a standard ν-th
order Runge-Kutta method to the reformulated equation (3.13). They read







e−cihPf (i) = fn + ∆t
i−1∑

j=1

aije
−cj∆tP

(

Q(j) − P (j)
)

,

e−hPfn+1 = fn + ∆t

ν∑

i=1

wie
−ci∆tP

(

Q(i) − P (i)
)

,

(3.17)

where f (i) stands for the estimation of f at time substage t = tn + ci∆t with aij , wi, and
ci the standard Runge-Kutta coefficients. Since the R-K scheme is explicit at each stage
of the scheme, the operator Q is evaluated using the data from the previous stages, i.e.
explicitly. On the other hand, the exponential operator e∆tP should be evaluated at each
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stage of the Runge-Kutta procedure. This computation, which represents the most costly
parts of the entire procedure, can be done through different methods, some strategies
are suggested for instance in Moler & Loan (1978). Among the different possibilities, we
choose to compute the exponential operator through an expansion up to the ν-th order
as written in (3.14). In fact, since the entire time integrator is ν-th order, the exponential
matrix needs to be computed with the same order of accuracy if a theoretical ν-th order
scheme wants to be derived.

More in details following Jin & Yan (2011), we start by introducing a new operator P̃

P̃ h =
1√
M

∇v ·
(

M∇v

(
h√
M

))

, (3.18)

which is related to the original operator by

P (f) =
√
MP̃

(
f√
M

)

. (3.19)

This new operator shares the same symmetric properties of the original operator P and
consequently it turns into a symmetric and positive definite matrix once discretized.
These properties are very important from the computational point of view since these
matrices are much less costly to invert. Then, similarly to the original operator, we have
an analogous exponential expansion for P̃

etP f =
√
MetP̃

f√
M
. (3.20)

Thus, in practice, we discretize P̃ , and then we transform back to P by using (3.19).
This can be directly checked to be enough for symmetry to be preserved. For instance,
the discretization of P̃ in one dimension reads

(P̃h)j =
1

(∆v)2
1

√
Mj

{

√

MjMj+1

((
h√
M

)

j+1

−
(

h√
M

)

j

)

−
√

MjMj−1

((
h√
M

)

j

−
(

h√
M

)

j−1

)}

=
1

(∆v)2

(

hj+1 −
√
Mj+1 +

√
Mj−1

√
Mj

hj + hj−1

)

.

which can be straightforwardly extended to the multidimensional case.
As for the IMEX-RK case, for a detailed analysis of the stability properties of the ERK

schemes in the context of the Landau operator we remind to Li et al. (2014).

Remark 3.2 (On the fluid limit). When the collision term is very strong, one
can show that at least formally the Vlasov-Landau equation (1.1) converges to fluid limit,
namely the equation

∂f

∂t
+ v · ∇xf + E(t, x) · ∇vf =

1

ε
Q(f, f), v ∈ R

3, x ∈ Ω ⊂ R
3 (3.21)

is asymptotically equivalent to the Euler-Poisson equation






∂tρ+ ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu⊗ u) + ∇xp = ρE,

∂t(ρe) + ∇x · (ρe+ p)u = ρuE,

(3.22)
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with

[ρ, ρu, ρe]
T

=

∫
[
1, v, v2/2

]T
f(v)dv,

and p the gas pressure with p = ρRT .

Thus, another interesting topic is about numerical methods which are able capture the
above fluid limit when the Knudsen number is pushed to zero while the discretization
parameters, i.e. time step and meshes, are kept fixed. The development of numerical
methods designed to satisfy this property, called asymptotic preserving, has been the object
of several papers, see for instance Dimarco & Pareschi (2011),Jin (1999),Filbet & Jin
(2010) and the recent review papers by Jin (2012); Degond (2014); Pareschi & Russo
(2011) and Dimarco & Pareschi (2014). The important feature shared by these techniques
is that the resulting schemes are unconditionally stable and capture the asymptotic limit
automatically without resolving the small time scales.

Thus, one can show that the Penalized Exponential Runge Kutta and IMEX-RK meth-
ods presented may benefit of this additional property under several hypothesis on the type
of RK scheme employed. In other words, this class of scheme is able to capture with high
order accuracy the fluid limit without any time or mesh step limitation when the Knudsen
number goes to zero. We remind to Li et al. (2014) for details.

