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We show that for any ε ∈]0, 1[ there exists an analytic outside zero solution to a uniformly elliptic conformal Hessian equation in a ball B ⊂ R 5 which belongs to C 1,ε (B) \ C 1,ε+ (B).

Introduction

In this paper we study a class of fully nonlinear second-order elliptic equations of the form F (D 2 u, Du, u) = 0 [START_REF] Caffarelli | Interior a priory estimates for solutions of fully nonlinear equations[END_REF] defined in a domain of R n . Here D 2 u denotes the Hessian of the function u, Du being its gradient. We assume that F is a Lipschitz function defined on a domain in the space Sym 2 (R n ) × R n × R, Sym 2 (R n ) being the space of n × n symmetric matrices and that F satisfies the uniform ellipticity condition, i.e. there exists a constant C = C(F ) ≥ 1 (called an ellipticity constant) such that

C -1 ||N || ≤ F (M + N ) -F (M ) ≤ C||N ||
for any non-negative definite symmetric matrix N ; if F ∈ C 1 (Sym 2 (R n )) then this condition is equivalent to

1 C ′ |ξ| 2 ≤ F uij ξ i ξ j ≤ C ′ |ξ| 2 , ∀ξ ∈ R n .
Here, u ij denotes the partial derivative ∂ 2 u/∂x i ∂x j . A function u is called a classical solution of (1) if u ∈ C 2 (Ω) and u satisfies [START_REF] Caffarelli | Interior a priory estimates for solutions of fully nonlinear equations[END_REF]. Actually, any classical solution of (1) is a smooth (C α+3 ) solution, provided that F is a smooth (C α ) function of its arguments.
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More precisely, we are interested in conformal Hessian equations (see, e.g. [START_REF] Trudinger | Fully nonlinear elliptic equations in geometry[END_REF], pp. 5-6) i.e. those of the form

F [u] := f (λ(A u )) = ψ(u, x) (2) 
f being a Lipschitz function on R n invariant under permutations of the coordinates and

λ(A u ) = (λ 1 , . . . , λ n )
being the eigenvalues of the conformal Hessian in R n :

A u := uD 2 u - 1 2 |Du| 2 I n (3) 
where n ≥ 3, u > 0.

In this case F is invariant under conformal mappings T : R n -→ R n , i.e. transformations which preserve angles between curves. In contrast to the case n = 2, for n ≥ 3 any conformal transformation of R n is decomposed into a finitely many Möbius transformations, that is mappings of the form

T x = y + kA(x -z) |x -z| a , with x, z ∈ R n , k ∈ R, a ∈ {0,
2} and an orthogonal matrix A. In other words, each T is a composition of a translation, a homothety, a rotation and (may be) an inversion. If T is a conformal mapping and v(x) = J -1/n T u(T x), where J T denotes the Jacobian determinant of T then F [v] = F [u]. Note that this class of equations is very important in geometry, see [START_REF] Li | On some conformally invariant fully nonlinear equations[END_REF] and references therein.

We are interested in the Dirichlet problem

F (D 2 u, Du, u) = 0, u > 0 in Ω u = ϕ on ∂Ω , (4) 
where Ω ⊂ R n is a bounded domain with a smooth boundary ∂Ω and ϕ is a continuous function on ∂Ω.

Consider the problem of existence and regularity of solutions to the Dirichlet problem (4) which has always a unique viscosity (weak) solution for fully nonlinear elliptic equations. The viscosity solutions satisfy the equation (1) in a weak sense, and the best known interior regularity ([1], [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF], [START_REF] Trudinger | Hölder gradient estimates for fully nonlinear elliptic equations[END_REF]) for them is C 1+ε for some ε > 0. For more details see [START_REF] Caffarelli | Fully Nonlinear Elliptic Equations[END_REF], [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Recall that in [START_REF] Nadirashvili | Singular solutions of Hessian elliptic equations in five dimensions[END_REF] the authors constructed a homogeneous singular viscosity solution in 5 dimensions for Hessian equations of order 1 + δ for any δ ∈]0, 1], that is, of any order compatible with the mentioned interior regularity results. In fact we proved in [START_REF] Nadirashvili | Singular solutions of Hessian elliptic equations in five dimensions[END_REF] the following result.

Theorem 1.1.

The function

w 5,δ (x) = P 5 (x)/|x| 1+δ , δ ∈ [0, 1[
is a viscosity solution to a uniformly elliptic Hessian equation F (D 2 w) = 0 with a smooth functional F in a unit ball B ⊂ R 5 for the isoparametric Cartan cubic form

P 5 (x) = x 3 1 + 3x 1 2 z 2 1 + z 2 2 -2z 2 3 -2x 2 2 + 3 √ 3 2 x 2 z 2 1 -x 2 z 2 2 + 2z 1 z 2 z 3 with x = (x 1 , x 2 , z 1 , z 2 , z 3 ).
which proves the optimality of the interior C 1+ε -regularity of viscosity solutions to fully nonlinear equations in 5 and more dimensions.

