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Abstract
This letter assesses the quality of temperature and rainfall daily retrievals of the European
Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in
various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in
the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle
Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D,
among other gridded datasets, is very often used as a reference for model calibration and
evaluation. This is for instance the case in the context of the WCRP Coordinated Regional
Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX.
This letter quantifies ECA&D dataset uncertainties associated with temperature and
precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is
to help the interpretation of the results when validating or calibrating downscaling models by
the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean
region.

Keywords: uncertainties assessment, model validation, E-OBS, HyMex, CORDEX

1. Introduction

Climate modeling has been developed and used for both
climate understanding and prediction of future climate trends.
Great progress has been achieved using global climate models
(GCMs) to reconstruct the global climate with a horizontal

7 Address for correspondence: LMD—Ecole Polytechnique, 91128
Palaiseau Cedex, France.

resolution of few hundred kilometers, allowing the explicit
simulation of global to synoptic scale atmospheric circulation.
With increasing computer resources and performance, the
simulation of the climate system at much finer resolution
(typically around a few tens of kilometers) has become
a realistic objective and a major issue to investigate the
contribution of mesoscale meteorological systems (breezes,
orographic wind, cyclones, etc) to the regional climate.
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Hence, climate downscaling techniques have been
developed based on two distinct approaches. A first technique
is dynamical downscaling (DD), based on the use of
regional climate models (RCMs) which solve the conservation
equations on a highly resolved mesh grid (see, e.g., Maraun
et al 2010 for a review). RCM initial and boundary conditions
are provided by GCM outputs. Nudging can also be applied
for long-term RCM simulations to maintain consistency
between the RCM large-scale dynamics and that of the
driving GCM (see, e.g., Salameh et al 2010, Omrani et al
2012a, 2012b). A second technique is statistical downscaling
(SD), based on the determination of a statistical relationship
between local measurements and GCM outputs over a
calibration period. It is used for local projection of the GCM
outputs (see Wilby et al 2002 for a review).

The use of gridded observations has become particularly
popular for the calibration and evaluation of downscaling
techniques (see, e.g., Quadrelli et al 2001, Jacob et al 2007,
Schmidli et al 2007, Hertig and Jacobeit 2008). In particular
for SD, gridded datasets allow us to overpass one major
drawback. Indeed, SD generally suffers from a lack of spatial
representativeness due to the need of local measurements for
calibration (see, e.g., Salameh et al 2009, Lavaysse et al 2011,
Vrac et al 2011). Gridded datasets allow production by the
SD technique of local climate information on a grid similar to
the numerical grid of DD, favoring the comparison between
the two downscaling techniques. However, these gridded
datasets are statistical extrapolations of surface observations
and are thus the products of more or less sophisticated
assimilating or interpolating systems (e.g. CRU dataset for
monthly products at global scale—Mitchell and Jones 2005;
ECA&D for daily outputs over the Euro-Mediterranean
area—Haylock et al 2008; SAFRAN for three-hourly outputs
over France—Quintana Seguı́ et al 2010). As a result, gridded
observations are not ‘local measurements’ but a product which
can be seen as the best fit to the observations. Thus they should
be used with caution, since significant uncertainties might
cause misinterpreted results (Santos et al 2007, Hofstra et al
2009).

In this letter, we give special attention to the
Mediterranean region as one of the two ‘hot spots’ of climate
change (Giorgi 2006). The Mediterranean climate presents a
very complex seasonal cycle with extreme events governed
by cyclones, severe storms and heat-waves. These regional
atmospheric processes are studied within the Hydrological
Cycle in the Mediterranean Experiment (HyMeX), aiming
at a better understanding of the regional water cycle and
its variability, trend and extremes in a changing climate
(Drobinski et al 2010, 2009b, 2009a, 2011). In addition,
the Coordinated Regional Climate Downscaling Experiment
(CORDEX; Giorgi et al 2009) and its Mediterranean
declination (MED-CORDEX; Ruti et al 2012) of the World
Climate Research Program (WCRP) is a program aiming
at providing a quality controlled dataset of regional climate
downscaling based information for both recent past and 21st
century projections. These downscaled data are produced at
horizontal resolutions of 50 km or less, and their evaluation
relies very much on gridded datasets.