4. Numerical results

4.1. Space homogeneous problems

In this subsection we perform several numerical tests in the spatially homogeneous case.
The collision term Q(f) is computed using the steady state preserving spectral method
described in Section 2 where we left out the transport terms. In all the numerical tests,
the computational domain is two dimensional in the velocity space: [−vmax, vmax]2 with
vmax = 6. We use Nv = 64 grid points in each direction. For the numerical integrator,
we use the ERK or the IMEX-RK methods presented in section 3.1. In the first case the
standard Butcher tableaux below have been employed

RK2 :

0 0 0
1/2 1/2 0

0 1

RK4 :

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

(4.1)

while for the IMEX-RK methods, one needs to prescribe two Butcher tableaux, one for
the explicit and one for the implicit part. The schemes are

• First order IMEX (Forward Euler and Backward Euler)

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

.
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• Second order IMEX (Midpoint Rule and Trapezoidal Rule)

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/2 1/2 0

0 0 0 0
1/2 0 1/2 0
1 0 0 1

0 0 1

.

• Third order IMEX BPR-(3,5,3)

0 0 0 0 0 0
1 1 0 0 0 0

2/3 4/9 2/9 0 0 0
1 1/4 0 3/4 0 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0
1 1/2 1/2 0 0 0

2/3 5/18 −1/9 1/2 0 0
1 1/2 0 0 1/2 0
1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

.

Test 1: Equilibrium test
In this first example our aim is to check if the numerical integrator is able to capture
the equilibrium state and to remain in this state for infinite time. This example is the
analogous of test 2 in Filbet & Pareschi (2003). The initial distribution is a summation
of two Gaussian distributions

f(v, t = 0) =
ρ

4πT

(

exp

(

− (v − u)2

2T

)

+ exp

(

− (v + u)2

2T

))

, (4.2)

where the macroscopic quantities are given by

ρ = 1; u = [1.25, 1.25]; T = 0.16. (4.3)

Starting from a bimodal distribution one would expect the solution to reach the equilib-
rium state which is nothing else but a Maxwellian distribution with the same macroscopic
quantities of the starting distribution f .

In figure 4.1 we reported the level set values of the distribution function f for different
times. We observe that the two initial Maxwellian distributions centered at different
locations in the velocity space gradually merge into one. Once that the equilibrium state
is reached, the numerical scheme is able to preserve this steady state for all times. On
the contrary, as already known, a standard spectral scheme is not able to preserve the
steady state for infinite times since conservation of energy is, in general, not guarantee
for this kind of schemes. In this test, the first order exponential Runge-Kutta method
is used. All other time integrators methods give analogous results, i.e. the steady state
solution is reached and then preserved for all times and thus results for these schmes are
not reported.

Test 2: Rosenbluth’s test
We perform a second simulation with an axially symmetric initial condition originated
by the following distribution

f(v, t = 0) = 0.01 exp

(

−10

( |v| − 0.3

0.3

))

.
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Figure 1. Time evolution of the level set of distribution function f , starting from the double
peak distribution (4.2). A first order exponential Runge-Kutta method is used for the time
integration.

Scope of this simulation is to test the performances of the penalized time integrators
schemes in terms of numerical errors in comparison to classical time integrators which
should employ time steps restrictions for stability to be guaranteed.

In figure 4.1 we report the time evolution of the distribution function f(v, t) for vy = 0.
In this case for the time integration we employ the exponential RK3 method (left) and
the third order IMEX-RK method (right). Both schemes are compared with a reference
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Figure 2. Time evolution of distribution function f(vx, vy = 0) at various time slot for Rosen-
bluth’s test problem. Solid lines: reference solution computed by an explicit RK3 method with
∆t = 1.0078 × 10−4. Markers: solution computed by exponential RK3 method (left) and third
order IMEX-RK method (right) with ∆t = 0.0156.

solution computed by an explicit third order Runge-Kutta scheme (solid line in both
figures) which needs the stability condition ∆t ∼ ∆v2 to be satisfied. For the two schemes
proposed we use a time step ∆t = 0.0156 while to compute the reference solution, a time
step is ∆t = 1.0078×10−4 is employed. The time step chosen for the penalized ERK and
IMEX-RK schemes is chosen only in order to have sufficent precision in the solution and
not for stability to be guaranteed. The figures show that even if much larger time steps
are used for our methods, around 100 times bigger, the two penalized schemes and the
reference solutions still match very well.

Test 3: Convergence rate test
Scope of this last space homogeneous test is to prove that the numerical convergence rates
both for the exponential Runge-Kutta methods and for the IMEX-RK methods are close
to the theoretical rates. The initial distribution is given by a double peak Gaussian (4.2)
as in the previous test where now the corresponding macroscopic quantities are

ρ = 1, u = [0.4, 0], T = 0.8. (4.4)

We compute the l1 error in time, fixing the final time at t = 0.5, by

errori = max
v

‖fi(t) − fi−1(t)‖1
‖fi−1(t)‖1

, (4.5)

and we measure its decay rate with respect to decreasing time steps ∆t keeping fixed the
mesh in v. The time steps considered are respectively ∆t = 1/16, 1/32, 1/64, 1/128 and
for each value of the time step ∆ti we compute the error, errori, by using the solution
computed for ∆ti+1 as a reference solution.