In the present paper we show that the same singularity result remains true for conformal Hessian equations.

Theorem 1.2. Let δ ∈]0, 1[. The function u(x) := c + w 5,δ (x) = c + P 5 (x) |x| 1+δ ,
is a viscosity solution to a uniformly elliptic conformal Hessian equation (1) in a unit ball B ⊂ R 5 for a sufficiently large positive constant c (c = 240000 is sufficient for δ = 1 2 ). Notice also that the result does not hold for δ = 0 and we do not know how to construct a non-classical C 1,1 -solution to a uniformly elliptic conformal Hessian equation.

The rest of the paper is organized as follows: in Section 2 we recall some necessary preliminary results and we prove our main results in Section 3; to simplify the notation we suppose that δ = 1 2 in Section 3; for any δ the proof is along the same line, but more cumbersome. The proof in Section 3 uses MAPLE to varify some algebraic identities but is completely rigorous (and is human-controlled for δ = 1 2 ).

Preliminary results

Notation: for a real symmetric matrix A we denote by |A| the maximum of the absolute value of its eigenvalues. Let u be a strictly positive function on B 1 . Define the map

Λ : B 1 -→ λ(S) ∈ R n . λ(S) = {λ 1 ≥ ... ≥ λ n } ∈ R n being the (ordered) set of eigenvalues of the conformal Hessian A u := uD 2 u - 1 2 |Du| 2 I n .
(ii) Let λ 1 ≥ λ 2 ≥ . . . ≥ λ 5 be the ordered eigenvalues of D 2 w 5,δ (x). Then

λ 1 = µ 2,δ , λ 5 = µ 3,δ , λ 2 = µ 4,δ for p ∈ [-1, p 0 (δ)], µ 1,δ for p ∈ [p 0 (δ), 1], λ 3 =      µ 5,δ for p ∈ [-1, -p 0 (δ)], µ 1,δ for p ∈ [-p 0 (δ), p 0 (δ)], µ 4,δ for p ∈ [p 0 (δ), 1], λ 4 = µ 1,δ for p ∈ [-1, -p 0 (δ)], µ 5,δ for p ∈ [-p 0 (δ), 1],
where

p 0 (δ) := 3 1/4 √ 1 -δ (3 + 2δ -δ 2 ) 1/4 = 3 1/4 √ ε (4 -ε 2 ) 1/4 ∈]0, 1].
Note the oddness property of the spectrum: 

λ 1,δ (-p) = -λ 5,δ (p), λ 2,δ (-p) = -λ 4,δ (p), λ 3,δ (-p) = -λ 3,δ (p).
1 C ≤ - Λ 1 Λ 5 ≤ C for C := C(δ) := 1000(δ+1)(3-δ) 3(1-δ) 2 ; for k ∈ [ 1 2 , 1] one can choose C = 1000. Corollary 2.1. Λ 1 ≥ |N δ (a, b, O)| C(δ) , |Λ 5 | ≥ |N δ (a, b, O)| C(δ) .
We need also the following classical Weyl's result:

Lemma 2.4.

Let A, B be two real symmetric matrices with the eigenvalues

λ 1 ≥ λ 2 ≥ . . . ≥ λ n and λ ′ 1 ≥ λ ′ 2 ≥ . . . ≥ λ ′ n respectively. Then for the eigenvalues Λ 1 ≥ Λ 2 ≥ . . . ≥ Λ n of the matrix A -B we have Λ 1 ≥ max i=1,••• ,n (λ i -λ ′ i ), Λ n ≤ min i=1,••• ,n (λ i -λ ′ i ). λ 4 = µ 1 for p ∈ [-1, -p 0 ], µ 5 for p ∈ [-p 0 , 1],
where p 0 = 5 -1/4 ≃ 0.6687403050.

We will need also the derivatives of the egenvalues.

Lemma 3.2. Let d i (p) := d(µi) dp .
Then The proof of Theorem 1.2 is based on the following lemmas. Let

d 1 (p) = 3(3p 2 + 1) 4 , d 2 (p) = - 3(5 -3p 2 ) 4 + 9p 2 12 -3p 2 , d 3 (p) = - 3(5 -3p 2 ) 4 - 9p 2 12 -3p 2 , d 4 (p) = 81(1 -p 2 ) 16 35p(3 -p 2 ) 3 105p 6 -630p 4 + 945p 2 + 64 -1 , d 5 (p) = - 81(1 -p 2 ) 16 35p(3 -p 2 ) 3 105p 6 -630p 4 + 945p 2 + 64 + 1 .

