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Abstract. Belief function theory provides a flexible way to combine
information provided by different sources. This combination is usually
followed by a decision making which can be handled by a range of decision
rules. Some rules help to choose the most likely hypothesis. Others allow
that a decision is made on a set of hypotheses. In [6], we proposed a
decision rule based on a distance measure. First, in this paper, we aim
to demonstrate that our proposed decision rule is a particular case of the
rule proposed in [4]. Second, we give experiments showing that our rule
is able to decide on a set of hypotheses. Some experiments are handled
on a set of mass functions generated randomly, others on real databases.
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1 Introduction

Belief function theory [2, 9] allows us to represent all kinds of ignorance and offers
rules for combining several imperfect information provided by different sources
in order to get a more coherent one. The combination process helps to make
decisions later. Decision making consists in selecting, for a given problem, the
most suitable actions to take. Today, we are often confronted with the challenge
of making decisions in cases where information is imprecise or even not available.
In [12], Smets proposed the transferable belief model (TBM) as an interpretation
of the theory of belief functions. The TBM emphasizes a distinction between
knowledge modeling and decision making. Accordingly, we distinguish the credal
level and the pignistic level. In the credal level, knowledge is represented as belief
functions and then combined. The pignistic level corresponds to decision making,
a stage in which belief functions are transformed into probability functions.

The pignistic probability, the maximum of credibility and the maximum of
plausibility are rules that allow a decision on a singleton of the frame of discern-
ment. Sometimes and depending on application domains, it seems to be more
convenient to decide on composite hypotheses rather than a simple one. In the
literature, there are few works that propose a rule or an approach for making
decision on a union of hypotheses [4, 1, 8]. Recently, we proposed a decision rule
based on a distance measure [6]. This rule calculates the distance between a
combined mass function and a categorical one. The most likely hypothesis to
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choose is the hypothesis whose categorical mass function is the nearest to the
combined one.

The main topic of this paper is to demonstrate that our proposed decision
rule is a particular case of that detailed in [4] and to extend our rule so that
it becomes able to give decisions even with no categorical mass functions. We
present also our experiments on mass functions generated randomly as well as
on real databases.

The remainder of this paper is organized as follows: in section 2 we recall
the basic concepts of belief function theory. Section 3 presents our decision rule
based on a distance measure proposed in [6]. In section 4, we demonstrate that
our proposed rule is a particular case of that proposed in [4]. Section 5 presents
experiments and the main results. Section 6 concludes the paper.

2 The theory of belief functions

The theory of belief functions [2, 9] is a general mathematical framework for
representing beliefs and reasoning under uncertainty. In this section, we recall
some concepts of this theory.

The frame of discernment Θ = {θ1, θ2, . . . , θn} is a set of n elementary hy-
potheses related to a given problem. These hypotheses are exhaustive and mutu-
ally exclusive. The power set of Θ, denoted by 2Θ is the set containing singleton
hypotheses of Θ, all the disjunctions of these hypotheses as well as the empty
set.

The Basic belief assignment (bba), denoted by m is a mass function defined
on 2Θ. It affects a value from [0, 1] to each subset. It is defined as:

∑

A⊆2Θ

m(A) = 1. (1)

A focal element A is an element of 2Θ such that m(A) > 0. A categorical bba is
a bba with a unique focal element such that m(A) = 1. When this focal element
is a disjunction of hypotheses then the bba models imprecision.

Based on the basic belief assignment, other belief functions (credibility func-
tion ad plausibility function) can be deduced.

– Credibility function bel(A) expresses the total belief that one allocates to A.
It is a mapping from elements of 2Θ to [0, 1] such that:

bel(A) =
∑

B⊆A,B 6=∅

m(B). (2)

– Plausibility function pl(A) is defined as:

pl(A) =
∑

A∩B 6=∅

m(B). (3)
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The plausibility function measures the maximum amount of belief that sup-
ports the proposition A by taking into account all the elements that do not
contradict. The value pl(A) quantifies the maximum amount of belief that
might support a subset A of Θ.

