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We consider the development of accurate and efficient numerical methods for the solution of the Vlasov-Landau equation describing a collisional plasma. The methods combine a Lagrangian approach for the Vlasov solver with a fast spectral method for the solution of the Landau operator. To this goal new modified spectral methods for the Landau integral which are capable to capture correctly the Maxwellian steady state are introduced. A particular care is devoted to the construction of Implicit-Explicit and Exponential Runge-Kutta methods that permits to achieve high-order and efficient time integration of the collisional step. Several numerical tests are reported which show the high accuracy of the numerical schemes here presented.

Introduction

Coulomb collisions between charged particles in a plasma play a relevant rule in several applications ranging from laser and particle beam interactions with plasma [START_REF] Pitale | Filamentation of a laser beam in a strongly ionized magnetoplasma[END_REF][START_REF] Ghanshyam | Self-focusing and filamentation of laser beams in collisional plasmas with finite thermal conduction[END_REF] to super-thermal radiation [START_REF] Khabibrakhmanov | The spectral collocation method for the kinetic equation with the nonlinear two-dimensional coulomb collisional operator[END_REF] and ion transport in fusion reactors [START_REF] Sydora | Collisional particle simulation of ion acoustic instability[END_REF].

The Landau or Landau-Fokker-Planck equation is a common kinetic model used to describe long range Coulombian interactions in a weakly ionized gas and is characterized by a nonlinear partial integro-differential equation of the form

∂f ∂t + v • ∇ x f + E(t, x) • ∇ v f = 1 ε Q(f, f ), v ∈ R 3 , x ∈ Ω ⊂ R 3 , (1.1)
where the unknown distribution function f (t, x, v) depends on time t, position x and velocity v of particles. In the above equation ε is the Knudsen number, E(t, x) the electric field given by the solution of a normalized Poisson equation

E(t, x) = -∇ x φ(t, x), ∆ x φ(t, x) = 1 - R 3 f (t, x, v)dv, (1.2) 
and Q(f, f ) is the Landau collision operator

Q(f, f )(v) = ∇ v . R 3 Φ(v -v * ) [∇ v f (v)f (v * ) -∇ v * f (v * )f (v)] dv * .
(1.3)

In (1.3) the dependence from (x, t) has been omitted for simplicity and Φ is a 3 × 3 nonnegative and symmetric matrix that depends on the particles interaction

Φ(v) = |v| γ+2 S(v), γ ∈ R and S(v) = Id - v ⊗ v |v| 2 . (1.4)
Different values of γ lead to the classification in hard potentials γ > 0, Maxwellian molecules γ = 0, or soft potentials γ < 0. The latter case involves the Coulombian case γ = -3, which is of primary importance in plasma physics.

The structure of the Landau operator is similar to the classical Boltzmann collision integral of rarefied gas dynamics [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] and by standard arguments of kinetic theory one recovers the same physical properties such as the conservation of mass, momentum and energy

R 3 Q(f, f )(v)   1 v |v| 2   dv = 0
and the entropy production

d S(t) dt = - d dt R 3 f (t, v) ln(f (t, v))dv 0.
This implies that the equilibrium states of the Landau operator, i.e. the functions satisfying Q(f, f ) = 0, are given by local Maxwellians

M (v) = ρ (2 π k B T ) 3/2 exp - |v -u| 2 2 k B T ,
where k B is the Boltzmann's constant, ρ the total mass, u the mean velocity and T the temperature of the plasma given by

ρ = R 3 f (v) dv, u = 1 ρ R 3 f (v)v dv, T = 1 3ρ R 3 f (v)(u -v) 2 dv.
The Landau collision operator (1.3) is obtained as an approximation of the Boltzmann collision operator for Coulomb interactions. In Coulomb collisions small angle collisions play a more important role than collision resulting in large velocity changes. In such case the Boltzmann collision operator has no meaning, due to the divergence of the integral, even for smooth functions, a cut-off angular approximation is then used and the Landau equation can be derived in the so called grazing collision limit [START_REF] Landau | Die kinetische gleichung für den fall coulombscher vechselwirkung (the transport equation in the case of the coulomb interaction)[END_REF]. Several rigorous mathematical derivation of the Landau equation have been performed, we mention here the works of Arsen ′ ev (1989), [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF], [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF], [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF] and [START_REF] Alexandre | On the Landau approximation in plasma physics[END_REF]. For a review of the main mathematical aspects related to the equation we refer the reader to [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] and the references therein.

From a numerical point of view, the development of grid-based methods for the Landau equation represents a challenge in scientific computing. Most of the difficulties are due to the multidimensional nature of the problem (a seven dimensional problem, six space dimensions plus time) and to the structure of the collision integral which leads to the so-called curse of dimensionality. In addition the numerical integration requires great care since the collision term is at the basis of the macroscopic properties of the equation.

In contrast with the Boltzmann equation, where Monte Carlo methods play a major rule in numerical simulations (see, for example, [START_REF] Pareschi | An introduction to Monte Carlo methods for the Boltzmann equation[END_REF] for a survey on Monte Carlo methods and [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF] for some rigorous mathematical results), the construction of efficient Monte Carlo methods for long-range interactions like the Coulomb potential field is still not fully understood. Recently, important advancements in this direction have been achieved by [START_REF] Bobylev | Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation[END_REF] where a Monte Carlo simulation method has been derived directly from the Boltzmann equation in the grazing collision approximation. The performance of Bobylev-Nanbu scheme has been studied in details by [START_REF] Wang | Particle simulation of Coulomb collisions: comparing the methods of Takizuka & Abe and Nanbu[END_REF]. Monte Carlo methods for collisional plasmas have also been developed by [START_REF] Dimarco | Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas[END_REF], while an hybrid method for accelerating the simulation of Coulomb collisions has been realized and numerically tested in [START_REF] Wang | Particle simulation of Coulomb collisions: comparing the methods of Takizuka & Abe and Nanbu[END_REF]. In addition, all these Monte Carlo method suffer from the two typical limitations of probabilistic particle methods, namely the slow convergence rate and the numerical noise in the solutions.

For these reasons, it is highly desirable to develop effective grid-based methods that solve directly the partial differential equation (1.1). Due to the computational complexity many papers are devoted to simplified situations, like in the isotropic case [START_REF] Bobylev | Completely conservative difference schemes for nonlinear kinetic equations of Landau (Fokker-Planck) type[END_REF]. The construction of conservative and entropic schemes for the space homogeneous Landau equation has been proposed by [START_REF] Degond | An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory[END_REF] and [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF][START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF]. These schemes are built in such a way that the main physical properties are conserved at a discrete level. Positivity of the solution and discrete entropy inequality are also satisfied. However, the direct implementation of such schemes is very expensive since the computational cost increases roughly as n 2 , where n is the total number of parameters used to represent the distribution function in the velocity space. For this reason, several fast approximated algorithms, based on multipole expansions [START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF] or multigrid techniques [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF], have been proposed to reduce the computational complexity. We refer also to [START_REF] Valentini | Mixed finite difference-spectral numerical approach for kinetic and fluid description of nonlinear phenomena in plasma physics[END_REF], and the references therein, for different numerical approaches.

