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Singular solutions of conformal Hessian equation

Nikolai Nadirashvili∗, Serge Vlăduţ†

Abstract. We show that for any ε ∈]0, 1[ there exists an analytic outside zero
solution to a uniformly elliptic conformal Hessian equation in a ball B ⊂ R

5

which belongs to C1,ε(B) \ C1,ε+(B).

AMS 2000 Classification: 35J60, 53C38
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1 Introduction

In this paper we study a class of fully nonlinear second-order elliptic equations
of the form

F (D2u,Du, u) = 0 (1)

defined in a domain of Rn. Here D2u denotes the Hessian of the function u, Du
being its gradient. We assume that F is a Lipschitz function defined on a domain
in the space Sym2(R

n)×R
n×R, Sym2(R

n) being the space of n× n symmetric
matrices and that F satisfies the uniform ellipticity condition, i.e. there exists
a constant C = C(F ) ≥ 1 (called an ellipticity constant) such that

C−1||N || ≤ F (M +N)− F (M) ≤ C||N ||

for any non-negative definite symmetric matrix N ; if F ∈ C1(Sym2(R
n)) then

this condition is equivalent to

1

C′
|ξ|2 ≤ Fuij

ξiξj ≤ C′|ξ|2 , ∀ξ ∈ R
n .

Here, uij denotes the partial derivative ∂2u/∂xi∂xj . A function u is called a
classical solution of (1) if u ∈ C2(Ω) and u satisfies (1). Actually, any classical
solution of (1) is a smooth (Cα+3) solution, provided that F is a smooth (Cα)
function of its arguments.
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More precisely, we are interested in conformal Hessian equations (see, e.g.
[9], pp. 5-6) i.e. those of the form

F [u] := f(λ(Au)) = ψ(u, x) (2)

f being a Lipschitz function on R
n invariant under permutations of the coordi-

nates and
λ(Au) = (λ1, . . . , λn)

being the eigenvalues of the conformal Hessian in R
n:

Au := uD2u− 1

2
|Du|2In (3)

where n ≥ 3, u > 0.
In this case F is invariant under conformal mappings T : Rn −→ R

n, i.e.
transformations which preserve angles between curves. In contrast to the case
n = 2, for n ≥ 3 any conformal transformation of Rn is decomposed into a
finitely many Möbius transformations, that is mappings of the form

Tx = y +
kA(x− z)

|x− z|a ,

with x, z ∈ R
n, k ∈ R, a ∈ {0, 2} and an orthogonal matrix A. In other words,

each T is a composition of a translation, a homothety, a rotation and (may be)

an inversion. If T is a conformal mapping and v(x) = J
−1/n
T u(Tx), where JT

denotes the Jacobian determinant of T then F [v] = F [u]. Note that this class
of equations is very important in geometry, see [4] and references therein.

We are interested in the Dirichlet problem

{
F (D2u,Du, u) = 0, u > 0 in Ω

u = ϕ on ∂Ω ,
(4)

where Ω ⊂ R
n is a bounded domain with a smooth boundary ∂Ω and ϕ is a

continuous function on ∂Ω.
Consider the problem of existence and regularity of solutions to the Dirich-

let problem (4) which has always a unique viscosity (weak) solution for fully
nonlinear elliptic equations. The viscosity solutions satisfy the equation (1) in a
weak sense, and the best known interior regularity ([1],[2],[8]) for them is C1+ε

for some ε > 0. For more details see [2], [3]. Recall that in [5] the authors con-
structed a homogeneous singular viscosity solution in 5 dimensions for Hessian
equations of order 1 + δ for any δ ∈]0, 1], that is, of any order compatible with
the mentioned interior regularity results. In fact we proved in [5] the following
result.
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Theorem 1.1.

The function

w5,δ(x) = P5(x)/|x|1+δ , δ ∈ [0, 1[

is a viscosity solution to a uniformly elliptic Hessian equation F (D2w) = 0 with

a smooth functional F in a unit ball B ⊂ R
5 for the isoparametric Cartan cubic

form

P5(x) = x31 +
3x1
2

(
z21 + z22 − 2z23 − 2x22

)
+

3
√
3

2

(
x2z

2
1 − x2z

2
2 + 2z1z2z3

)

with x = (x1, x2, z1, z2, z3).

which proves the optimality of the interior C1+ε-regularity of viscosity solutions
to fully nonlinear equations in 5 and more dimensions.

