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For a linear continuous-time control system in Hilbert space with state x(t) is associated a discrete-time system where the state variable is z k = (x((k + 1)h) + x(kh))/2, with small h. This allows to introduce a discrete derivative ∆z k = (x((k + 1)h) -x(kh))/h. The obtained discrete-time system has structural properties with a similar formulation as continuous system. Stability is equivalent to the fact that the spectrum of the state operator of discrete-time system is in the left half plane, Lyapunov and Riccati equation are similar.

Introduction

We are concerned with systems described by equations ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) [START_REF] Curtain | Infinite dimensional linear systems theory[END_REF] where x, u and y take values in Hilbert spaces X, U and Y respectively. A, B and C are linear operators. B is bounded and A is the infinitesimal generator of a C 0 -semi-group of bounded operators S(t), t ≥ 0. The mild solution of the system (1) is given by:

x(t) = S(t)x 0 + t 0 S(t -τ )Bu(τ )dτ
A direct discretization of the mild solution gives a discrete system with bounded operators

F = S(h), G = h 0 S(τ )Bdτ, H = C
respectively for the state, input and output:

x k+1 = F x k + Gu k , y k = Hx k , (2) 
where x k = x(kh), y k = y(kh) and u k = u(kh).

Another way to obtain a discrete-time system from (1) is to use the transfer function, say T (s) = C(sI -A) -1 B. One can introduce (see for example [START_REF] Ober | Infinite dimensional continuous-time linear systems: stability and structure analysis[END_REF][START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF] for the case of infinite dimensional systems) a new transfer function T d (w). Let

T d (w) = T ( w -1 w + 1 ). (3) 
Under the assumption that T (s) is exponentially stable, T d is holomorphic and stable outside the unit disc. It is well known (see for example [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF]) that T d (w) is the transfer function of a discrete-time system (A d , B d , C d , D d ):

T d (w) = C d (wI -A d ) -1 B d + D d ,
where

A d = (I -A) -1 (I + A), B d = √ 2(I -A) -1 B and C d = √ 2C(I -A) -1 , D d = C(I -A) -1 B.
Some properties of this discrete system are given in [START_REF] Ober | Infinite dimensional continuous-time linear systems: stability and structure analysis[END_REF] (see also [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF], pp. 212-213).

In particular, the relation of this system and the original one (1) are discussed.

In [START_REF] Ober | Bilinear transformation of infinite dimensional state space systems and balanced realizations of non-rational transfer functions[END_REF][START_REF] Ober | Infinite dimensional continuous-time linear systems: stability and structure analysis[END_REF] are investigated the problems of realization, exponential and asymptotic stability for the discrete system obtained from T d (s) which is not rational function. The corresponding state space is obtained by realization techniques. However it is not clear which connection exists between the continuous-time and the discrete-time states.

The relation (3) introduced earlier for the case of finite dimensional systems allows to obtain properties for discrete-time system from continuous-time systems. Since the early fifties, several developments of continuous-time and discrete-time systems were done in parallel ways. This is the consequence of the different formulation of generic control problems and results. However, as both forms of solutions are computable (Lyapunov and Riccati equations, linear quadratic problems, etc.), the difference between formulations does not induce difficulties. The problem induced by these difference appeared in the late 80s up to now, especially through the robust control problems. In fact, the main idea for unification of continuous and discrete time theories used in some specialized problems is the Tustin transform [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF].

A recent contribution has been brought by Bergeon [2] in order to extend this idea and to formalize the relation between the continuous and the discrete systems. The author shaw that every problem formulation and every design available in continuous-time domain can be translated, without loss of generality and simplicity, in the discrete-time domain. Our purpose is to extend this approach to infinite dimensional systems and to study the specificity, if any, of this case. This approach amounts to putting:

z k = x k+1 + x k 2 (4) 
and

∆z k = x k+1 -x k h . (5) 
where x k = x(kh) as for the system (2). In this paper the following assumption is made: h > 0 is chosen such that the operator I + S(h) = I + F is bounded invertible. The following discrete-time state space system can be associated to [START_REF] Curtain | Infinite dimensional linear systems theory[END_REF]:

∆z k = F d z k + G d u k , y k = H d z k + E d u k , (6) 
where the operators F d , G d , H d , E d are defined later [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. In this system, z k is the "state" and ∆z k is the "derivative". The new term E d u k is the consequence of the discretization: strictly proper system become proper. For this system several control problems are discussed. The main results are that this system is a pseudo-continuous version of the continuous-time system [START_REF] Curtain | Infinite dimensional linear systems theory[END_REF]. It is shown also that several formulations are similar to those of continuous-time system: Lyapunov and Riccati equations, stability and stabilizability conditions.