An effective way to overcome the computational complexity of the Landau equation is based on the use of spectral methods. Fourier-Galerkin methods have been recently proposed for the Boltzmann (Pareschi & Russo 2000a;[START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Mouhot | Fast methods for the Boltzmann collision integral[END_REF], 2006;[START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF]) and the Landau (Pareschi et al. 2000b,a;[START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF], 2003) collision operators (for related approaches in the Boltzmann case we refer to [START_REF] Bobylev | Difference scheme for the Boltzmann equation based on the fast Fourier transform[END_REF] and [START_REF] Gamba | Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states[END_REF]). The main advantage of spectral schemes is that they permit to obtain spectrally accurate solutions with a reduction of the quadratic cost n 2 to n log 2 n. The lack of discrete conservations in the spectral scheme (mass is preserved, whereas momentum and energy are approximated with spectral accuracy) is compensated by its higher accuracy and efficiency. A detailed comparison of the spectral scheme with the schemes proposed in [START_REF] Buet | Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation[END_REF]; [START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF] has been done in Buet et al. (1999).

The main goal of this paper is to present efficient numerical methods for a collisional plasma by coupling a steady state preserving spectral technique [START_REF] Filbet | Steady state preserving spectral methods for Boltzmann equations[END_REF] for the collision term (1.3) with a Vlasov solver for the transport step (Sonnendrücker 2013). In addition the solution of the collisional Landau term is performed with asymptotic-preserving time integration methods which, among other, permits to overcome the parabolic stiffness of the equation which relate the time step to the square of the velocity mesh (Li et al. 2014). The above properties, as we will see, are essential to perform efficiently space non homogeneous computations with high-order accuracy.

The rest of the article is organized as follows. In Section 2 we introduce different splitting methods to combine the Landau collisional step and the Vlasov-Poisson collisionless step. The fast spectral solver is then presented and modified in order to achieve the steady state preserving property. The semi-Lagrangian solvers used for the Vlasov-Poisson term are then shortly reviewed. Section 3 is devoted to the issue of the time discretization of the collisional phase. Efficient IMEX Runge-Kutta schemes and Exponential methods which permits to avoid the parabolic stiffness of the Landau operator are introduced. Their properties and relations with the corresponding fluid limit of the Vlasov-Landau equation are then discussed. Finally in Section 4 several numerical tests for space homogeneous and space non homogeneous problems are presented. Some conclusions are then reported in Section 5.

Numerical methods

Here we restrict ourselves to operator splitting based schemes. It is well-known, in fact, that most numerical methods for collisional kinetic equation are based on a splitting in time between particle transport and collisions. A major advantage of splitting schemes is that they permits to embed a numerical method for the collision term in a pre-existing Vlasov-Poisson solver. Alternative approaches are based on the use of Implicit-Explicit Runge-Kutta schemes [START_REF] Ascher | Implicit-explicit rungekutta methods for time-dependent partial differential equations[END_REF][START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF][START_REF] Dimarco | Asymptotic preserving implicit-Explicit Runge-Kutta methods for nonlinear kinetic equations[END_REF]), here we do not explore this direction and refer to Section 3.1.1 for a description of such methods in the collisional step.

Splitting methods

As it is usually done for a kinetic equation like (1.1) a simple first order time splitting is obtained considering in a small time interval ∆t = [t n , t n+1 ] the numerical solution of the space homogeneous collision phase

C ∆t (f n )      ∂f * ∂t = 1 ε Q(f * , f * ), f * (0, x, v) = f n (x, v), (2.1)
and, the transport step

T ∆t (f * )      ∂f * * ∂t + v • ∇ x f * * + F (t, x) • ∇ v f * * = 0, f * * (0, x, v) = f * (∆t, x, v).
(2.2)

The approximated value at time t n+1 is then given by

f n+1 (x, v) = f * * (∆t, x, v) = T ∆t (C ∆t (f n )) .
(2.3) Higher order splitting formulas can be derived in different ways (see [START_REF] Hairer | Geometric numerical integration[END_REF]). The well-known second order Strang splitting [START_REF] Strang | On the construction and comparison of difference schemes[END_REF]) can be written as

C ∆t/2 (T ∆t (C ∆t/2 (f n ))).
(2.4)

Unfortunately for splitting methods of order higher than two it can be shown that it's impossible to avoid negative time steps both in the transport as well as in the collision [START_REF] Hairer | Geometric numerical integration[END_REF]. Higher order formulas which avoid negative time stepping can be obtained as suitable combination of splitting steps [START_REF] Dia | Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées[END_REF]. For example a third order approximation is given by

2 3 [T ∆t/2 (C ∆t (T ∆t/2 (f n ))) + C ∆t/2 (T ∆t (C ∆t/2 (f n )))] - 1 6 [T ∆t (C ∆t (f n )) + C ∆t (T ∆t (f n ))],
(2.5) which corresponds to take a combination of symmetrized Strang and first order splitting, whereas a fourth order scheme reads 4 3

C ∆t/4 (T ∆t/2 (C ∆t/2 (T ∆t/2 (C ∆t/4 (f n ))))) - 1 3 C ∆t/2 (T ∆t (C ∆t/2 (f n ))).
(2.6) Clearly all the above splitting methods admit the symmetric formulation obtained by switching the transport and the collision operators. The crucial point is the numerical solution to (2.1) because of the presence of the collision operator and the diffusive stiffness.

In the following, we first present the numerical approximation of the collision operator using a fast spectral method which is capable to preserve exactly the Maxwellian steady states. Next we recall some basic facts concerning the discretization of the Vlasov part.

Fast spectral methods for the Landau operator

Spectral methods for solving the Boltzmann equation have their roots in the works of [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF] and Pareschi & Russo (2000a). Subsequently, their properties were studied in Pareschi & Russo (2000b) and in [START_REF] Filbet | Analysis of spectral methods for the homogeneous Boltzmann equation[END_REF]. Related approaches, based on the use of the Fourier transform have been introduced by [START_REF] Bobylev | Difference scheme for the Boltzmann equation based on the fast Fourier transform[END_REF][START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF] and [START_REF] Gamba | Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states[END_REF]. The method has been successfully extended to the Landau equation in Pareschi et al. (2000b,a); [START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF], 2003) together with the derivation of fast algorithms. On the contrary, fast algorithms for the Boltzmann case have been much more difficult to achieve [START_REF] Mouhot | Fast methods for the Boltzmann collision integral[END_REF], 2006). Finally, the connection between the two approaches in the grazing limit has been studied in [START_REF] Pareschi | Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit[END_REF]; [START_REF] Gamba | A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit[END_REF].

In this section we first recall briefly the derivation of the method for the Landau equation, the fast algorithm, and its mathematical properties (consistency and spectral accuracy). Next, following the recent result in [START_REF] Filbet | Steady state preserving spectral methods for Boltzmann equations[END_REF] we show how to modify the spectral method in order to capture exactly the Maxwellian steady state without loosing spectral accuracy.

The classical fast spectral method

We rewrite here the expression of the Landau integral in dimension d 2 after the change of variables q

= v -v * Q(f, f )(v) = ∇ v • R d φ(q)[f (v -q)∇ v f (v) -f (v)∇ q f (v -q)] dq.
(2.7)

We will assume the support of the distribution function is included in the ball B 0 (R) centered in the origin and with radius R > 0. This assumption is clearly false in general, but it is essential from a numerical point of view for any method that uses a finite velocity space for the representation of the distribution function. This is equivalent to assume that the distribution function is truncated to zero for large velocities |v| > R. Moreover, it is easy to prove that if supp(f (v))

⊂ B 0 (R) then supp(Q(f, f )(v)) ⊂ B 0 (3R).
In order to write a spectral approximation to (2.7) we can consider the distribution function f (v) restricted on the cube [-T, T ] 3 with T 3R, assuming f (v) = 0 on [-T, T ] 3 \ B 0 (R), and extend it by periodicity to a periodic function on [-T, T ] 3 . The lower bound for T can be improved using the periodicity of the function and allowing intersections of periods where the function f is zero, to get T 2R (Pareschi et al. 2000b,a). Therefore, aliasing errors are avoided if the integration over R d in (2.7) is replaced by an integration over B 0 (2R). To simplify the notation let us take T = π and hence R = π/2.