The theory of belief function is a useful tool for data fusion. In fact, for a
given problem and for the same frame of discernment, it is possible to get a
mass function synthesizing knowledge from separate and independent sources
of information through applying a combination rule. Mainly, there exists three
modes of combination:

– Conjunctive combination is used when two sources are distinct and fully
reliable. In [10], the author proposed the conjunctive combination rule which
is defined as:

m1 ∩©2(A) =
∑

B∩C=A

m1(B) ×m2(C). (4)

The Dempster’s rule of combination [2] is a normalized form of the rule
described previously and is defined as:

m1⊕2(A) =























∑

B∩C=A

m1(B)×m2(C)

1−

∑

B∩C=∅

m1(B)×m2(C)
∀A ⊆ Θ, A 6= ∅

0 if A = ∅

(5)

This rule is normalized through 1−
∑

B∩C=∅

m1(B)×m2(C) and it works under

the closed world assumption where all the possible hypotheses of the studied
problem are supposed to be enumerated on Θ.

– Disjunctive combination: In [11], Smets introduced the disjunctive combina-
tion rule which combines mass functions when an unknown source is unreli-
able. This rule is defined as:

m1 ∪©2(A) =
∑

B∪C=A

m1(B)×m2(C) (6)

– Mixed combination: In [5], the authors proposed a compromise in order to
consider the benefits of the two combination modes previously described.
This combination is given for every A ∈ 2Θ by the following formula:







mDP (A) = m1 ∩©(A) +
∑

B∩C=∅,B∪C=A

m1(B)m2(C) ∀A ∈ 2Θ, A 6= ∅

mDP (∅) = 0
(7)
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3 Decision Making in the theory of belief functions

In the transferable belief model, decision is made on the pignistic level where
the belief functions are transformed into a probability function, named pignistic
probability. This latter, noted as BetP is defined for each X ∈ 2Θ, X 6= 0 as:

betP (X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1−m(∅) (8)

where |Y | represents the cardinality of Y .

Based on the obtained pignistic probability, we select the most suitable hy-
pothesis with the maximum BetP. This decision results from applying tools of
decision theory [4]. In fact, if we consider an entity represented by a feature
vector x. A is a finite set of possible actions A = {a1, . . . , aN} and Θ a finite
set of hypotheses, Θ = {θ1, . . . , θM}. An action aj corresponds to the action of
choosing the hypothesis θj . But, if we select ai as an action whereas the hypoth-
esis to be considered is rather θj then the loss occurred is λ(ai|θj). The expected
loss associated with the choice of the action ai is defined as:

RbetP (ai|x) =
∑

θj∈Θ

λ(ai|θj)BetP (θj). (9)

Then, the decision consists in selecting the action which minimizes the expected
loss. In addition to minimizing pignistic expected loss, other risks are presented
in [4].

Decision can be made on composite hypotheses [1, 8]. We present in this paper
the Appriou’s rule [1] which helps to choose a solution of a given problem by
considering all the elements contained in 2Θ. This approach weights the decision
functions (maximum of credibility, maximum of plausibility and maximum of
pignistic probability) by an utility function depending on the cardinality of the
elements. A ∈ 2Θ is chosen if:

A = argmax
X∈2Θ

(md(X)pl(X)) (10)

where md is a mass defined by:

md(X) = KdλX

(

1

|X |r

)

(11)

The value r is a parameter in [0, 1] helping to choose a decision which varies
from a total indecision when r is equal to 0 and a decision based on a singleton
when r is equal 1. λX helps to integrate the lack of knowledge about one of the
elements of 2Θ. Kd is a normalization factor and pl(X) is a plausibility function.

In the following, we present our decision rule based on a distance measure.
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4 Decision rule based on a distance measure

In [6], we proposed a decision rule based on a distance measure. It is defined as:

A = argmin(d(mcomb,mA)) (12)

This rule aims at deciding on a union of singletons. It is based on the use of
categorical bba which helps to adjust the degree of imprecision that has to be
kept when deciding. Depending on cases, we can decide on unions of two elements
or three elements, etc. The rule calculates the distance between a combined bba
mcomb and a categorical onemA . The minimum distance is kept and the decision
corresponds to the categorical bba’s element having the lowest distance with the
combined bba. The rule is applied as follows:

– We consider the elements of 2Θ. In some applications, 2Θ can be of a large
cardinality. For this reason, we may choose some elements to work on. For
example, we can keep the elements of 2Θ whose cardinality is less or equal
to 2.

– For each selected element, we construct its corresponding categorical bba.
– Finally, we apply Jousselme distance [7] to calculate the distance between

the combined bba and a categorical bba. The distance with the minimum
value is kept. The most likely hypothesis to select is the hypothesis whose
categorical bba is the nearest to the combined bba.