State representation of discrete-time system

In this section, we show how the system ( 6) is obtained and how this system converge, in some sense, to the system (1).

Theorem 2.1 Let x(t) be the mild solution of the system (1) and x k = x(kh) and u k = u(kh) for h > 0 and k ∈ N and let z k and ∆z k be given by ( 4) and ( 5). Then z k is the solution of the equation

∆z k = F d z k + G d u k
and the output y k is given by

y k = H d z k + E d u k ,
where the operators F d , G d , H d and E d are bounded and expressed by the relations:

F d = 2 h (F -I)(F + I) -1 , G d = 2 h (F + I) -1 G, H d = 2H(F + I) -1 , E d = -H(F + I) -1 G. (7) 
The operator F + I = S(h) + I being bounded invertible by the choice of h.

Proof.

Let us choose first h such that S(h) + I is bounded invertible. If ρ(S(h)) denote the resolvent set and σ(S(h)) the spectrum of S(h). Then it is well known [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] that e hσ(A) ⊂ σ(S(h)), where σ(.) is the spectrum of the corresponding operator A. This means that if λ ∈ σ(A), and if hλ = 2kπi, then -1 ∈ ρ(S(h)) and S(h) + I is bounded invertible. These values of h are said admissible. It is easy to see that h may be chosen arbitrary small. From the definition of z k and the relation (2) between x k+1 and x k , we get

2z k = F x k + Gu k + x k = (F + I)x k + Gu k , which gives x k = 2(F + I) -1 z k -(F + I) -1 Gu k . (8) 
In the same way, we get for ∆z k the relations:

∆z k = 1 h (x k+1 -x k ) = 1 h [(F -I)x k + Gu k ] .
From [START_REF] Przy Luski | Stability of linear infinite-dimensional systems revisited[END_REF], we obtain

∆z k = 2 h (F -I)(F + I) -1 z k - 1 h (F -I)(F + I) -1 Gu k + 1 h Gu k . As (F -I)(F + I) -1 G = (F + I -2I)(F + I) -1 G = G -2(F + I) -1 G, this gives ∆z k = 2 h (F -I)(F + I) -1 z k + 2 h (F + I) -1 Gu k .
and then

∆z k = F d z k + G d u k
with F d and G d given by [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF].

For the output relation, from (8), we have

y k = Hx k = 2H(F + I) -1 z k -H(F + I) -1 Gu k , which gives y k = H d z k + E d u k ,
with the needed operators H d and E d .

Remark 2.2

The original continuous-time system is strictly proper:

lim ℜ(s)→∞ T (s) = 0.
The discrete-time system is only proper. If the continuous-time system is proper, i.e. given by

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (9) 
then, in the corresponding discrete-time system, the operator E d will be given by

E d = D -H(F + I) -1 G.
This is the case when the output is not modified. One can also consider a new output y k = Hz k , but this means that we observe in fact Hx k+1 also and this system is not causal.

The above discrete-time representation may be called pseudo-continuous representation and converge, when h → 0, to the continuous-time system in the sense given by the Theorem 2.3 and related results of the following section.

The above mentioned properties show that this approach is quite different from that of the construction of pseudo-continuous system from discrete system via the Tustin transformation (see [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF] for the infinite dimensional case).

Theorem 2.3 For all x 0 ∈ D(A), x ∈ X and u ∈ U, we have

lim h→0 F d x 0 = Ax 0 , lim h→0 G d u = Bu, lim h→0 H d x = Hx, lim h→0 E d u = 0,
the value of h being admissible. If the operator A is bounded, then the limits exist in the uniform operator topology.

Proof. Note that

F d = 2 h (F -I)(F + I) -1 = 2(F + I) -1 F -I h .
As A is the infinitesimal generator of the semigroup S(t), we have

lim h→0 F -I h x 0 = lim h→0 S(h) -I h x 0 = Ax 0 , (10) 
for all x 0 ∈ D(A). On the other hand,

lim h→0 (F + I)x = lim h→0 (S(h) + I)x = 2x (11) 
for all x ∈ X because of strong continuity of the semigroup. Then, for sufficiently small h, (S(h) + I)x ≥ x .