We approximate the distribution by a partial sum of a Fourier series,

f N (t, v) = k∈{-N,...,N } fk (t)e i k•v , (2.8)
where k ∈ Z d , N = (n, . . . , n) is a multi-integer, n is the number of half modes in each direction and the k-th mode is given by

fk (t) = 1 (2π) d [-π,π] d f (t, v)e -i k•v dv.
Now, substituting the approximation f N (t, v) in the operator Q R , where Q R is the Landau operator with cut-off over the relative velocity in the ball B 0 (π) we get (2.11)

Q R (f N , f N ) = k∈{-2N,...,2N } QR k e i k•v , ( 2 
It can be proved that the coefficients B(l, m) are scalar quantities independent on the function f which depend on |l + m| and |l -m| only (Pareschi et al. 2000b,a). Moreover, for inverse power laws, taking C = (4π)(π) d+2+γ we have the bound

| B(l, m)| C 3N 2 d + 2 + γ .
(2.12)

Note that B(l, m) grow with N 2 , and this is the cause of the stiffness observed in the time integration of the equation [START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF], 2003). This reflects the fact that the Landau equation suffers of the stiffness typical of diffusion equations. Stability condition of grid based methods requires that the time step scales with the square of the velocity mesh size. Time integration methods that overcome this problem will be the subject of Section 3. Let now

P N : L 2 ([-π, π] d ) → IP N be the orthogonal projection upon the space of trigonometric polynomials of degree N in v, IP N in the inner product of L 2 ([-π, π] d ).
Then the spectral method for the collision step (2.1), where we take ε = 1 for simplicity, can be written in equivalent form as

∂f N ∂t = Q R N (f N , f N ) with initial data f N (v, t = 0) = f 0,N (v) and Q R N (f N , f N ) := P N Q R (f N , f N ), (2.13) where Q R (f N , f N ) is given by (2.9).
It is easy to verify that the spectral method preserves mass whereas variations of momentum and energy are controlled by the spectral accuracy (Pareschi & Russo 2000a;Pareschi et al. 2000b). By the arguments in Pareschi et al. (2000a) it is possible to prove consistency and spectral accuracy of the method Theorem 2.1. The spectral approximation of the collision operator defined by (2.9)-(2.13) is such that the following properties hold

i) (consistency) Let f ∈ H 2 p ([-π, π] d ), then ∀ r 0 ||Q R (f, f ) -Q R N (f N , f N )|| 2 C ||f -f N || H 2 p + ||Q R (f N , f N )|| H r p N r , where C depends on ||f || 2 . ii) (spectral accuracy) Let f ∈ H r p ([-π, π] d ), r 2 then ||Q R (f, f ) -Q R N (f N , f N )|| 2 C N r-2 ||f || H r p + ||Q R (f N , f N )|| H r p .
In the previous theorem H r p denotes the Sobolev space of periodic functions up to the rth order derivative over [-π, π] d . No information are available on the discrete equilibrium states, the decay of the numerical entropy and the preservation of positivity. We mention that spectral schemes where conservation are enforced by some kind of renormalization procedure have been developed in [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Bobylev | Difference scheme for the Boltzmann equation based on the fast Fourier transform[END_REF][START_REF] Gamba | Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states[END_REF].

A fast summation method

First let us note that a direct computation of (2.10) has the same O(n 2 ), n = N 3 , cost of a conventional finite difference discretization applied to the Landau equation.

On the other hand we can rewrite (2.10) as

N m=-N fk-m fm B(k -m, m) - N m=-N fk-m fm B(m, m), k = -N, . . . , N.
Clearly the second sum is a convolution sum and thus transform methods allow this term to be evaluated in O(n log 2 n) operations. For the details of the implementation of this standard technique for spectral methods we refer the reader to [START_REF] Canuto | Spectral methods in fluid dynamics[END_REF].

Hence the most expensive part of the computation is represented by the first sum which in general cannot be evaluated with fast algorithms.

In the case of the Landau equation, however, B(l, m) splits as

B(l, m) := l 2 F (m) - d p,q=1 l p l q I pq (m) = l 2 F (m) -l I(m) l T ,
where l T denotes the transpose of the vector l,

I = (I pq ) is a d × d symmetric matrix F (m) = B0(π)
|g| 2+γ e ig•m dg, (2.14)

I pq (m) = B0(π)
|g| γ g p g q e ig•m dg, p, q = 1, . . . , d.

(2.15)

Thus we can write

ψ(l, m) = l 2 F (m) -l I(m) l T -BL (m, m).
(2.16)

The resulting scheme requires the evaluation of 2d + 2 convolution sums (the number of distinct elements of I plus two single convolution sums for F (m) and BL (m, m)). Hence, the overall cost of the scheme is only O(n log 2 n).

For the implementation of the algorithm we need to evaluate the quantities (2.14)-(2.15). For simplicity, we will treat here only the two-dimensional case v ∈ R 2 . We have

I 11 (m) = 1 2 F (|m|) + m 2 1 -m 2 2 |m| 2 G(|m|) , I 22 (m) = 1 2 F (|m|) - m 2 1 -m 2 2 |m| 2 G(|m|) , (2.17) 
I 12 (m) = I 21 (m) = m 1 m 2 |m| 2 G(|m|),
where Thus the computation reduces simply to the computation of two one-dimensional integrals F (|m|) and G(|m|). These quantities can be computed very accurately once and then stored in two bidimensional arrays. A similar reduction can be performed in the full three dimensional case.

F (m) = F (|m|) = 2π π 0 r γ+3 J 0 (|m|r) dr, ( 2 

The steady state preserving spectral method

A major drawback of the method just described is the lack of conservations and, in particular, the incapacity of the scheme to preserve the Maxwellian steady states of the system. Renormalization strategies to recover the conservations have been proposed by various authors [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Bobylev | Difference scheme for the Boltzmann equation based on the fast Fourier transform[END_REF][START_REF] Gamba | Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states[END_REF], however these do not guarantee the Maxwellian behavior of the solution. A modified spectral method which is capable to overcome this difficulty has been proposed recently in [START_REF] Filbet | Steady state preserving spectral methods for Boltzmann equations[END_REF]. Here we describe the method in the case of the Landau operator.

Let us start from the decomposition

f = M + g, (2.20)
with M the local Maxwellian equilibrium and g such that R 3 g φ dv = 0, φ = 1, v, |v| 2 . When inserted into the Landau operator gives

Q(f, f ) = L(M, g) + Q(g, g), (2.21)
where L(M, g) = Q(g, M ) + Q(M, g) and we used the fact that

Q(M, M ) = 0. (2.22)
Note that the steady state of (2.21) is given by g ≡ 0. To illustrate the method let us consider now the space homogeneous equation that we rewrite using the micro-macro decomposition as

∂g ∂t = L(M, g) + Q(g, g), f = M + g.
(2.23)

Using the same notations of the previous section we can write the Fourier-Galerkin approximation

∂g N ∂t = L R N (M N , g N ) + Q R N (g N , g N ), f N = M N + g N , (2.24)
where

M N := P N M, g N := P N g, L R N (M N , g N ) := P N L R (M N , g N ).
(2.25)

It is immediate to see that g N ≡ 0 is an admissible local equilibrium of the spectral scheme (2.24) and therefore f N = M N is a local equilibrium state.