Jousselme distance is defined for two bbas m1 and m2 as follows:

d(m1,m2) =

√

1

2
(m1 −m2)tD(m1 −m2) (13)

where D is a matrix based on Jaccard distance as a similarity measure between
focal elements. This matrix is defined as:

D(A,B) =

{

1 if A=B=∅
|A∩B|
|A∪B| ∀A,B ∈ 2Θ

(14)

In this paper, we propose to apply the rule through two different manners:

– Distance type 1 is calculated with categorical bbas (m(A) = 1) for all ele-
ments of 2Θ except Θ to have an imprecise result rather than a total igno-
rance.

– Distance type 2 is calculated with simple bbas such as m(A) = α, m(Θ) =
1− α.

In the following, we show that our proposed rule can be seen as a particular case
of that proposed in section 3.

Jousselme distance can be written as:

d(m1,m2) =
1

2

∑

Y⊆Θ

∑

X⊆Θ

|X ∩ Y |

|X ∪ Y |
m(X)m(Y ) (15)
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If we consider the expected loss of choosing ai, then it can be written as:

RbetP (ai|x) =
∑

Y ∈Θ

λ(ai|Y )BetP (Y ).

RbetP (ai|x) =
∑

Y ∈Θ

λ(ai|Y )
∑

X∈Θ

|X ∩ Y |

|X |

m(X)

1−m(∅)
.

RbetP (ai|x) =
∑

Y ∈Θ

∑

X∈Θ

λ(ai|Y )
|X ∩ Y |

|X |

m(X)

1−m(∅)
.

(16)

The equation relative to decision is equal to that for the risk for a value of λ
that has to be equal to:

λ(ai|Y ) =
|X |(1−m(∅))

|X ∪ Y |
m(X) (17)

In this section, we showed that for a particular value of λ, our proposed
decision rule can be considered as a particular case of that proposed in [4]. In
the following section, we give experiments and present comparisons between our
decision rule based on a distance measure and that presented in [1].

5 Experiments

5.1 Experiments on generated mass functions

We tested the proposed rule [6] on a set of mass functions generated randomly.
To generate the bbas, one needs to specify the cardinality of the frame of dis-
cernment, the number of mass functions to be generated as well as the number of
focal elements. The generated bbas are then combined. We use the Dempster’s
rule of combination, the disjunctive rule and the mixed rule. Suppose we have a
frame of discernment represented as Θ = {θ1, θ2, θ3} and three different sources
for which we generate their corresponding bbas as given in Table 1.

Table 1. Three sources with their bbas

S1 S2 S3

θ1 0.410 0.223 0.034
θ2 0.006 0.108 0.300

θ1 ∪ θ2 0.039 0.027 0.057
θ3 0.026 0.093 0.128

θ1 ∪ θ3 0.094 0.062 0.04
θ2 ∪ θ3 0.199 0.153 0.004

θ1 ∪ θ2 ∪ θ3 0.226 0.334 0.437

We apply combination rules and we get the results illustrated in Table 2.
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Table 2. Combination results

Dempster rule Disjunctive rule Mixed rule

θ1 0.369 0.003 0.208
θ2 0.227 0 0.128

θ1 ∪ θ2 0.025 0.061 0.075
θ3 0.168 0 0.094

θ1 ∪ θ3 0.049 0.037 0.064
θ2 ∪ θ3 0.103 0.035 0.093

θ1 ∪ θ2 ∪ θ3 0.059 0.864 0.338

Table 3. Decision results

Pignistic Appriou rule Rule based on
Probability distance measure

Dempster rule θ1 θ1 ∪ θ2 θ1
Disjunctive rule θ1 θ1 θ1 ∪ θ2

Mixed rule θ1 θ1 θ1 ∪ θ2

Once the combination is performed, we can make decision. In Table 3, we
compare between the results of three decision rules, namely the pignistic prob-
ability, the Appriou’s rule with r equal to 0.5 as well as our proposed decision
rule based on distance measure.

Table 3 shows the decision results obtained after applying some combination
rules. We depict from this table that not all the time the rule proposed by
Appriou gives a decision on a composite hypotheses. In fact, as shown in Table 3,
the application of disjunctive rule as well as the mixed rule lead to a decision on a
singleton which is θ1. This is completely different from what we obtain when we
apply our proposed rule which promotes a decision on union of singletons when
combining bbas. The obtained results seems to be convenient especially that the
disjunctive and the mixed rules help to get results on unions of singletons.