This gives

x = (S(h) + I)(S(h) + I) -1 x ≥ (S(h) + I) -1 x , which implies (S(h) + I) -1 ≤ 1. Then

2(S(h) +

I) -1 x -x ≤ (S(h) + I) -1 2x -(S(h) + I)x ≤ 2x -(S(h) + I)x .
and by (11), this gives

lim h→0 2(F + I) -1 x = lim h→0 2(S(h) + I) -1 x = x,
Then, by a simple calculation and using (10), we get, for x 0 ∈ D(A),

lim h→0 F d x 0 = lim h→0 2(S(h) + I) -1 S(h) -I h x 0 = Ax 0 .
Consider now the operator G d = 2 h (F + I) -1 G. For all u ∈ U , we have (see for example [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]):

lim h→0 1 h G = lim h→0 1 h h 0 S(τ )Budτ = Bu,

and then lim

h→0 2 h (F + I) -1 Gu = Bu.
The other limits may be calculated in the same way.

If A is bounded, then S(t) = e At is uniformly continuous, and all the limits are in the uniform operator topology.

This means that the system (F d , G d , H d , E d ) asymptotically closed to the original continuous-time system. This may be also seen by remarking that if t = kh, then for an initial condition x 0 ∈ D(A) and a control function u ∈ C 1 we have lim

h→0 z k = x(t), lim h→0 ∆z k = ẋ(t).
If the initial condition is not in D(A) and u ∈ L p , p ≥ 1, the derivative must be understood in the weak sense (see [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

3 Stability and stabilizability

Stability

The first problem under investigation is that of stability. We consider here only exponential stability for continuous-time system and power stability for discretetime system. Other concepts of stability mat be considered in a similar way.

Definition 3.1 The system (1) is said exponentially stable if there exists constants M ≥ 1 and α > 0 such that

S(t) ≤ M e -αt , t ≥ 0.
The discrete-time system (2) is said power stable if there exists constants N ≥ 1 and 0 < γ < 1 such that

F n ≤ N γ n , n ∈ N.
This means that for u(t) = 0, t ≥ 0 (respectively

u k = 0, k ∈ N) the solution of both systems verify ∞ 0 S(t)x 0 2 dt < ∞, ∞ i=0 x i 2 < ∞.
As in this case z k = F +I 2 x k , power stability of systems ( 2) and ( 6) are equivalent.

Theorem 3. 2The system ( 6) is power stable if and only if the spectrum of F d , noted σ(F d ) is in the interior of the left half plane:

σ(F d ) ⊂ C -β = {s : ℜ(s) < -β}.
The corresponding Lyapunov equation is

F * d P + P F d = -Q,
for positive definite linear bounded operator Q.

Proof. It is well known (cf. for example [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Logemann | Stability and stabilizability of linear infinite-dimensional discrete-time systems[END_REF][START_REF] Przy Luski | Stability of linear infinite-dimensional systems revisited[END_REF]) that the discrete-time system (2) is power stable if and only if r(F ) < 1, where r(F ) is the spectral radius:

r(F ) = sup {|λ| : λ ∈ σ(F )} .
The transformation

F → F d = 2 h (F -I)(F + I) -1
maps in the same way the spectrum of F :

ϕ : λ → µ = 2 h (λ -1)(λ + 1) -1 , λ = -1.
The spectrum of F is in the interior of the unit ball if and only if 

σ(F d ) ⊂ C -β ,

Stabilizability

The above result on stability induce similar criterion on stabilizability. Definition 3. [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF] The system (1) is said stabilizable iff there exists a linear bounded operator K such that the semigroup generated by A + BK is exponentially stable. The system (6) is power stable iff there exists a linear bounded operator

K d such that F d + G d K d is power stable.
There are several conditions of exponential and power stabilizability. All the known conditions may be extended to the pseudo-continuous system [START_REF] Ober | Infinite dimensional continuous-time linear systems: stability and structure analysis[END_REF] 

provided that F d + G d K d is power stable iff σ(F d + G d K d ) ⊂ C -β
for some positive β. In particular, the stabilizability condition may be formulated via the solution of a Riccati equation. Theorem 3. [START_REF] Ober | Bilinear transformation of infinite dimensional state space systems and balanced realizations of non-rational transfer functions[END_REF] The system (6) is stabilizable if and only if there exist a positive operator P d such that:

F * d P d + P d F d -P d G d G * d P d + Q = 0,
and the stabilizing feedback is given by K d = -G * d P d . The relation between the feedback K d and the feedback stabilizing the discrete-time system (2), say K, is given by K d = 2K(F + GK + I) -1 , and K = (2I -K d G) -1 K d (F + I), under the condition that 2 ∈ ρ(K d G), where ρ(.) is the resolvent set of the given operator.