It is interesting to observe that the only difference between scheme (2.24) and the usual spectral method developed on the original formulation

∂f N ∂t = ∂g N ∂t = Q R N (f N , f N ), = L R N (M N , g N ) + Q R N (g N , g N ) + Q R N (M N , M N ) (2.26) is due to the constant (in time) term Q R N (M N , M N ) = 0, (2.27)
which is spectrally close to 0 since from Theorem 2.1 for f = M we get Lemma 2.1. For r 2 we have

||Q R N (M N , M N )|| 2 C N r-2 ||M || H r p + ||Q R (M N , M N )|| H r p , ∀ r 2.
(2.28)

From the above estimate spectral accuracy of the steady state preserving method follows immediately. Finally, from the computational viewpoint the new method can be implemented through the same fast algorithm just described, simply by removing the constant term (2.27) in the usual spectral method. In this way we avoid the accumulation of errors and can take advantage of the fact that f N = M N is the steady state of the numerical scheme.

Semi-Lagrangian schemes for the Vlasov equation

In this paragraph we give a short overview of semi-Lagrangian method we employ to discretize the left hand side of the Vlasov-Landau equation (1.1). The semi-Lagrangian methods use, as classical finite volume methods, a fixed mesh in space and in velocity space but they take advantage of the knowledge of the exact solution of the linear transport process which characterizes the kinetic equations. In general, the advantages of these methods are related to the fact that they can be quite easily designed in order to possess many desired properties such as positivity, physical conservations and robustness when dealing with large velocities. More in details, they do not suffer of the time step restrictions which are typical of other classes of schemes, thus the CFL conditions are normally only imposed in order to keep errors sufficiently small.

Several different semi-Lagrangian approaches have been developed in the past [START_REF] Boris | Flux-corrected transport i. SHASTA, a fluid transport algorithm that works[END_REF]; [START_REF] Cheng | The integration of the Vlasov equation in configuration space[END_REF] Here we recall the basic features of the method used and we refer to the above references and the recent introductory notes by [START_REF] Sonnendrücker | Numerical methods for Vlasov equations[END_REF] for a more complete overview of this class of methods.

We consider the left hand side of equation (1.1)

∂f ∂t + v • ∇ x f + E(t, x) • ∇ v f = 0, v ∈ R 3 , x ∈ Ω ⊂ R 3 .
(2.29)

The above equation can be solved by means of semi-Lagrangian methods by employing again time splitting techniques which separates the transport in the physical space by the transport in the velocity space. A first order splitting scheme reads as

     ∂f * ∂t + v • ∇ x f * = 0, f * (0, x, v) = f n (x, v), (2.30) and      ∂f * * ∂t + E * * • ∇ v f * * = 0, f * * (0, x, v) = f * (∆t, x, v),
(2.31)

with f n+1 (x, v) = f * * (x, v) and E n+1 (x) = E * * (x) = -∇ x φ * * (x).
In the above scheme, the electric potential is computed by solving the Poisson equation after the transport step, which means

-∆ x φ * * (x) = R 3 f * * (0, x, v)dv = R 3 f * (∆t, x, v)dv.
To solve the Poisson equation we used a classical finite difference fourth order discretization. As in the case of collisions, high order splitting can be used as well to increase the accuracy with respect to time. In practice, in the numerical test section we employed a second order Strang splitting (2.4) and a fourth order time splitting (2.6) method. The most common reconstruction techniques found in literature are cubic splines, Hermite or Lagrange polynomials. In our computations we employed cubic spline reconstructions. In the one dimensional setting the cubic spline interpolation f ∆x of a function f is defined by a cubic function f ∆x ∈ P 3 ([I]) on each interval I of length ∆x in which the space is discretized with f ∆x (x j ) = f (x j ) and f ∆x ∈ C 2 (I). Writing f ∆x using the cubic B-spline basis we get

f ∆x (x) = N -1 h=0 a h S 3 (x -x h ) (2.32)
where N are the number of points of the mesh and the coefficients a h are given by the interpolation conditions

f (x j ) = f ∆x (x j ) = M-1 h=0 a h S 3 (x j -x h ) (2.33)
while the cubic B-spline basis is defined by

S 3 (x) = 1 6      (2 -|x|/∆x 3 ), if ∆x < |x| < 2∆x 4 -6(|x|/∆x) 2 + 3(|x|/∆x) 3 , if 0 < |x| < ∆x 0,
otherwise.

(2.34)

A penalization technique for efficient time integration

In this section we focus on the development of efficient numerical time integrators for solving the space homogeneous Landau equation, the full solution of the collisional Vlasov equation being obtained by means of splitting techniques as the ones described in Section 2.1. The time discretization of the collision term brings new numerical difficulties to the problem. They can be summarized by:

1. Parabolic stiffness: the Landau operator is generically a diffusive operator, and if one uses explicit methods, typically a time constraint ∆t ∼ ∆v 2 is expected.

2. Strong collisions regimes: When one deals with strong collisional regimes the Knudsen number ε tends to 0 which leads to a fast convergence to the equilibrium state. In these situations the stability of standard explicit methods is related to time steps of order ∆t ∼ ε.

These two issues combined cause typically time steps restrictions of type ∆t ∼ ε∆v 2 , which determine a tremendous computational cost in practical computations. In the following, we present two efficient strategies which permit to overcome these difficulties leading to high order in time schemes. As the time scale imposed by ε always comes with the time scale imposed by ∆v 2 , numerically one could simply set ε = 1 and derive the schemes in this general setting.

Removing the parabolic stiffness

The problem we address is the following

∂ t f = Q(f ), v ∈ R 3 . (3.1) with Q Q(f ) = ∇ v • R 3 Φ(v -v * )[f (v * )∇ v f (v) -f (v)∇ v * f (v * )]dv * . (3.2)
The Landau operator is a diffusive-type operator with eigenvalues expanding to infinity analytically and to O(1/∆v 2 ) numerically. This causes the so-called parabolic stiffness ∆t ∼ (∆v) 2 which one encounters if standard explicit schemes are employed. On the other hand, standard implicit methods which exhibit larger stability regions and thus allow bigger time steps, cannot be used in this situation, since the numerical complexity related to the discretization of Q makes impossible, in practice, its inversion. In order to construct schemes which permit to avoid the stiffness of the collision operator and its numerical inversion, we introduce a suitable penalization operator which is easier to invert with respect to the original operator. In order to guarantee an efficient, high order and consistent with the limit ε → 0 scheme, the penalization operator P needs to satisfy the following criteria:

• P should share the same equilibrium state of the original operator Q, i.e. the functions f such that Q(f ) = 0 are also such that P (f ) = 0. This property guarantees the correct and stable solution for infinite times.

• P should preserve the first three moments, that is:

1, v, v 2 T P (f )dv = 0. (3.3)
This requirement is imposed in order to preserve mass, momentum and energy in the evolution of the system as the original operator Q does.

• P should have a diffusive character which permits to capture the diffusive behaviors of the original operator Q.