In the present paper we show that the same singularity result remains true
for conformal Hessian equations.

Theorem 1.2.

Let δ ∈]0, 1[. The function

u(x) := c+ w5,δ(x) = c+
P5(x)

|x|1+δ
,

is a viscosity solution to a uniformly elliptic conformal Hessian equation (1) in
a unit ball B ⊂ R

5 for a sufficiently large positive constant c (c = 240000 is

sufficient for δ = 1
2 ).

Notice also that the result does not hold for δ = 0 and we do not know
how to construct a non-classical C1,1-solution to a uniformly elliptic conformal
Hessian equation.

The rest of the paper is organized as follows: in Section 2 we recall some
necessary preliminary results and we prove our main results in Section 3; to
simplify the notation we suppose that δ = 1

2 in Section 3; for any δ the proof
is along the same line, but more cumbersome. The proof in Section 3 uses
MAPLE to varify some algebraic identities but is completely rigorous (and is
human-controlled for δ = 1

2 ).

2 Preliminary results

Notation: for a real symmetric matrix A we denote by |A| the maximum of the
absolute value of its eigenvalues.

Let u be a strictly positive function on B1. Define the map

Λ : B1 −→ λ(S) ∈ R
n .

λ(S) = {λ1 ≥ ... ≥ λn} ∈ R
n being the (ordered) set of eigenvalues of the

conformal Hessian

Au := uD2u− 1

2
|Du|2In.
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The following ellipticity criterion can proved similarly to Lemma 2.1 of [6].

Lemma 2.1. Suppose that the family

{Au(a)−O−1 · Au(b) · O : a, b ∈ B1, O ∈ SO(n)} \ {0}

is uniformly hyperbolic, i.e. if {µ1(a, b, O) ≥ . . . ≥ µn(a, b, O)} is the ordered

spectrum of Au(a)−O−1 · Au(b) · O 6= 0 then

∀a, b ∈ B1, ∀O ∈ SO(n), C−1 ≤ −µ1(a, b, O)

µn(a, b, O)
≤ C

for some constant C > 1. Then u is a viscosity solution in B1 of a uniformly

elliptic conformal Hessian equation (1).

We recall then some properties of the function w := w5,δ(x) = P5(x)
|x|1+δ , and

its Hessian D2w proved in [5].

Lemma 2.2.

There exists a 3-dimensional Lie subgroup GP of SO(5) such that P is in-

varant under its natural action and the orbit GPS
1
1 of the circle

S
1
1 = {(cos(χ), 0, sin(χ), 0, 0) : χ ∈ R} ⊂ S

4
1

under this action is the whole S
4
1.

Lemma 2.3.

(i) Let x ∈ S
4
1, and let x ∈ GP (p, 0, r, 0, 0) with p

2 + r2 = 1. Then

Spec(D2w5,δ(x)) = {µ1,δ, µ2,δ, µ3,δ, µ4,δ, µ5,δ}

for

µ1,δ =
p(p2δ + 6− 3δ)

2
,

µ2,δ =
p(p2δ − 3− 3δ) + 3

√
12− 3p2

2
,

µ3,δ =
p(p2δ − 3− 3δ)− 3

√
12− 3p2

2
,

µ4,δ = −pδ(6− δ)(3 − p2) +
√
D(p, δ)

4
,

µ5,δ = −pδ(6− δ)(3 − p2)−
√
D(p, δ)

4
,

and

D(p, δ) := (6− δ)(4 − δ)(2− δ)δ(p2 − 3)2p2 + 144(δ − 2)2 > 0.
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(ii) Let λ1 ≥ λ2 ≥ . . . ≥ λ5 be the ordered eigenvalues of D2w5,δ(x). Then

λ1 = µ2,δ, λ5 = µ3,δ,

λ2 =

{
µ4,δ for p ∈ [−1, p0(δ)],

µ1,δ for p ∈ [p0(δ), 1],

λ3 =






µ5,δ for p ∈ [−1,−p0(δ)],
µ1,δ for p ∈ [−p0(δ), p0(δ)],
µ4,δ for p ∈ [p0(δ), 1],

λ4 =

{
µ1,δ for p ∈ [−1,−p0(δ)],
µ5,δ for p ∈ [−p0(δ), 1],

where

p0(δ) :=
31/4

√
1− δ

(3 + 2δ − δ2)1/4
=

31/4
√
ε

(4 − ε2)1/4
∈]0, 1].