Proof. The condition of power stability implies the condition of stabilizability using the Riccati equation (cf. [START_REF] Zabczyk | Mathematical control theory[END_REF]). Suppose that K is the stabilizing feedback for the system (2), then u k = Kx k is the stabilizing control and x k+1 = (F + GK)x k is the closed loop state. Then

2z k = (F + GK)x k + x k , which gives x k = 2(F + GK + I) -1 z k ,
the bounded invertibility of the operator F + GK + I is garanted by the stability condition of F + GK. Hence,

u k = 2(F + GK + I) -1 z k ,
is the stabilizing feedback for the pseudo-continuous system [START_REF] Ober | Infinite dimensional continuous-time linear systems: stability and structure analysis[END_REF]. In an analogous way, under the assumption that 2 ∈ ρ(K d G), one obtains

K = (2I -K d G) -1 K d (F + I),
which ends the proof.

Hence, the Riccati equation for the system (6) is of the same form as for the continuous-time system. Note that as A and A * are not defined on all the space X, the corresponding Lyapunov and Riccati equations are given on D(A) (see [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Zabczyk | Mathematical control theory[END_REF]).

Further control problems

The approach developed in Section 2 and 3 may be also extended to other control problems: linear quadratic optimal control problem, detectability, asymptotic observers, etc.

For the problem of detectability and asymptotic observers, the results can be obtained from Section 3 by duality. All the calculation are the same.

For the linear quadratic optimal control problem one can follow the example considered in [START_REF] Curtain | An Introduction to infinite-dimensional linear systems theory[END_REF]. A continuous-time system (A, B, C, D) is induced from a discrete-time system (A d , B d , C d , D d ) by the relations:

A = (A d -I)(A d + I) -1 , B = √ 2(A d + I) -1 B d , C = √ 2C d (A d + I) -1 , C = D d -C d (A d + I) -1 B d , (12) 
and the linear quadratic optimal problem is considered for the continuous-time system (A, B, C, D). It is shown that the optimal solution is obtained via a continuous type Riccati equation.

The same calculation may be made for our pseudo-continuous system (6), and as in the finite dimensional case [START_REF] Bergeon | Une autre représentation d'état pour la commande à temps discret[END_REF], one can obtains similar formulation for the LQ problem.

The input-output relation

In this section we show that the transfer function may be calculated in the same way as for the continuous-time system using the state-space expression of the pseudo-continuous system.

Let L denote the discrete Laplace transform (in fact the so called z-transform). By L(x k ) we mean the Laplace transform of the sequence {x 0 , x 1 , . . .}. Assume that the initial condition x 0 = 0. Then we have L(x k+1 ) = ζL(x k ), where ζ is the discrete Laplace variable, and

L(z k ) = ζ + 1 2 L(x k ), L(∆z k ) = ζ -1 h L(x k ).
From both relations, we obtain

L(∆z k ) = 2 h ζ -1 ζ + 1 L(z k ).
Putting

ω = 2 h ζ -1 ζ + 1 , (13) 
we get L(∆z k ) = ωL(z k ), which gives the Laplace transform of the pseudo-derivative. Applying this calculus to the pseudo-continuous system (6), leads to

L(y k ) = H d (ωI -F d ) -1 G d + E d L(u k ).
This means that the input-output relation is given by the transfer function

Θ(ω) = H d (ωI -F d ) -1 G d + E d .
The relation (13) between the Laplace variables of the discrete-time system (2) and the pseudo-continuous system ( 6) is also a Tustin transform like the transform (3), but is applied to the exact discrete system (2) in order to obtain a (pseudo) continuous-time system which is also exact, closed to the continuous-time system (1) and with similar properties. Hence, this approach is quite different from the classical one.

  because the application ϕ maps the open unit ball into the open left half plane. On the other hand the condition σ(F d ) ⊂ C -β is equivalent to the existence of positive solution of the Lyapunov equation [3]: F * d P + P F d = -Q, with selfadjoint, positive definite operator Q.