• P should be easy to invert. The simplest operator which fulfills all the above characteristics is the so-called Fokker-Planck operator:

P (f ) = µ∇ v • M ∇ v f M . (3.4)
Here µ is a numerical constant, and M is the Maxwellian function that shares the first three moments with f . This operator has been recently used as a penalization operator in [START_REF] Jin | A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation[END_REF] for constructing asymptotically stable schemes. Thus, the original equation (3.1) is modified in

∂ t f = [Q(f ) -P (f )] non-stiff + stiff P (f ) . = R(f ) + P (f ). (3.5)
Now, thanks to this reformulation, the first term, denoted by R, has most of its parabolic scale canceled out, and is expected to be non-stiff, or comparably less stiff, while the second term, albeit diffusive, is easy to be inverted. Starting from the above reformulation in the following we propose two different approaches both leading to accurate and stable time discretizations which avoid the parabolic stiffness: Implicit-Explicit Runge-Kutta (IMEX) methods, and exponential Runge-Kutta (ERK) methods. We conclude this part with some comments about the choice of the parameter µ.

Remark 3.1 (On the choice of µ). As we will made more clear after the introduction of the details of the time integrators, larger is µ more stable is the scheme. On the other hand, large values of µ causes largers errors. This is due to the fact that larger is µ more important becomes the contribution of the penalization operator P with respect to the original operator Q. Thus, as suggested in Jin & Yan (2011) a good balance betweem stability and numerical error can be

µ = µ 0 max v Λ(D Φ (f )). (3.6)
Here µ 0 is a constant such that µ 0 > 1 2 while Λ(D Φ ) is the spectral radius of the positive symmetric matrix D Φ , with D Φ (f ) defined by

D Φ (f ) = Φ(v -v * )f * dv * .
(3.7)

We remind to [START_REF] Jin | A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation[END_REF] for details about this particular choice and other possible choices for µ.

IMEX-RK scheme

The idea behind the IMEX-RK schemes is to construct a framework which permit to discretize with high order of accuracy a given equation treating with different Runge-Kutta schemes the different terms which appears in the equation. Thus, in the case of equation (3.5) the idea is to treat explicitly the non stiff part (the part due to the difference of the original operator and the penalization one, R in equation (3.1)), while to treat implicitly the easier to invert penalized operator. The IMEX-RK strategy dates back to [START_REF] Ascher | Implicit-explicit rungekutta methods for time-dependent partial differential equations[END_REF] where they have been employed for parabolic partial differential equations, successively they were extended in [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF] to hyperbolic relaxation systems. Early examples also include [START_REF] Jin | Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms[END_REF] and [START_REF] Caflisch | Uniformly accurate schemes for hyperbolic systems with relaxation[END_REF]. Recently they have been designed to achieve asymptotic preservation for the Boltzmann equation in the fluid limit without requiring the inversion of the collision operator, see [START_REF] Filbet | A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources[END_REF] and [START_REF] Dimarco | High order asymptotic-preserving schemes for the Boltzmann equation[END_REF][START_REF] Sonnendrücker | Numerical methods for Vlasov equations[END_REF]. One of the simplest example of IMEX-RK is obtained connecting the forward and backward Euler method leading to a first order accurate and uniformly stable scheme

f n+1 -f n ∆t = R n + P n+1 . (3.8)
As in the homogeneous case M is constant we can rewrite the above equation as

(I -∆tP) f n+1 = f n + ∆tR n , (3.9) with R n . = R(f n ) = Q(f n ) -P (f n ) and P n+1 = P (f n+1 ) = P • f n+1
. Higher order of accuracy can be obtained by properly combining two Runge-Kutta schemes one for the explicit and one for the implicit part. The schemes are, in general, defined thanks to the so-called double Butcher tableaux in which à and A represent the coefficients of respectively the explicit and the implcit Runge-Kutta scheme while w and w are the so called coefficients of the numerical solution.

Thus, an IMEX-RK scheme reads

f (i) = f n + ∆t i-1 j=1 ãij R (j) + ∆t ν j=1 a ij P (j) f n+1 = f n + ∆t ν i=1 wi R (i) + ∆t ν i=1 w i P (i) , .
(3.11)

where f (i) are commonly called the stages of the R-K scheme. Since the first R-K scheme is explicit, Ã is lower-triangular. On the other hand, A is in general a full matrix. This indicates the implicit character of the second R-K scheme. However, in most of the applications, one restricts to diagonally implicit Runge -Kutta (DIRK) schemes, that is a ij = 0, for j > i. This is sufficient to show that R is really treated explicitly in the global IMEX Runge-Kutta scheme. In a compact form, this class of scheme can be rewritten as

F = f n e + ∆t à • R(F ) + ∆tA • P (F ) f n+1 = f n + ∆t wT • R(F ) + ∆tw T • P (F ) , (3.12) 
where the notations used above are

e = (1, ..., 1) T , F = (f (1) , • • • , f (ν) ) T , R(F ) = R(f (1) ), • • • , R(f (ν) ) T , P (F ) = P (f (1) ), • • • , P (f (ν) ) T = P • f (1) , P • f (2) , • • • P • f (ν) .
Again we point out that P (f (i) ) = P • f (i) due to the fact that M is constant in the homogeneous case and the same holds for the full Vlasov equation thanks to the splitting approach. Finally, as expected, we point out that the two Butcher tableaux are not decoupled, in fact in order to get a prescribed order of accuracy coupled order conditions should be satisfied in addition to the traditional order conditions given by the classical Runge-Kutta method. We refer the readers to [START_REF] Ascher | Implicit-explicit rungekutta methods for time-dependent partial differential equations[END_REF]; [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF] and more recently to [START_REF] Dimarco | Asymptotic preserving implicit-Explicit Runge-Kutta methods for nonlinear kinetic equations[END_REF] for details.

For a detailed analysis of the stability properties of the penalized IMEX-RK schemes in the context of the Landau operator we remind to Li et al. (2014).

Exponential Runge-Kutta method

The exponential Runge-Kutta (ERK) methods represent an alternative approach with respect to the IMEX-RK methods which permit to get uniformly stable schemes which avoid the parabolic stiffness of the Landau operator. A general picture of ERK methods applied to parabolic PDE can be found in [START_REF] Hochbruck | Exponential integrators[END_REF], in the context of kinetic equations, these schemes were initially used by [START_REF] Dimarco | Exponential Runge-Kutta methods for stiff kinetic equations[END_REF] for constructing asymptotic preserving schemes for the homogeneous Boltzmann equation, and successively extended to the inhomogeneous case by Li & Pareschi (2014), while ERK methods applied to multi-species kinetic equations and to the quantum case can be found in [START_REF] Li | Exponential Runge-Kutta methods for the multi-species Boltzmann equation[END_REF] and [START_REF] Hu | Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy[END_REF].

As for the IMEX-RK case, the idea consists in reformulating the homogeneous Landau equation (3.1) in such a way that the use of classical explicit Runge-Kutta method onto the modified equation makes the schemes uniformly stable for all possible choices of ∆v and ∆t. The reformulation employed is the following

∂ t e -tP f = -P e -tP f + e -tP [Q(f )] = e -tP [Q(f ) -P • f ] . (3.13)
where we used the following property of the Fokker-Planck operator

P (f ) = P • f e tP f = I + tP + t 2 2 P 2 + • • • f, (3.14)
with e tP a linear operator on f which commutes with P since in the homogeneous case the Maxwellian distribution is a constant function. Let observe that the same properties can be used in the non homogeneous case thanks to a splitting approach between the Vlasov terms and the Landau ones which causes the Maxwellian distribution to be considered constant during the solution of the collision step. Now, using for instance the forward Euler scheme with the reformulated equation (3.13) leads to e -∆tP f n+1 = f n + ∆t (Q n -P n ) .