Note the oddness property of the spectrum:

λ1,δ(−p) = −λ5,δ(p), λ2,δ(−p) = −λ4,δ(p), λ3,δ(−p) = −λ3,δ(p).

Proposition 2.1.

Let Nδ(x) = D2wδ(x), 0 ≤ δ < 1. Suppose that a 6= b ∈ B1 \ {0} and let

O ∈ O(5) be an orthogonal matrix s.t.

Nδ(a, b, O) := Nδ(a)− tO ·Nδ(b) ·O 6= 0.

Denote Λ1 ≥ Λ2 ≥ . . . ≥ Λ5 the eigenvalues of the matrix Nδ(a, b, O). Then

1

C
≤ −Λ1

Λ5
≤ C

for C := C(δ) := 1000(δ+1)(3−δ)
3(1−δ)2 ; for k ∈ [ 12 , 1] one can choose C = 1000.

Corollary 2.1.

Λ1 ≥ |Nδ(a, b, O)|
C(δ)

, |Λ5| ≥
|Nδ(a, b, O)|

C(δ)
.

We need also the following classical Weyl’s result:

Lemma 2.4.

Let A,B be two real symmetric matrices with the eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn and λ′1 ≥ λ′2 ≥ . . . ≥ λ′n respectively. Then for the eigenvalues

Λ1 ≥ Λ2 ≥ . . . ≥ Λn of the matrix A−B we have

Λ1 ≥ max
i=1,··· ,n

(λi − λ′i), Λn ≤ min
i=1,··· ,n

(λi − λ′i).

5



3 Proofs

Let n = 5, u(x) = c+w5,δ(x). We begin with δ = 0 and show that the result is
false in this case. Indeed let a = (1, 0, 0, 0, 0), b = (12 , 0, 0, 0, 0), O = I5. Then

w(a) = 1, w(b) =
1

2
, |Du(a)| = |Dw(a)| = 9, |Du(b)|2 = |Dw(b)|2 =

9

4
,

D2u(a) = D2w(a) = D2u(b) = D2w(b),

and

Au(a)−Au(b) =
1

2
D2w(a)− 27

4
I5

which is negative since the spectrum of D2w(a) is (2, 2, 2,−7,−7). The reason
is clearly that D2w(a) for δ = 0 is homogeneous order 0 and depends only on
the direction vector a/|a|.

Suppose now that δ ∈]0, 1[. As we mentioned before, we set δ = 1
2 ; in this

case c = 240000. First we spell out Lemma 2.3 for δ = 1
2 .

Lemma 3.1.

(i) Let x ∈ S
4
1, and let x ∈ GP (p, 0, r, 0, 0) with p

2 + r2 = 1. Then

Spec(D2u(x)) = Spec(D2w(x)) = {µ1, µ2, µ3, µ4, µ5}

for

µ1 =
3p(p2 + 1)

4
,

µ2 =
3p(p2 − 5) + 6

√
12− 3p2

4
,

µ3 =
3p(p2 − 5)− 6

√
12− 3p2

4
,

µ4 =
27p(p2 − 3) + 3

√
105p6 − 630p4 + 945p2 + 64

16
,

µ5 =
27p(p2 − 3)− 3

√
105p6 − 630p4 + 945p2 + 64

16
.

(ii) Let λ1 ≥ λ2 ≥ . . . ≥ λ5 be the ordered eigenvalues of Spec(D2u(x)) =
Spec(D2w(x)). Then

λ1 = µ2, λ5 = µ3,

λ2 =

{
µ4 for p ∈ [−1, p0],

µ1 for p ∈ [p0, 1],

λ3 =





µ5 for p ∈ [−1,−p0],
µ1 for p ∈ [−p0, p0],
µ4 for p ∈ [p0, 1],
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λ4 =

{
µ1 for p ∈ [−1,−p0],
µ5 for p ∈ [−p0, 1],

where

p0 = 5−1/4 ≃ 0.6687403050.