The European Climate Assessment and Dataset
(ECA&D) provides daily data of temperature and rainfall
since 1950 at fine resolution (∼25 km), covering the
Euro-Mediterranean area. Hence, ECA&D is very adequate
for the evaluation and calibration of both DD and SD for
the needs of climate research in the frame of HyMeX
and MED-CORDEX. In this study we aim at quantifying
the uncertainties of the daily temperature and rainfall
gridded dataset of ECA&D. Our motivation is to help
the interpretation of the results of DD and SD models
when calibrated or compared to this gridded database. For
this reason, ECA&D is compared to local measurements,
collected at the HyMeX stations labeled by the Global Energy
and Water Cycle Experiment (GEWEX) of WCRP8.

After this introduction, the ECA&D daily temperature
and rainfall gridded dataset and the HyMeX local observations
are described in section 2. Section 3 quantifies and
discusses the uncertainty of the ECA&D gridded dataset
regarding specific local climates of different regions of
the Mediterranean area. Finally, section 4 summarizes the
discussion and gives perspectives for future work.

2. Data and methodology

The ECA&D dataset (fourth version) contains 26 061 series of
observations for 12 elements at 4823 meteorological stations
throughout Europe and the Mediterranean. It covers Europe,
North Africa and the Middle East with a horizontal resolution
of 0.25◦ × 0.25◦ (Klein Tank et al 2002, Haylock et al 2008).
Daily 2 m temperature and total rainfall are available from
1950. They have been widely used for regional climate studies
(e.g. Haylock and Goodess 2004, Santos et al 2007) and
climate model evaluation (e.g. Frei et al 2003, Räisänen et al
2004, Kjellström et al 2010).

The meteorological stations used to evaluate the ECA&D
dataset are the GEWEX labeled research stations of the
HyMeX network. Only three HyMeX stations out of the 24
used in this study are contained in the ECA&D. The stations
collect hourly measurements; 12 stations are located in the
coastal region of Southern France, ten in Northern Italy in the
Alps and two in Israel. To better assess the ECA&D dataset we
separate the stations into four categories: (i) semi-arid climate
stations, (ii) mid-latitude coastal stations, (iii) mid-latitude
low elevation stations and (iv) mid-latitude high elevation
stations. Stations are characterized as low (high) elevation
stations if they are located at altitudes below (exceeding)
1000 m. Table 1 provides information on the altitude, the
measurement period and the station characteristics. Figure 1
displays the locations of the HyMeX stations, the stations
contained in the ECA&D and the ECA&D dataset grid points.
The terrain elevation is also displayed as key information
to better understand the local climate specificities and their
possible impact on the analysis of the data. In Southern
France most HyMeX stations are coastal and located in plains
at low altitude (below 500 m elevation) and three of them

8 Some of the Italian stations are also part of the ‘High Elevation’ regional
hydroclimate project of GEWEX.
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Figure 1. Maps of the Mediterranean domain and the sub-regions investigated in this study. The locations of the HyMeX stations are
indicated with red dots (the numbers are used to identify the stations; see table 1). The locations of the surface weather stations for which
data are assimilated in ECA&D reanalysis are indicated with green dots. Finally, the black dots show the locations of the grid points of the
ECA&D dataset. (a) The Mediterranean domain used for the CORDEX climate simulations; (b) a zoom over the Israeli HyMeX stations;
(c) a zoom over the French HyMeX stations; (d) a zoom over the Italian HyMeX stations.

(2, 10, 11) have any nearby stations contained in ECA&D.
The Italian stations are located in the Alps at altitudes which
may exceed 1000 m. In the Alps, the ECA&D assimilated
stations are fairly densely distributed, but the spatial coverage
is significantly less dense in the area where the HyMeX
stations are located. Only stations 4 and 6 are contained in
the ECA&D. Finally, the HyMeX Israeli stations are located
at low altitude in a semi-arid environment, where only station
IS-1 is contained in the ECA&D dataset.