(3.15)

This can be rewritten, since M is constant, as

f n+1 -M = e ∆tP (f n -M ) + ∆te ∆tP (Q n -P n ) . (3.16)
From the above equation one can observe that since all the eigenvalues of P lie on the negative side of the real line, and the one with biggest absolute value is about 1 ∆v 2 , as ∆v → 0, the numerical solution is bounded for any choices of ∆t. Moreover, the exponential term pushes the two terms on the right hand side of (3.16) to zero, leading to the convergence of f to the Maxwellian state M .

Higher order schemes (of ν-th order) can be derived applying directly a standard ν-th order Runge-Kutta method to the reformulated equation (3.13). They read

           e -cihP f (i) = f n + ∆t i-1 j=1 a ij e -cj∆tP Q (j) -P (j) , e -hP f n+1 = f n + ∆t ν i=1 w i e -ci∆tP Q (i) -P (i) ,
(3.17)

where f (i) stands for the estimation of f at time substage t = t n + c i ∆t with a ij , w i , and c i the standard Runge-Kutta coefficients. Since the R-K scheme is explicit at each stage of the scheme, the operator Q is evaluated using the data from the previous stages, i.e. explicitly. On the other hand, the exponential operator e ∆tP should be evaluated at each stage of the Runge-Kutta procedure. This computation, which represents the most costly parts of the entire procedure, can be done through different methods, some strategies are suggested for instance in [START_REF] Moler | Nineteen dubious ways to compute the exponential of a matrix[END_REF]. Among the different possibilities, we choose to compute the exponential operator through an expansion up to the ν-th order as written in (3.14). In fact, since the entire time integrator is ν-th order, the exponential matrix needs to be computed with the same order of accuracy if a theoretical ν-th order scheme wants to be derived. More in details following [START_REF] Jin | A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation[END_REF], we start by introducing a new operator P

P h = 1 √ M ∇ v • M ∇ v h √ M , (3.18)
which is related to the original operator by

P (f ) = √ M P f √ M . (3.19)
This new operator shares the same symmetric properties of the original operator P and consequently it turns into a symmetric and positive definite matrix once discretized. These properties are very important from the computational point of view since these matrices are much less costly to invert. Then, similarly to the original operator, we have an analogous exponential expansion for P

e tP f = √ M e t P f √ M . (3.20)
Thus, in practice, we discretize P , and then we transform back to P by using (3.19). This can be directly checked to be enough for symmetry to be preserved. For instance, the discretization of P in one dimension reads

( Ph) j = 1 (∆v) 2 1 M j M j M j+1 h √ M j+1 - h √ M j -M j M j-1 h √ M j - h √ M j-1 = 1 (∆v) 2 h j+1 - M j+1 + M j-1 M j h j + h j-1 .
which can be straightforwardly extended to the multidimensional case.

As for the IMEX-RK case, for a detailed analysis of the stability properties of the ERK schemes in the context of the Landau operator we remind to Li et al. (2014).

Remark 3.2 (On the fluid limit). When the collision term is very strong, one can show that at least formally the Vlasov-Landau equation (1.1) converges to fluid limit, namely the equation

∂f ∂t + v • ∇ x f + E(t, x) • ∇ v f = 1 ε Q(f, f ), v ∈ R 3 , x ∈ Ω ⊂ R 3 (3.21)
is asymptotically equivalent to the Euler-Poisson equation

     ∂ t ρ + ∇ x • (ρu) = 0, ∂ t (ρu) + ∇ x • (ρu ⊗ u) + ∇ x p = ρE, ∂ t (ρe) + ∇ x • (ρe + p)u = ρuE, (3.22) with [ρ, ρu, ρe] T = 1, v, v 2 /2 T f (v)dv,
and p the gas pressure with p = ρRT . Thus, another interesting topic is about numerical methods which are able capture the above fluid limit when the Knudsen number is pushed to zero while the discretization parameters, i.e. time step and meshes, are kept fixed. The development of numerical methods designed to satisfy this property, called asymptotic preserving, has been the object of several papers, see for instance [START_REF] Dimarco | Exponential Runge-Kutta methods for stiff kinetic equations[END_REF], [START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF], [START_REF] Filbet | A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources[END_REF] and the recent review papers by [START_REF] Jin | Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: a review[END_REF]; [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF]; [START_REF] Pareschi | Efficient asymptotic preserving deterministic methods for the boltzmann equation[END_REF] and [START_REF] Dimarco | Numerical methods for kinetic equations[END_REF]. The important feature shared by these techniques is that the resulting schemes are unconditionally stable and capture the asymptotic limit automatically without resolving the small time scales.

Thus, one can show that the Penalized Exponential Runge Kutta and IMEX-RK methods presented may benefit of this additional property under several hypothesis on the type of RK scheme employed. In other words, this class of scheme is able to capture with high order accuracy the fluid limit without any time or mesh step limitation when the Knudsen number goes to zero. We remind to Li et al. (2014) for details.

Numerical results

Space homogeneous problems

In this subsection we perform several numerical tests in the spatially homogeneous case. The collision term Q(f ) is computed using the steady state preserving spectral method described in Section 2 where we left out the transport terms. In all the numerical tests, the computational domain is two dimensional in the velocity space: [-v max , v max ] 2 with v max = 6. We use N v = 64 grid points in each direction. For the numerical integrator, we use the ERK or the IMEX-RK methods presented in section 3.1. In the first case the standard Butcher tableaux below have been employed

RK2 : 0 0 0 1/2 1/2 0 0 1 RK4 : 0 0 0 0 0 1/2 1/2 0 0 0 1/2 0 1/2 0 0 1 0 0 1 0 1/6 1/3 1/3 1/6 (4.1)
while for the IMEX-RK methods, one needs to prescribe two Butcher tableaux, one for the explicit and one for the implicit part. The schemes are • First order IMEX (Forward Euler and Backward Euler)

0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 .
• Second order IMEX (Midpoint Rule and Trapezoidal Rule)

0 0 0 0 1/2 1/2 0 0 1 1/2 1/2 0 1/2 1/2 0 0 0 0 0 1/2 0 1/2 0 1 0 0 1 0 0 1 . • Third order IMEX BPR-(3,5,3) 0 0 0 0 0 0 1 1 0 0 0 0 2/3 4/9 2/9 0 0 0 1 1/4 0 3/4 0 0 1 1/4 0 3/4 0 0 1/4 0 3/4 0 0 0 0 0 0 0 0 1 1/2 1/2 0 0 0 2/3 5/18 -1/9 1/2 0 0 1 1/2 0 0 1/2 0 1 1/4 0 3/4 -1/2 1/2 1/4 0 3/4 -1/2 1/2
.

Test 1: Equilibrium test In this first example our aim is to check if the numerical integrator is able to capture the equilibrium state and to remain in this state for infinite time. This example is the analogous of test 2 in [START_REF] Filbet | Numerical solution of the Fokker-Planck-Landau equation by spectral methods[END_REF]. The initial distribution is a summation of two Gaussian distributions

f (v, t = 0) = ρ 4πT exp - (v -u) 2 2T + exp - (v + u) 2 2T , (4.2) 
where the macroscopic quantities are given by

ρ = 1; u = [1.25, 1.25]; T = 0.16. (4.3)
Starting from a bimodal distribution one would expect the solution to reach the equilibrium state which is nothing else but a Maxwellian distribution with the same macroscopic quantities of the starting distribution f . In figure 4.1 we reported the level set values of the distribution function f for different times. We observe that the two initial Maxwellian distributions centered at different locations in the velocity space gradually merge into one. Once that the equilibrium state is reached, the numerical scheme is able to preserve this steady state for all times. On the contrary, as already known, a standard spectral scheme is not able to preserve the steady state for infinite times since conservation of energy is, in general, not guarantee for this kind of schemes. In this test, the first order exponential Runge-Kutta method is used. All other time integrators methods give analogous results, i.e. the steady state solution is reached and then preserved for all times and thus results for these schmes are not reported.