5.2 Experiments on real databases

To test our proposed decision rule, we do some experiments on real databases
(IRIS1 and HaberMan’s survival2). Iris is a dataset contaning 150 instances, 4
attributes and 3 classes where each class refers to a type of iris plant. HaberMan
is a dataset containing results study conducted at the University of Chicago’s
Billings Hospital on the survival of patients who had undergone surgery for
breast cancer. This dataset contains 306 instances, 3 attributes and 2 classes

1 http://archive.ics.uci.edu/ml/datasets/Iris
2 http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
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(1: patient survived 5 years or longer, 2: patient died within 5 years). For the
classification, our experiments are handled in two different manners.

– First, we apply the k-NN classifier [3]. The results are illustrated in a con-
fusion matrix as shown in Table 4 (left side).

– Second, we modify the k-NN classifier’s algorithm based on the use of Demp-
ster rule of combination, to make it able to combine belief functions through
the mixed rule. Then, Appriou’s rule and our proposed decision rule are
applied to make decision. Results are illustrated in Table 4.

Table 4. Confusion Matrices for Iris

k-NN classifier

θ1 θ2 θ3

θ1 11 0 0
θ2 0 11 2
θ3 0 0 16

Appriou’s rule

θ1 θ2 θ1 ∪ θ2 θ3 θ1 ∪ θ3 θ2 ∪ θ3

θ1 11 0 0 0 0 0
θ2 0 15 0 0 0 0
θ3 0 1 0 13 0 0

Our decision rule

θ1 θ2 θ1 ∪ θ2 θ3 θ1 ∪ θ3 θ2 ∪ θ3

θ1 10 0 0 0 0 0
θ2 0 12 0 2 0 1
θ3 0 0 0 13 0 2

The same tests are done for HaberMan’s survival dataset. The results of ap-
plying k-NN classifier, Appriou’s rule and our decision rule are given respectively
in Table 5. For the classification of 40 sets chosen randomly from Iris, we remark
that with the k-NN classifier, all the sets having θ1 and θ3 as corresponding
classes are well classified and only two originally belonging to class θ2 were clas-
sified as θ3. Appriou’s rule gives a good classification for sets originally belonging
to classes θ1 and θ2 and thus promoting a result on singletons rather than on a
union of singletons.

Considering the results obtained when applying our decision rule based on a
distance type 1, we note that only 2 sets are not well classified and that 3 have
θ2 ∪ θ3 as a class. The obtained results are good because our method is based
on an imprecise decision which is underlined by the fact of obtaining θ2 ∪ θ3 as
a class.

Table 5. Confusion Matrices for HaberMan’s survival

k-NN classifier

θ1 θ2

θ1 34 4
θ2 12 6

Appriou’s rule

θ1 θ2 Θ

θ1 34 4 0
θ2 12 6 0

Our decision rule

θ1 θ2 Θ

θ1 34 4 0
θ2 12 6 0

Considering HaberMan’s survival dataset, we note that the k-NN classifier,
Appriou’s rule as well as our decision rule give the same results where among the
sets originally belonging to θ1, 34 are well classified and among the 18 belonging
to θ2, only 6 are well classified. We obtain the same results as the other rules
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because the HaberMan’s survival dataset has only two classes and our method
is based on getting imprecise decisions and excluding the ignorance.

All the experiments given previously are based on the use of distance type
1. The results shown below are based on distance type 2. In fact, we consider a
simple bba and each time, we assign a value α to an element of 2Θ. The tested rule
on Iris as illustrated in Table 6 (left side) gives better results with an α < 0.8. In
addition to that, we obtained decisions on a union of singletons. The tests done
on HaberMan’s survival as given in Table 6 (right side) shows that with α > 0.5,
we obtain a better rate of good classification although we did not obtain a good
classification for the class θ2 and no set belongs to Θ. We aim in the future to
make experiments on other datasets because HaberMan’s survival, for example,
does only have 2 classes, so we do not have enough imprecise elements.

Table 6. Rates of good classification

α < 0.8 α >= 0.8

Iris 0.95 0.675

α <= 0.2 α ∈ [0.3, 0.5] α > 0.5

HaberMan’s survival 0.786 0.803 0.821

6 Conclusion

In this paper, we presented a rule based on a distance measure. This decision rule
helps to choose the most likely hypothesis based on the calculation of the distance
between a combined bba and a categorical bba. The aim of the proposed decision
rule is to give results on composite hypotheses. In this paper, we demonstrated
that our proposed rule can be seen as a particular case of that proposed in [4]. We
presented also the different experiments handled on generated mass functions as
well as on real databases.
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