The assessment of the ECA&D dataset is performed
on daily 2 m temperature and accumulated daily rainfall.
Both variables are calculated as in the ECA&D dataset:
mean temperature is the average of the maximum temperature
measured between 0600 UTC and 1800 UTC and the
minimum temperature measured between 1800 UTC of the
day before and 0600 UTC, while the total daily rainfall
is the sum of rainfall from 0600 UTC of the current date
to 0600 UTC of the day after. For the periods covered by
each station (table 1), the ECA&D values compared to the
measurements correspond to the grid points which are closest
to each of the HyMeX stations. A different approach was also
tested by interpolating bilinearly the ECA&D dataset values
to the stations’ locations. Similar results were obtained by
the two approaches. The cumulative distribution functions
(CDFs) of temperature and rainfall are then produced for
winter (December to February) and summer (June to August)
for HyMeX station measurements and ECA&D interpolated
values. The comparison is performed for the 50th (median
value) and the fifth and 95th quantiles (extreme low and high
values) of the CDFs. For precipitation only the rainy days

Table 1. HyMeX station names (left column), period of
observations (middle column) and altitude of the HyMeX station
(right column). The acronym SA stands for semi-arid, CO for
coastal, LE for low elevation and HE for high elevation. Asterisks
indicate the stations contained in the ECA&D dataset.

Station Observation period Altitude (m)

IS-1/SA* 2003–10 280
IS-2/CO 2003–10 265
FR-1/CO 2004–10 480
FR-2/CO 2004–09 650
FR-4/CO 2003–09 60
FR-5/CO 2005–09 538
FR-6/CO 2003–09 112
FR-7/CO 2003–09 499
FR-8/CO 2003–09 318
FR-9/CO 2005–09 41
FR-10/CO 2003–09 30
FR-11/CO 2005–09 85
FR-12/CO 2003–09 142
IT-3/LE 2004–10 560
IT-6/LE* 2004–10 254
IT-7/LE 2004–10 821
IT-9/LE 2004–10 718
IT-10/LE 2004–10 948
FR-3/LE 2004–09 1240
IT-1/HE 2005–09 2669
IT-2/HE 2004–09 1716
IT-4/HE* 2004–10 1250
IT-5/HE 2004–10 1450
IT-8/HE 2004–10 1700

are considered, defined as the days with accumulated rainfall
exceeding 0.5 mm.
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Figure 2. Boxplots showing the CDFs of the near surface temperature ((a) and (b)) and the CDF of the temperature difference between the
ECA&D dataset and the measurements at the HyMeX stations. The boxplots in red correspond to the stations located in a semi-arid
environment. The boxplots in green correspond to the coastal stations. The boxplots in brown and in black correspond to the stations located
at low and high elevation, respectively (below/above 1000 m height; see table 1). The lower and upper limits of the boxes show the
temperature values of the 25th and the 75th quantiles. The horizontal line within the boxes shows the median temperature (50th quantile);
the ends of the vertical lines extending below and above the boxes indicate the fifth and the 95th temperature quantiles, respectively. (a)
Boxplots of the ECA&D dataset and HyMeX surface stations for winter (for each station the left hand boxplot corresponds to the HyMeX
station data and the right hand boxplot to the ECA&D data). (b) Similar to (a) for summer. (c) Boxplots of the temperature bias for winter
(ECA&D temperature minus HyMeX station observation). (d) Similar to (c) for summer.

The significance of the results was tested through a paired
Student t-test of the null hypothesis that the difference of the
ECA&D dataset minus the measurements is a random sample
from a normal distribution with zero mean and unknown
variance, against the alternative that the mean is not zero. A
confidence level of 95% of rejection of this null hypothesis has
been applied. For temperature the null hypothesis is rejected
for all stations and for both seasons. However, correlation
between consecutive temperature measurements can be high
and invalidate the application of a Student t-test. Indeed,
correlation drops below the significant level (around 20% on
average) after 3 days. The Student t-test has thus been applied
on subsets of the whole temperature dataset, keeping only
the measurements every 3, 4, 5 and up to 10 days, without
affecting the Student t-test. The t-test is thus passed with
high robustness at all HyMeX stations. On the other hand,
for rainfall, the null hypothesis is not rejected for all stations.
Non-rejection reflects a rather good performance of the
ECA&D dataset, showing that the ECA&D analyzed values
do not differ significantly, under the null hypothesis, from
the measurements. Regarding rainfall, time series display high
day-to-day variability and so only relatively large differences
can be found significant (Morin 2011).