Test 2: Rosenbluth's test We perform a second simulation with an axially symmetric initial condition originated by the following distribution f (v, t = 0) = 0.01 exp -10 |v| -0.3 0.3 . Scope of this simulation is to test the performances of the penalized time integrators schemes in terms of numerical errors in comparison to classical time integrators which should employ time steps restrictions for stability to be guaranteed.

In figure 4.1 we report the time evolution of the distribution function f (v, t) for v y = 0. In this case for the time integration we employ the exponential RK3 method (left) and the third order IMEX-RK method (right). Both schemes are compared with a reference solution computed by an explicit third order Runge-Kutta scheme (solid line in both figures) which needs the stability condition ∆t ∼ ∆v 2 to be satisfied. For the two schemes proposed we use a time step ∆t = 0.0156 while to compute the reference solution, a time step is ∆t = 1.0078 × 10 -4 is employed. The time step chosen for the penalized ERK and IMEX-RK schemes is chosen only in order to have sufficent precision in the solution and not for stability to be guaranteed. The figures show that even if much larger time steps are used for our methods, around 100 times bigger, the two penalized schemes and the reference solutions still match very well.

Test 3: Convergence rate test Scope of this last space homogeneous test is to prove that the numerical convergence rates both for the exponential Runge-Kutta methods and for the IMEX-RK methods are close to the theoretical rates. The initial distribution is given by a double peak Gaussian (4.2) as in the previous test where now the corresponding macroscopic quantities are ρ = 1, u = [0.4, 0], T = 0.8.

(4.4)

We compute the l 1 error in time, fixing the final time at t = 0.5, by

error i = max v f i (t) -f i-1 (t) 1 f i-1 (t) 1 , (4.5) 
and we measure its decay rate with respect to decreasing time steps ∆t keeping fixed the mesh in v. The time steps considered are respectively ∆t = 1/16, 1/32, 1/64, 1/128 and for each value of the time step ∆t i we compute the error, error i , by using the solution computed for ∆t i+1 as a reference solution.

The error curve expected are the ones corresponding to the time integrator used. This means we expect error curves with slope corresponding to respectively order one, two and three for the IMEX-RK schemes and up to order four for the ERK schemes since the discretization velocity space is done by a spectral method and thus the error decay rate being much larger than the theoretical error decay rates expected by the time discretization schemes. . In Figure 4.1 the exponential Runge-Kutta methods (dotted line with markers) up to the fourth order and the IMEX-RK method (solid line with markers) with α = 0.01, k = 1 and a domain size L = 2π k with L v = 6. We run the test up to T = 10 with three different Knudsen numbers:

1. ε = ∞. The situation corresponds to solve the Vlasov equation and we expect the classical Landau damping behaviors.

2. ε = 1. The situation corresponds to mild collisions.

3. ε = 10 -4 . The situation corresponds to very strong collisions. The distribution function is close to the Maxwellian state. In this regime, the Vlasov-Landau equation gives solutions very close to the one furnished by the corresponding fluid model. The mesh is defined by N = 128 and N v = 128 2 points for ε = ∞; while in the other two cases N = 64 and N v = 64 2 is used since the collision term smooths the distribution function in velocity space and N v = 64 2 points are sufficient to get the analogous resolution of the non collisional case. Periodic boundary conditions are used for the distribution function in space while in velocity space the distribution is set to f = 0 at the boundaries. Finally the Poisson equation is solved by employing Dirichlet boundary conditions on a staggered grid with respect to the one employed for solving the Vlasov equation. In figure 4 on the left we report the L 2 norm of the electric field versus time in logarithmic scale. The straight line represents the theoretical damping rate γ = -0.85. As expected in the collisionless case the damping computed is the same as the theoretical one while when collisions grows the damping is balanced by the effect of the interactions. In the limit of infinite collisions the energy associated with the electric field oscillates around a constant value.

Test 2: Non linear Landau damping. In this case the Vlasov-Poisson equation is initialized by

f (x, v x , v y ) = 1 2π 1 + α cos (kx) e -v 2 x -v 2 y 2 , (v x , v y ) ∈∈ [-L v , L v ] 2 (4.7)
with α = 0.5, k = 0.5, and a domain size L = 2π k with L v = 6. We run the test up to T = 40 with N = 128, N v = 128 2 for the non collisional case, while in the collisional case we used N v = 64 2 , since as in the previous case, collisions smooth the distribution function in the velocity space and N v = 64 2 points turn out to be enough to reach the same precision of the non collisional regime. We simulate this problem using three different Knudsen numbers:

1. ε = ∞. The situation corresponds to solve the Vlasov equation and we expect as in the previous case the classical Landau damping behaviors.

2. ε = 1. The situation corresponds to mild collisions.

3. ε = 10 -4 . The situation corresponds to very strong collisions. The distribution function is close to the Maxwellian state. In this regime, the Vlasov-Landau equation gives solutions very close to the one furnished by the corresponding fluid model. The boundary conditions both for the distribution function and the Poisson equation are the same as in the previous test. In figure 4, on the right, we report the L 2 norm of the electric field versus time in logarithmic scale. In this situation, in the non collisional case, the electric energy is first exponentially decreasing with a decay rate of approximately γ 1 = -0.2812 as reported in the paper of [START_REF] Cheng | The integration of the Vlasov equation in configuration space[END_REF] and [START_REF] Guo | Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation[END_REF]. After the decreasing phase, the growth rate phase is approximately defined by a growing rate γ 2 = 0.08 which is consistent with the results of [START_REF] Guo | Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation[END_REF] and [START_REF] Heath | A discontinuous Galerkin method for the Vlasov-Poisson system[END_REF]. At variance, in presence of mild collisions, the electric energy is exponentially decreasing during all the simulation. In the strong collisional regime the behavior is opposite, the electric energy oscillates around a constant value as in the linear case. Test 3: Two stream instability. In this case the initial data are

f (x, v x , v y ) = 1 12π (1 + α cos(kx))e -(v 2 x +v 2 y )/2 (1 + 5v 2 x ), (v x , v y ) ∈ [-L v , L v ] 2 (4.8)
with α = 0.05, k = 0.5 and the domain size L = [0, 2π/k] in the physical space and with L v = 6 in the velocity space. We run the test up to T = 40 with three different Knudsen numbers:

1. ε = ∞.

2. ε = 1.