The error curve expected are the ones corresponding to the time integrator used. This
means we expect error curves with slope corresponding to respectively order one, two
and three for the IMEX-RK schemes and up to order four for the ERK schemes since
the discretization in velocity space is done by a spectral method and thus the error
decay rate being much larger than the theoretical error decay rates expected by the time
discretization schemes. . In Figure 4.1 the exponential Runge-Kutta methods (dotted line
with markers) up to the fourth order and the IMEX-RK method (solid line with markers)
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Figure 3. The convergence rates of the exponential Runge-Kutta methods (dotted line with
markers) and of the IMEX-RK method (solid line with markers) for the homogeneous LFP
equation with initial data (4.2) and (4.4).

up to the third order are reported. The numerical decay rates obtained are within the
expectation.

4.2. The full non homogeneous problem

In this subsection we analyze the behaviors of our numerical scheme on three different non
homogeneous test cases. We first consider a one dimensional in space and two dimensional
in velocity space linear Landau damping and successively a non linear Landau damping,
both problems are studied under different collisional regimes. First we report the results
in the non collisional case and then we show what changes when collisions are added
to the system. We report results for an average collision regime and a strong collisional
regime. We successively consider a two stream instability problem again in the one in
space-two in velocity space setting testing three different regimes : non collisional, mild
collisional and strong collisional.

For all tests the left hand side of the collisional Vlasov equation is solved by a semi-
Lagrangian method which employs cubic spline reconstructions of the distribution func-
tion and a fourth order splitting while the collisional part is solved by spectral meth-
ods in velocity and exponential integrators in time. The Poisson equation is solved by
a fourth order finite difference method. The time step is fixed for all tests as ∆t 6

min(∆x/vmax,∆v/max(|E|). Let us recall that, due to the fact that semi-Lagrangian
schemes are used for the transport terms, in principle a CFL condition is not needed,
being the scheme unconditionally stable, consequently the above choice has been dictated
solely by accuracy reasons. Let also observe that if standard explicit integrators instead
of the uniformly stable integrators wants to be used, the time step should be fixed to
∆t 6 ε(∆v)2 which turns to be a strongly restrictive condition in practical situations.

Test 1: Linear Landau damping.
The Vlasov-Poisson system is initialized by

f(x, vx, vy) =
1

2π

(
1 + α sin (kx)

)
e

−v2x−v2y

2 , (vx, vy) ∈ [−Lv, Lv]2 (4.6)
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with α = 0.01, k = 1 and a domain size L = 2π
k with Lv = 6. We run the test up to

T = 10 with three different Knudsen numbers:

1. ε = ∞. The situation corresponds to solve the Vlasov equation and we expect the
classical Landau damping behaviors.

2. ε = 1. The situation corresponds to mild collisions.
3. ε = 10−4. The situation corresponds to very strong collisions. The distribution

function is close to the Maxwellian state. In this regime, the Vlasov-Landau equation
gives solutions very close to the one furnished by the corresponding fluid model.

The mesh is defined by N = 128 and Nv = 1282 points for ε = ∞; while in the other
two cases N = 64 and Nv = 642 is used since the collision term smooths the distribution
function in velocity space and Nv = 642 points are sufficient to get the analogous resolu-
tion of the non collisional case. Periodic boundary conditions are used for the distribution
function in space while in velocity space the distribution is set to f = 0 at the bound-
aries. Finally the Poisson equation is solved by employing Dirichlet boundary conditions
on a staggered grid with respect to the one employed for solving the Vlasov equation. In
figure 4 on the left we report the L2 norm of the electric field versus time in logarithmic
scale. The straight line represents the theoretical damping rate γ = −0.85. As expected
in the collisionless case the damping computed is the same as the theoretical one while
when collisions grows the damping is balanced by the effect of the interactions. In the
limit of infinite collisions the energy associated with the electric field oscillates around a
constant value.