3. Results

Figures 2 and 3 ((a) and (b)) display, as boxplots, the CDFs of
the daily 2 m temperature and rainfall, respectively, computed
from the HyMeX stations and the ECA&D time series. In
a similar way, figures 2 and 3 ((c) and (d)) show the CDFs
of the bias between the ECA&D values and the HyMeX
measurements for temperature and rainfall, respectively. For
rainfall, the ECA&D dataset and the HyMeX measurements
do not have the same rainy days so a negative bias can be
due to rainfall underestimation or to the absence of rain in
ECA&D. In order to reduce interpretation problems that may
arise from this sampling effect, the CDF of the rainfall bias
was computed only for the days when rainfall was present
in both ECA&D and at the HyMeX stations. The number
of rainy days in ECA&D and in HyMeX observations is
indicated over the boxplots in panels (a) and (b) of figure 3,
and the number of common rainy days is indicated over the
boxplots in panels (c) and (d) of figure 3.

3.1. Stations in semi-arid environment

The first Israeli station (IS-1) is the only station available
in a semi-arid environment. The ECA&D dataset reproduces

4



Environ. Res. Lett. 7 (2012) 024017 E Flaounas et al

Figure 3. The same as figure 2 for rainfall. The number of rainy days used for computing the CDFs is indicated above the boxplots. If the
number of rainy days is in brackets, the null hypothesis of the Student t-test is not rejected.

accurately the winter temperature median and extremes with
less than 1 ◦C difference (figure 2(a)). In summer the results
are similarly good (figure 2(b)). The performance of ECA&D
for station IS-1 should not come as a surprise since this station
is assimilated. Figures 2(c) and (d) show the CDFs of the
winter and summer temperature biases (ECA&D values minus
HyMeX observations). Station IS-1 displays a systematic
negative bias. This bias is on average about 1 ◦C but can reach
up to 2.5 ◦C.

Regarding winter rainfall (figure 3(a)), the ECA&D CDF
for IS-1 seems to be very close to the HyMeX observations.
Accordingly, the rainfall bias for the same station displays a
very small interquartile range, centered about 0 (figure 3(c)).
As a consequence, the ECA&D dataset captures the seasonal
variability of rainfall and reproduces accurately the rainfall
amount. Even though ECA&D seems to perform fairly well,
we might be surprised that there are ‘only’ 60–70% common
rainy days with the HyMeX observations. Indeed, there are
102 common rainy days, out of 165 events in ECA&D and
143 in the observations.

3.2. Coastal stations

At the Israeli station IS-2, the ECA&D dataset temperature
seems to be in fair agreement with the HyMeX observations
only in winter, while in summer it overestimates the median
by approximately 2.5 ◦C with a systematic positive bias. At
the French coastal HyMeX stations, the winter temperature
ranges from 0 to 10 ◦C with the median value at about 5 ◦C
(figure 2(a)). In summer, the temperature CDF is similar,
with however a shift of approximately +15 ◦C (figure 2b).

The ECA&D performs fairly well for all stations, except
for FR-1, FR-2 and FR-5. Figures 2(c) and (d) display the
CDFs of the temperature bias, where results are very similar
in winter and summer. Stations FR-4, FR-6, FR-8 and FR-9
display an interquartile range lower than 1 ◦C, which is
centered around 0 ◦C in winter, and slightly biased in summer
(of the order of 0.5 ◦C). The ECA&D temperatures at the
other stations generally display a significant positive bias
(>1 ◦C for the median bias); however, the interquartile range
of temperature bias is always smaller than 2 ◦C, suggesting
small temperature variability in the ECA&D dataset, except
for station FR-1. Station FR-1 is by far the location where
ECA&D data compare worst with the HyMeX observations.
The bias between the ECA&D temperature and the measured
temperature is in 50% of the cases lower than −2.5 ◦C
and negative most of the time (95% of the cases in winter
and 100% in summer). The absence of assimilated data
immediately downstream of the Massif Central can explain
part of the strong departure of the ECA&D data from the
observations. Indeed, this region is very peculiar in the
presence of northerly wind, which produces strong, dry and
cool orographic channeled flow such as the tramontane and
mistral. In these situations, which occur on average 10 days
per month, station FR-1 is in the wake of the Massif Central,
which creates a sheltered zone preventing the cold air from
reaching the area (see, e.g., Drobinski et al 2005).