3. ε = 10 -4 . The above situations correspond as before to three different collisional regimes. The boundary conditions are still periodic in space for the distribution f and Dirichlet in velocity space. The Poisson equation employs Dirichlet conditions. The number of points is N x = 128 and N v = 128 2 for the non collisional case while we choose N v = 64 2 in the mild and strong collisional cases. In Figure 5-7 we report on the top the isosurfaces while on the bottom the projections in the x -v x plane of the distribution f for different times and different Knudsen numbers. In the collisionless case (Figure 5) the formation of instability is observed and the results are consistent with the ones observed in [START_REF] Crouseilles | Comparison of two Eulerian solvers for the four-dimensional Vlasov equation[END_REF]. In the case of mild collisions (Figure 6), we observe for t = 2 the formation of a small hole in the center which is still present at t = 4 even if it is very close to disappearance, then for t = 8 the effect of the collisions become predominant and the distribution f approaches rapidly the Maxwellian state. With strong collision (Figure 7) the distribution function approaches the Maxwellian at a much larger rate and we only observe some oscillations of the distribution around the axis v x = 0 for t = 2 and t = 4.

Efficiency test

We finally perform some efficiency test to measure the performances of the scheme proposed. More in details, we measure the efficiency of the fast spectral method in comparison with the standard spectral method and we measure the computational cost of solving a collision term in comparison with the computational cost of solving only the collisionless Vlasov equation. We remind to a future work an analogous analysis where the effect of different time integrators is tested in term of computational costs.

Test 1: Fast spectral methods vs standard spectral methods The theoretical computational cost of the fast spectral method described in section 2.2.2 for evaluating the Landau operator Q(f ) is n log n where n = N 2 v is the total number of grid points in velocity space. This fast summation method is compared to a standard spectral method, the one described in equation (2.10) with a theoretical cost of the order n 2 for a single evaluation of the same operator.

In order to numerically test the two spectral approaches, we apply an explicit Euler method for integrating the Vlasov-Landau equation on a space homogeneous problem with a double peak Gaussian initial distribution as the one described in (4.2). The number of time steps is fixed to 100 and the total computation time cost is summarized in Table 1. The results show that the gain in term of computational cost is even larger than the theoretical one, however one has to observe that while there exists optimized routines for computing the fast Fourier transform, the summation which is needed for solving the problem by the classical spectral method is obtained with standard techniques.

Test 2: Transport vs collisions We finally measure the computational times corresponding to the numerical solution of the collisionless Vlasov equation and of the homogeneous Landau equations when they are coupled together by means of splitting methods. In the following test, a third order Semi-Lagrangian method is applied to the Vlasov equation (2.2) while a fourth order exponential Runge-Kutta method is applied on the Landau collision part (2.1). A fourth order time splitting (2.6) is applied to combine the two terms. We compare the CPU time spent on the computation of the Vlasov equation by the semi-Lagrangian method, the CPU time for the evaluation of the Landau operator Q by the fast spectral method and the CPU time needed for inverting the linear Fokker-Planck operator P by a conjugate gradient method. The initial data are those of the two stream instability problem (4.8) introduced before. The results are summarized in Table 2 for an increasing number of points N v in velocity space, the mesh in the physical space being fixed to N = 64.

Conclusions

In the present paper we considered the development of efficient and accurate numerical methods for the solution of the Vlasov-Landau equation describing a collisional plasma. The main advantage of the approach here presented is that it permits to embed easily and existing collisionless code with a collisional Landau code based on fast spectral methods and suitable high-order time integrators. If compared with existing deterministic schemes for collisional plasma, like the one derived in [START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF], the method here presented has the following advantages.

• The spectral approximation of the collision term is spectrally accurate, can be evaluated with fast algorithms and captures correctly the Maxwellian steady states;

• The time discretization of the collisional phase can achieve high order accuracy and is capable to avoid the parabolic stiffness induced by the Landau operator;

• Close to thermodynamic equilibrium, or alternatively in the limit of vanishing Knudsen number, the numerical method is consistent with the Euler-Poisson fluid approximation of the plasma.

  l, m) = B(l, m) -B(m, m), and the Landau kernel modes B(l, m) are given by B(l, m) = B0(π) |g| γ+2 l 2 -l • g |g| 2 e ig•m dg.

  cos φ) cos(2φ) dφ dr. (2.19)

  and more recently Carrillo & Vecil (2007); Qiu & Shu (2011); Ayuso et al. (2011); Heath et al. (2012); Cheng et al. (2012); Crouseilles et al. (2010); Sonnendrücker et al. (1999); Filbet et al. (2001); Valentini et al. (2007) which address the particular problem of solving Vlasov type kinetic equations by this kind of techniques.
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 1 Figure 1. Time evolution of the level set of distribution function f , starting from the double peak distribution (4.2). A first order exponential Runge-Kutta method is used for the time integration.

Figure 4 .

 4 Figure 4. The linear Landau damping on the left and the non linear Landau damping on the right associated to different Knudsen numbers. The three figures, from top to bottom are for ε = ∞, 1 and 10 -4 respectively.

Figure 5 .

 5 Figure 5. Two stream instability without collision at time t = 1, 10, 20, 40. Top: 3D illustration; Bottom: projection in the xvx plane.

Figure 6 .

 6 Figure 6. Two stream instability associated with Knudsen number ε = 1 at time t = 1, 2, 4, 8. Top: 3D illustration; Bottom: projection in the xvx plane.

Figure 7 .

 7 Figure 7. Two stream instability associated with Knudsen number ε = 10 -4 at time t = 1, 2, 4, 8. Top: 3D illustration; Bottom: projection in the xvx plane.

  Time evolution of distribution function f (vx, vy = 0) at various time slot for Rosenbluth's test problem. Solid lines: reference solution computed by an explicit RK3 method with ∆t = 1.0078 × 10 -4 . Markers: solution computed by exponential RK3 method (left) and third order IMEX-RK method (right) with ∆t = 0.0156.
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Table 1 .

 1 The comparison of the computation times (in seconds) between a standard spectral method and a fast spectral method. Nv = 32 2 Nv = 64 2 Nv = 128 2

	fast spectral method	0.184	0.756	3.460
	standard spectral method 29.924	547.824	8891.244

Table 2 .

 2 Relative computational times (in percentage) for the different parts. Nv = 32 2 Nv = 64 2 Nv = 128 2 Nv = 256 2

	Vlasov solver 66.83%	65.28%	52.00%	29.59%
	Evaluating Q 24.19%	21.11%	19.07%	18.59%
	Inverting P	8.97%	13.61%	28.93%	51.83%

up to the third order are reported. The numerical decay rates obtained are within the expectation.

The full non homogeneous problem

In this subsection we analyze the behaviors of our numerical scheme on three different non homogeneous test cases. We first consider a one dimensional in space and two dimensional in velocity space linear Landau damping and successively a non linear Landau damping, both problems are studied under different collisional regimes. First we report the results in the non collisional case and then we show what changes when collisions are added to the system. We report results for an average collision regime and a strong collisional regime. We successively consider a two stream instability problem again in the one in space-two in velocity space setting testing three different regimes : non collisional, mild collisional and strong collisional.

For all tests the left hand side of the collisional Vlasov equation is solved by a semi-Lagrangian method which employs cubic spline reconstructions of the distribution function and a fourth order splitting while the collisional part is solved by spectral methods in velocity and exponential integrators in time. The Poisson equation is solved by a fourth order finite difference method. The time step is fixed for all tests as ∆t min(∆x/v max , ∆v/ max(|E|). Let us recall that, due to the fact that semi-Lagrangian schemes are used for the transport terms, in principle a CFL condition is not needed, being the scheme unconditionally stable, consequently the above choice has been dictated solely by accuracy reasons. Let also observe that if standard explicit integrators instead of the uniformly stable integrators wants to be used, the time step should be fixed to ∆t ε(∆v) 2 which turns to be a strongly restrictive condition in practical situations.

Test 1: Linear Landau damping. The Vlasov-Poisson system is initialized by