Test 2: Non linear Landau damping.
In this case the Vlasov-Poisson equation is initialized by

f(x, vx, vy) =
1

2π

(
1 + α cos (kx)

)
e

−v2x−v2y

2 , (vx, vy) ∈∈ [−Lv, Lv]2 (4.7)

with α = 0.5, k = 0.5, and a domain size L = 2π
k with Lv = 6. We run the test up to

T = 40 with N = 128, Nv = 1282 for the non collisional case, while in the collisional
case we used Nv = 642, since as in the previous case, collisions smooth the distribution
function in the velocity space and Nv = 642 points turn out to be enough to reach
the same precision of the non collisional regime. We simulate this problem using three
different Knudsen numbers:

1. ε = ∞. The situation corresponds to solve the Vlasov equation and we expect as in
the previous case the classical Landau damping behaviors.

2. ε = 1. The situation corresponds to mild collisions.
3. ε = 10−4. The situation corresponds to very strong collisions. The distribution

function is close to the Maxwellian state. In this regime, the Vlasov-Landau equation
gives solutions very close to the one furnished by the corresponding fluid model.

The boundary conditions both for the distribution function and the Poisson equation are
the same as in the previous test. In figure 4, on the right, we report the L2 norm of the
electric field versus time in logarithmic scale. In this situation, in the non collisional case,
the electric energy is first exponentially decreasing with a decay rate of approximately
γ1 = −0.2812 as reported in the paper of Cheng & Knorr (1976) and Guo & Qiu (2013).
After the decreasing phase, the growth rate phase is approximately defined by a growing
rate γ2 = 0.08 which is consistent with the results of Guo & Qiu (2013) and Heath et al.
(2012). At variance, in presence of mild collisions, the electric energy is exponentially
decreasing during all the simulation. In the strong collisional regime the behavior is
opposite, the electric energy oscillates around a constant value as in the linear case.
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Figure 4. The linear Landau damping on the left and the non linear Landau damping on the
right associated to different Knudsen numbers. The three figures, from top to bottom are for
ε = ∞, 1 and 10−4 respectively.

Test 3: Two stream instability.
In this case the initial data are

f(x, vx, vy) =
1

12π
(1 + α cos(kx))e−(v2

x+v2
y)/2(1 + 5v2x), (vx, vy) ∈ [−Lv, Lv]2 (4.8)

with α = 0.05, k = 0.5 and the domain size L = [0, 2π/k] in the physical space and with
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Figure 5. Two stream instability without collision at time t = 1, 10, 20, 40. Top: 3D
illustration; Bottom: projection in the x− vx plane.
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Figure 6. Two stream instability associated with Knudsen number ε = 1 at time t = 1, 2, 4, 8.
Top: 3D illustration; Bottom: projection in the x− vx plane.
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Figure 7. Two stream instability associated with Knudsen number ε = 10−4 at time
t = 1, 2, 4, 8. Top: 3D illustration; Bottom: projection in the x− vx plane.
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Lv = 6 in the velocity space. We run the test up to T = 40 with three different Knudsen
numbers:

1. ε = ∞.
2. ε = 1.
3. ε = 10−4.

The above situations correspond as before to three different collisional regimes. The
boundary conditions are still periodic in space for the distribution f and Dirichlet in
velocity space. The Poisson equation employs Dirichlet conditions. The number of points
is Nx = 128 and Nv = 1282 for the non collisional case while we choose Nv = 642 in
the mild and strong collisional cases. In Figure 5-7 we report on the top the isosurfaces
while on the bottom the projections in the x− vx plane of the distribution f for different
times and different Knudsen numbers. In the collisionless case (Figure 5) the formation of
instability is observed and the results are consistent with the ones observed in Crouseilles
et al. (2008). In the case of mild collisions (Figure 6), we observe for t = 2 the formation
of a small hole in the center which is still present at t = 4 even if it is very close to
disappearance, then for t = 8 the effect of the collisions become predominant and the
distribution f approaches rapidly the Maxwellian state. With strong collision (Figure 7)
the distribution function approaches the Maxwellian at a much larger rate and we only
observe some oscillations of the distribution around the axis vx = 0 for t = 2 and t = 4.

4.3. Efficiency test

We finally perform some efficiency test to measure the performances of the scheme pro-
posed. More in details, we measure the efficiency of the fast spectral method in com-
parison with the standard spectral method and we measure the computational cost of
solving a collision term in comparison with the computational cost of solving only the
collisionless Vlasov equation. We remind to a future work an analogous analysis where
the effect of different time integrators is tested in term of computational costs.

Test 1: Fast spectral methods vs standard spectral methods
The theoretical computational cost of the fast spectral method described in section 2.2.2
for evaluating the Landau operator Q(f) is n logn where n = N2

v is the total number
of grid points in velocity space. This fast summation method is compared to a standard
spectral method, the one described in equation (2.10) with a theoretical cost of the order
n2 for a single evaluation of the same operator.