Regarding the CDFs of the ECA&D rainfall at all
stations, there is an overall excellent agreement with the
local measurements for 25th and 50th quantiles, whatever
the season (except in summer for IS-2, where no rainfall
is observed by either HyMeX or ECA&D). Regarding the
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larger rainfall amount (75th and 95th quantiles), they are
always underestimated by the ECA&D dataset in winter
(except for station FR-12 for the 75th quantile) and in slightly
better agreement with the observations in summer. As for
temperature, station FR-1 shows by far the worst agreement
with the local measurements. In particular, in winter a 10 mm
bias is found for the 75th rainfall quantile and a 40 mm bias for
the 95th rainfall quantile. Figures 3(c) and (d) show that the
50th quantile of the rainfall bias is almost zero for all stations,
while the interquartile range is lower than 5 mm in winter
for stations FR-2, FR-4, FR-5, FR-8, FR-9 and FR-12 and in
summer for stations FR-4, FR-5, FR-6, FR-9 and FR-12. For
all other stations it remains within a reasonable range (below
10 mm). It is noteworthy that the winter bias for IS-2 is similar
in structure to the semi-arid station IS-1, but nevertheless the
bias has a wider range, from −25 to 20 mm.

3.3. Low elevation stations

The stations of low altitude, i.e. below 1000 m, are all
located in Italy (table 1). Figures 2(a) and (b) show that
whatever the season the temperature from the ECA&D dataset
is underestimated with respect to the HyMeX observations at
all stations. In winter, the minimum shift is 2 ◦C at station
IT-7 and the maximum is 8 ◦C at station IT-9, with an average
of 5 ◦C. In summer, the temperature underestimation in the
ECA&D dataset is even larger, with an average shift of 6 ◦C.
The CDFs of the temperature bias (figures 2(c) and (d))
show evidence of the visible bias in figures 2(a) and (b).
However, in contrast to the temperature CDFs, the CDFs of
the temperature bias totally differ in summer and in winter. In
summer, the interquartile range is very small (about 2 ◦C), and
even accounting for the cold and hot extremes the distribution
remains very narrow (figure 2(d)). This suggests a very good
match between the temperature time series of the ECA&D
dataset and that measured at the HyMeX weather stations.
Conversely, in winter, the boxplots of the temperature bias
are very large. The interquartile range is about 5 ◦C and the
difference between the 95th and fifth quantiles is equal to 8 ◦C
for stations IT-3 and IT-6 and equal to 10 ◦C for stations IT-7,
IT-9 and IT-10. Despite the good similarity of the temperature
distribution in winter (figure 2(a)), the day-to-day comparison
between the ECA&D and measured temperatures is not as
good as in summer (figures 2(c) and (d)).

Regarding rainfall, the ECA&D product is also of
better quality in summer than in winter, with a perfect
agreement of the ECA&D and observed CDFs up to the 75th
rainfall quantile (figure 3(b)). The 95th rainfall quantile is
underestimated by about 5 mm at stations IT-3, IT-6 and
IT-7 and overestimated by about 5 mm at station IT-9. At
station IT-10, the ECA&D and observed CDFs are nearly
the same. Generally in this region, the stronger and more
frequent precipitations occur in summer, and hence it is in
this season that the CDFs of the ECA&D rainfall and the
HyMeX station rainfall differ more significantly. In contrast
to the temperature, the boxplots of the rainfall bias are slightly
larger in summer than in winter, but whatever the season the
interquartile range never exceeds 8 mm, suggesting a fairly

good match between the rainfall time series of the ECA&D
dataset and that measured at the HyMeX weather stations.