We will need also the derivatives of the egenvalues.

Lemma 3.2. Let di(p) :=
d(µi)
dp . Then

d1(p) =
3(3p2 + 1)

4
,

d2(p) = −3(5− 3p2)

4
+

9p

2
√
12− 3p2

,

d3(p) = −3(5− 3p2)

4
− 9p

2
√
12− 3p2

,

d4(p) =
81(1− p2)

16

(
35p(3− p2)

3
√
105p6 − 630p4 + 945p2 + 64

− 1

)
,

d5(p) = −81(1− p2)

16

(
35p(3− p2)

3
√
105p6 − 630p4 + 945p2 + 64

+ 1

)
.

Simple calculus gives

Corollary 3.1.

D := max{|di(p)| : p ∈ [−1, 1], i = 1, . . . , 5} < 10.

Below we denote Di(p) :=
d(λi)
dp ; the relation of Di(p) and di(p) is clear from

Lemma 3.1 (ii); for example, D1(p) = d2(p), D5(p) = d3(p).

The proof of Theorem 1.2 is based on the following lemmas. Let

a, b ∈ B1 \ {0}, |a| = s ≤ 1, |b| = t ≤ 1, O ∈ O(5),

a′ :=
a

s
∈ GP (p, 0, r, 0, 0), b

′ :=
b

t
∈ GP (q, 0, r

′, 0, 0).

Below we denote
K := K(p, q, s, t) = |s− t|+ |p− q|,

M1 :=M1(a, b, O) := D2u(a)−O−1D2u(b) ·O,
M2 :=M2(a, b, O) := w(a)D2u(a)−O−1w(b)D2u(b) ·O.

Lemma 3.3. ∣∣∣|Du(a)|2 − |Du(b)|2
∣∣∣ ≤ 16K.
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Proof. First, |Du(a)|2 = |Dw(a)|2, |Du(b)|2 = |Dw(b)|2. Since P = P5(x)
can be represented as the generic traceless norm in the Jordan algebra Sym3(R)
it verifies the eiconal equation |DP |2 = |x|4, see e.g. [7]. Therefore, an easy
calculation gives

|Du(a)|2 =
9s(16− 3p2(p2 − 3)2)

32
, |Du(b)|2 =

9t(16− 3q2(q2 − 3)2)

32
,

∣∣∣|Du(a)|2 − |Du(b)|2
∣∣∣ ≤

∣∣∣∣
9s(16− 3p2(p2 − 3)2)

32
− 9t(16− 3p2(p2 − 3)2)

32

∣∣∣∣+

+

∣∣∣∣
9t(16− 3p2(p2 − 3)2)

32
− 9t(16− 3q2(q2 − 3)2)

32

∣∣∣∣ =
∣∣∣∣
9(s− t)(16− 3p2(p2 − 3)2)

32

∣∣∣∣+
∣∣∣∣
27t(p− q)(p+ q)((q2 − 3)2 − (p2 − 3)2)

32

∣∣∣∣ ≤
∣∣∣∣
9(s− t)

2

∣∣∣∣+
∣∣∣∣
243(p− q)

16

∣∣∣∣ ≤ 16K.

Lemma 3.4. Let M := |M1| =
∣∣D2u(a)−O−1 ·D2u(b) ·O

∣∣. Then

M ≥ K

8
.

Proof. If one replaces a by a′ = a/s and b by b′′ = b/s the quantity M gets
bigger and K gets smaller. Therefore we can suppose that |a| = s = 1. Then
we have

D2u(a)−O−1 ·D2u(b) · O = D2u(a)− O−1 ·D2u(b′) · O√
t

.

By Lemma 2.4 we have

M ≥ max

{
λi(p)−

λi(q)√
t

: i = 1, . . . , 5

}
,

M ≥
∣∣∣∣min

{
λi(p)−

λi(q)√
t

: i = 1, . . . , 5

}∣∣∣∣ .