Simple calculus gives

a, b ∈ B 1 \ {0}, |a| = s ≤ 1, |b| = t ≤ 1, O ∈ O(5), a ′ := a s ∈ G P (p, 0, r, 0, 0), b ′ := b t ∈ G P (q, 0, r ′ , 0, 0).

Below we denote

K := K(p, q, s, t) = |s -t| + |p -q|, M 1 := M 1 (a, b, O) := D 2 u(a) -O -1 D 2 u(b) • O, M 2 := M 2 (a, b, O) := w(a)D 2 u(a) -O -1 w(b)D 2 u(b) • O. Lemma 3.3. |Du(a)| 2 -|Du(b)| 2 ≤ 16K. Proof. First, |Du(a)| 2 = |Dw(a)| 2 , |Du(b)| 2 = |Dw(b)| 2
. Since P = P 5 (x) can be represented as the generic traceless norm in the Jordan algebra Sym 3 (R) it verifies the eiconal equation |DP | 2 = |x| 4 , see e.g. [START_REF] Tkachev | A Jordan algebra approach to the eiconal[END_REF]. Therefore, an easy calculation gives

|Du(a)| 2 = 9s(16 -3p 2 (p 2 -3) 2 ) 32 , |Du(b)| 2 = 9t(16 -3q 2 (q 2 -3) 2 ) 32 , |Du(a)| 2 -|Du(b)| 2 ≤ 9s(16 -3p 2 (p 2 -3) 2 ) 32 - 9t(16 -3p 2 (p 2 -3) 2 ) 32 + + 9t(16 -3p 2 (p 2 -3) 2 ) 32 - 9t(16 -3q 2 (q 2 -3) 2 ) 32 = 9(s -t)(16 -3p 2 (p 2 -3) 2 ) 32 + 27t(p -q)(p + q)((q 2 -3) 2 -(p 2 -3) 2 ) 32 ≤ 9(s -t) 2 + 243(p -q) 16 ≤ 16K. Lemma 3.4. Let M := |M 1 | = D 2 u(a) -O -1 • D 2 u(b) • O . Then M ≥ K 8 .
Proof. If one replaces a by a ′ = a/s and b by b ′′ = b/s the quantity M gets bigger and K gets smaller. Therefore we can suppose that |a| = s = 1. Then we have

D 2 u(a) -O -1 • D 2 u(b) • O = D 2 u(a) - O -1 • D 2 u(b ′ ) • O √ t .
By Lemma 2.4 we have

M ≥ max λ i (p) - λ i (q) √ t : i = 1, . . . , 5 , M ≥ min λ i (p) - λ i (q) √ t : i = 1, . . . , 5 .
Suppose first p ≥ q. If q ≥ -24 25 = -0.96 then

∀p ′ ∈ [q, p], D 1 (p ′ ) < -1/4 = -0.25, λ 1 (p) > 3 2 
(by a simple calculation using the explicit formulas for D 1 , λ 1 ). Therefore

λ 1 (p) - λ 1 (q) √ t = λ 1 (p) -λ 1 (q) + λ 1 (q) - λ 1 (q) √ t ≤ - p -q 4 - 3 2 1 √ t -1 < - K 4 .
If q < -0.96 but p ≥ -23 25 = -0.92 then

λ 1 (p)- λ 1 (q) √ t = λ 1 (p)-λ 1 (q)+λ 1 (q)- λ 1 (q) √ t ≤ λ 1 (p)-λ 1 24 25 +λ 1 (q)- λ 1 (q) √ t - p + 0.96 4 - 3 2 1 √ t -1 < - p -q 8 - 3 2 1 √ t -1 < - K 8 .
Suppose then that q < -0.96, p < -0.92. In this case we have

∀p ′ ∈ [q, p], d 2 (p ′ ) > 5 2 , λ 2 (p ′ ) < - 3 2
and thus

λ 2 (p) - λ 2 (q) √ t = λ 2 (p) -λ 2 (q) + λ 2 (q) - λ 2 (q) √ t ≥ 5(p -q) 2 + 3 2 1 √ t -1 ≥ 3K 4
which finishes the proof for p ≥ q. The case q ≥ p is treated similarly (replace λ 1 by λ 5 and λ 2 by λ 4 ).