Even at relatively low altitude, the proximity of the Alps
induces a complex environment in which rainfall is very
spatially variable in terms of occurrence and intensity. The
station location is crucial in this region, where topography is
very complex and forces precipitation (Frei and Schär 1998).
It is by the assimilation of a dense observation network that
one may obtain accurate results; however, figure 1 shows a
rather scarce network. Table 1 shows that the data of station
IT-6 are assimilated in this area. However, the comparison
between the closest ECA&D grid and the station location
produces rather disappointing results, as seen in figures 3(a)
and (b). This was not the case for the semi-arid station IS-1,
where the regional topography is smoother. The insufficient
number of assimilated weather stations in such a complex area
induces at all stations an overestimation of the number of rainy
days, which generally correspond to a small rainfall amount.
For instance, at station IT-7 there is an excess of 113 rainy
days (334 days instead of 221) in the ECA&D dataset, which
corresponds to an overestimation of the lower quantiles (fifth
and 25th quantiles) but does not affect the median and the 75th
quantile. In contrast, there is an underestimation of the rainfall
extremes, probably due to a too strong smoothing effect of the
assimilation or interpolation of a too sparse network.

3.4. High elevation stations

For the Italian stations in the Alps (IT-1, IT-2, IT-4, IT-5
and IT-8), temperatures are clearly lower with respect to
the stations at low elevation. Hence, winter and summer
median temperatures are approximately −5 ◦C and 10 ◦C,
respectively. The CDFs of the temperature from the ECA&D
dataset and the HyMeX observations are in better agreement
at high than at low elevation. This is even more evident
during summer. For instance, at stations IT-1, IT-5 and
IT-8, the 50th quantile of the summer ECA&D temperature
overestimates the 50th quantile of HyMeX observations by
at most 2.5 ◦C. This must be compared to the Italian low
elevation stations, where ECA&D underestimation reaches at
least 5 ◦C. Regarding the interquartile range, the shapes of the
boxplots are very similar to those of the low elevation stations,
while conversely they are much closer to the 0 ◦C temperature
bias (figures 2(c) and (d)). Accordingly, for both seasons the
FR-3 station displays similar CDF with respect to the other
French coastal stations but with a median value of about 0 ◦C
in winter and 15 ◦C in summer, due to the higher elevation
(figures 2(a) and (b)).

Regarding rainfall, the CDFs of ECA&D and HyMeX
data behave very similarly to those at the Italian low elevation
stations. In general, the CDFs of ECA&D and HyMeX rainfall
are very similar in summer (figure 3(b)), whereas they differ
significantly during winter (figure 3(a)). Special attention
must be given to station FR-3, which is very close to station
FR-1, identified as a coastal station (table 1). ECA&D dataset
represents FR-1 and FR-3 rainfall with approximately the
same CDFs for both seasons. However, the measurements
display very different rainfall CDFs, notably for the 75th
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quantile and extremes (95th quantiles). This is due to the fact
that the two stations are very close and associated with the
same ECA&D grid points, which are not influenced by any
nearby assimilated station as shown in figure 1.

4. Conclusion

The ECA&D data in complex environments such as coastal
areas and mountainous regions have to be addressed with
much care. For instance, in Northern Italy, temperature and
rainfall biases of ECA&D can take significantly large values
and day-to-day comparison of temperature and rainfall can
display large departures. In particular, for rainfall, it has been
shown that the ECA&D and the HyMeX observations do not
have the same rainy days and the amplitude of extreme rainfall
is generally significantly smaller than observed at HyMeX
stations. However, such differences should be expected
between the very local HyMeX observations and the gridded
dataset, which are different datasets in nature. One cannot
expect extreme rainfall to be equally represented by a very
local station and a gridded 25 km × 25 km average, even if
data assimilation or interpolation is ‘perfect’. In this letter we
compare the rainfall and temperature statistical characteristics
between the gridded dataset of ECA&D and local stations to
quantify the differences between the ECA&D gridded data
and the closest local weather station data and estimate the
associated uncertainties.

In the context of the MED-CORDEX and HyMeX,
simulations have been performed over 1989–2008 and other
simulations will be conducted in the near future over the
HyMeX long observation period (2010–20). Furthermore,
downscaling of the global simulations of the recent past
and future climates will be conducted in the frame of
the Fifth Climate Model Intercomparison Project (CMIP5).
These simulations will be directly compared to gridded
datasets, and more specifically to the ECA&D dataset for the
Euro-Mediterranean region. Especially for SD, the ECA&D
will also serve to calibrate statistical models. A proper
interpretation of downscaling results has to take into account
not only all sources of model uncertainties but also the
uncertainties associated with the validation, or calibration,
dataset.
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