In order to numerically test the two spectral approaches, we apply an explicit Euler
method for integrating the Vlasov-Landau equation on a space homogeneous problem
with a double peak Gaussian initial distribution as the one described in (4.2). The number
of time steps is fixed to 100 and the total computation time cost is summarized in Table
1. The results show that the gain in term of computational cost is even larger than the
theoretical one, however one has to observe that while there exists optimized routines
for computing the fast Fourier transform, the summation which is needed for solving the
problem by the classical spectral method is obtained with standard techniques.

Test 2: Transport vs collisions
We finally measure the computational times corresponding to the numerical solution of
the collisionless Vlasov equation and of the homogeneous Landau equations when they
are coupled together by means of splitting methods. In the following test, a third order
Semi-Lagrangian method is applied to the Vlasov equation (2.2) while a fourth order
exponential Runge-Kutta method is applied on the Landau collision part (2.1). A fourth
order time splitting (2.6) is applied to combine the two terms. We compare the CPU time
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Table 1. The comparison of the computation times (in seconds) between a standard spectral
method and a fast spectral method.

Nv = 322 Nv = 642 Nv = 1282

fast spectral method 0.184 0.756 3.460
standard spectral method 29.924 547.824 8891.244

Table 2. Relative computational times (in percentage) for the different parts.

Nv = 322 Nv = 642 Nv = 1282 Nv = 2562

Vlasov solver 66.83% 65.28% 52.00% 29.59%
Evaluating Q 24.19% 21.11% 19.07% 18.59%
Inverting P 8.97% 13.61% 28.93% 51.83%

spent on the computation of the Vlasov equation by the semi-Lagrangian method, the
CPU time for the evaluation of the Landau operator Q by the fast spectral method and
the CPU time needed for inverting the linear Fokker-Planck operator P by a conjugate
gradient method. The initial data are those of the two stream instability problem (4.8)
introduced before. The results are summarized in Table 2 for an increasing number of
points Nv in velocity space, the mesh in the physical space being fixed to N = 64.

5. Conclusions

In the present paper we considered the development of efficient and accurate numerical
methods for the solution of the Vlasov-Landau equation describing a collisional plasma.
The main advantage of the approach here presented is that it permits to embed easily and
existing collisionless code with a collisional Landau code based on fast spectral methods
and suitable high-order time integrators. If compared with existing deterministic schemes
for collisional plasma, like the one derived in Filbet & Pareschi (2002), the method here
presented has the following advantages.
• The spectral approximation of the collision term is spectrally accurate, can be eval-

uated with fast algorithms and captures correctly the Maxwellian steady states;
• The time discretization of the collisional phase can achieve high order accuracy and

is capable to avoid the parabolic stiffness induced by the Landau operator;
• Close to thermodynamic equilibrium, or alternatively in the limit of vanishing Knud-

sen number, the numerical method is consistent with the Euler-Poisson fluid approxima-
tion of the plasma.
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pour l’équation de Fokker-Planck-Landau. C. R. Acad. Sci. Paris Sér. I Math. 330 (6),
517–522.

Pareschi, L., Toscani, G. & Villani, C. 2003 Spectral methods for the non cut-off Boltzmann
equation and numerical grazing collision limit. Numer. Math. 93 (3), 527–548.

Pitale, L. A. 1978 Filamentation of a laser beam in a strongly ionized magnetoplasma. Journal
of Plasma Physics 19, 55–61.

Qiu, J.-M. & Shu, C.-W. 2011 Positivity preserving semi-lagrangian discontinuous Galerkin
formulation: Theoretical analysis and application to the VlasovPoisson system. J. Comp.
Phys. 230, 8386–8409.



Numerical methods for collisional plasma 31

Rosenbluth, Marshall N., MacDonald, William M. & Judd, David L. 1957 Fokker-
Planck equation for an inverse-square force. Phys. Rev. (2) 107, 1–6.
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Valentini, F., Trávńıček, P., Califano, F., Hellinger, P. & Mangeney, A. 2007 A
hybrid-Vlasov model based on the current advance method for the simulation of collisionless
magnetized plasma. J. Comput. Phys. 225 (1), 753–770.

Villani, Cédric 2002 A review of mathematical topics in collisional kinetic theory. In Handbook
of mathematical fluid dynamics, Vol. I , pp. 71–305. North-Holland, Amsterdam.

Wang, Chiaming, Lin, Tungyou, Caflisch, Russel, Cohen, Bruce I. & Dimits, An-
dris M. 2008 Particle simulation of Coulomb collisions: comparing the methods of Takizuka
& Abe and Nanbu. J. Comput. Phys. 227 (9), 4308–4329.