Suppose first p ≥ q. If q ≥ − 24
25 = −0.96 then

∀p′ ∈ [q, p], D1(p
′) < −1/4 = −0.25, λ1(p) >

3

2

(by a simple calculation using the explicit formulas for D1, λ1). Therefore

λ1(p)−
λ1(q)√

t
= λ1(p)−λ1(q)+λ1(q)−

λ1(q)√
t

≤ −p− q

4
− 3

2

(
1√
t
− 1

)
< −K

4
.
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If q < −0.96 but p ≥ − 23
25 = −0.92 then

λ1(p)−
λ1(q)√

t
= λ1(p)−λ1(q)+λ1(q)−

λ1(q)√
t

≤ λ1(p)−λ1
(
24

25

)
+λ1(q)−

λ1(q)√
t

−p+ 0.96

4
− 3

2

(
1√
t
− 1

)
< −p− q

8
− 3

2

(
1√
t
− 1

)
< −K

8
.

Suppose then that q < −0.96, p < −0.92. In this case we have

∀p′ ∈ [q, p], d2(p
′) >

5

2
, λ2(p

′) < −3

2

and thus

λ2(p)−
λ2(q)√

t
= λ2(p)−λ2(q)+λ2(q)−

λ2(q)√
t

≥ 5(p− q)

2
+

3

2

(
1√
t
− 1

)
≥ 3K

4

which finishes the proof for p ≥ q. The case q ≥ p is treated similarly (replace
λ1 by λ5 and λ2 by λ4).

Lemma 3.5.

|M2| =
∣∣w(a)D2u(a)−O−1w(b)D2u(b) · O

∣∣ ≤ 10K

Proof. Indeed, let a′ := a/s, b′ := b/s then by homogeneity

∣∣w(a)D2w(a) −O−1w(b)D2w(b) · O
∣∣ =

∣∣sD2w(a′)−O−1 · tD2w(b′) · O
∣∣ ≤

≤ s
∣∣D2w(a′)−O−1 ·D2w(b′) · O

∣∣+ |s− t| · |O−1 ·D2w(b′)| ≤
≤ max

p,i
{|Di(p)|}|p− q|+ 7|s− t| = max

p,i
{|di(p)|}|p− q|+ 7|s− t| ≤ 10K.

Remark 3.1. These results remain true for any δ ∈]0, 1[ if one replaces the
respective constants 16, 1/8 and 10 in Lemmas 3.3, 3.4 and 3.5 by appropriate
positive constants depending on δ. On the contrary, Lemma 3.4 is false for
δ = 0.

We can now prove the uniform hyperbolicity of M(a, b, O) and thus the
theorem. In fact we show that one can take C = 6007 in Lemma 3.1.

Indeed,

|M(a, b, O)| =
∣∣Au(a)−O−1 · Au(b) · O

∣∣ =
∣∣cM1 +M2 −

(
|Du(a)|2 − |Du(b)|2

)
I5
∣∣ .

Therefore,

|Λ5| ≥ c|Λ5(M1)| − 10K − 16K ≥ c|M1|
1000

− 26K ≥ 240|M1| − 26K ≥ 4K,

|Λ1| ≥ cΛ1(M1)− 10K − 16K ≥ c|M1|
1000

− 26K ≥ 240|M1| − 26K ≥ 4K,
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|M(a, b, O)| ≤ c |M1|+ |M2|+
∣∣|Du(a)|2 − |Du(b)|2

∣∣ ≤ c |M1|+ 26K.

Thus

1

C
<

4

240026
≤ 240|M1| − 26K

c |M1|+ 26K
≤ |Λ5|

|Λ1|
≤ c |M1|+ 26K

240|M1| − 26K
≤ 240026

4
< C

which finishes the proof. Notice that we can take C = 1000 + ε for δ ≤ 1
2 if

c is sufficiently large; in the case 1
2 < δ < 1 for sufficiently large c one gets

C = C(δ) + ε = 1000(δ+1)(3−δ)
3(1−δ)2 + ε.
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[8] N. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations,

Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 57–65.

[9] N. Trudinger, Fully nonlinear elliptic equations in geometry. CBMS Lectures,

Oct. 2004 draft, available at
http : //maths− people.anu.edu.au/ñeilt/RecentPapers/notes1.pdf

10


	1 Introduction
	2 Preliminary results 
	3 Proofs