Lemma 3.5. which finishes the proof. Notice that we can take C = 1000 + ε for δ ≤ 1 2 if c is sufficiently large; in the case 1 2 < δ < 1 for sufficiently large c one gets C = C(δ) + ε = 1000(δ+1) (3-δ) 3(1-δ) 2 + ε.

|M 2 | = w(a)D 2 u(a) -O -1 w(b)D 2 u(b) • O ≤ 10K Proof. Indeed, let a ′ := a/s, b ′ := b/s then by homogeneity w(a)D 2 w(a) -O -1 w(b)D 2 w(b) • O = sD 2 w(a ′ ) -O -1 • tD 2 w(b ′ ) • O ≤ ≤ s D 2 w(a ′ ) -O -1 • D 2 w(b ′ ) • O + |s -t| • |O -1 • D 2 w(b ′ )| ≤ ≤ max p,i {|D 

Proposition 2. 1 .

 1 Let N δ (x) = D 2 w δ (x), 0 ≤ δ < 1. Suppose that a = b ∈ B 1 \ {0} and let O ∈ O(5) be an orthogonal matrix s.t. N δ (a, b, O) := N δ (a) -t O • N δ (b) • O = 0. Denote Λ 1 ≥ Λ 2 ≥ . . . ≥ Λ 5 the eigenvalues of the matrix N δ (a, b, O). Then

Corollary 3. 1 .

 1 D := max{|d i (p)| : p ∈ [-1, 1], i = 1, . . . , 5} < 10. Below we denote D i (p) := d(λi) dp ; the relation of D i (p) and d i (p) is clear from Lemma 3.1 (ii); for example, D 1 (p) = d 2 (p), D 5 (p) = d 3 (p).

Remark 3 . 1 .

 31 i (p)|}|p -q| + 7|s -t| = max p,i {|d i (p)|}|p -q| + 7|s -t| ≤ 10K. These results remain true for any δ ∈]0, 1[ if one replaces the respective constants 16, 1/8 and 10 in Lemmas 3.3, 3.4 and 3.5 by appropriate positive constants depending on δ. On the contrary, Lemma 3.4 is false for δ = 0.We can now prove the uniform hyperbolicity of M (a, b, O) and thus the theorem. In fact we show that one can take C = 6007 in Lemma 3.1.Indeed,|M (a, b, O)| = A u (a) -O -1 • A u (b) • O = cM 1 + M 2 -|Du(a)| 2 -|Du(b)| 2 I 5 .Therefore,|Λ 5 | ≥ c|Λ 5 (M 1 )| -10K -16K ≥ c|M 1 | 1000 -26K ≥ 240|M 1 | -26K ≥ 4K, |Λ 1 | ≥ cΛ 1 (M 1 ) -10K -16K ≥ c|M 1 | 1000 -26K ≥ 240|M 1 | -26K ≥ 4K, |M(a, b, O)| ≤ c |M 1 | + |M 2 | + |Du(a)| 2 -|Du(b)| 2 ≤ c |M 1 | + 26K.

The following ellipticity criterion can proved similarly to Lemma 2.1 of [START_REF] Nadirashvili | Singular solutions of Hessian fully nonlinear elliptic equations[END_REF].

Lemma 2.1. Suppose that the family

for some constant C > 1. Then u is a viscosity solution in B 1 of a uniformly elliptic conformal Hessian equation (1).

We recall then some properties of the function w := w 5,δ (x) = P5(x) |x| 1+δ , and its Hessian D 2 w proved in [START_REF] Nadirashvili | Singular solutions of Hessian elliptic equations in five dimensions[END_REF].

Lemma 2.2.

There exists a 3-dimensional Lie subgroup G P of SO( 5) such that P is invarant under its natural action and the orbit G P S 1 1 of the circle

under this action is the whole S 4 1 .

Lemma 2.3. (i) Let x ∈ S 4 1 , and let x ∈ G P (p, 0, r, 0, 0) with p 2 + r 2 = 1. Then

3 Proofs

Let n = 5, u(x) = c + w 5,δ (x). We begin with δ = 0 and show that the result is false in this case. Indeed let a = (1, 0, 0, 0, 0), b = ( 1 2 , 0, 0, 0, 0), O = I 5 . Then

and

which is negative since the spectrum of D 2 w(a) is (2, 2, 2, -7, -7). The reason is clearly that D 2 w(a) for δ = 0 is homogeneous order 0 and depends only on the direction vector a/|a|. Suppose now that δ ∈]0, 1[. As we mentioned before, we set δ = 1 2 ; in this case c = 240000. First we spell out Lemma 2.3 for δ = 1 2 . Lemma 3.1. (i) Let x ∈ S 4 1 , and let x ∈ G P (p, 0, r, 0, 0) with p 2 + r 2 = 1. Then