N

N

Learning joint multimodal behaviors for face-to-face
interaction: performance & properties of statistical
models
Gérard Bailly, Alaeddine Mihoub, Christian Wolf, Frédéric Elisei

» To cite this version:

Gérard Bailly, Alaeddine Mihoub, Christian Wolf, Frédéric Elisei. Learning joint multimodal behaviors
for face-to-face interaction: performance & properties of statistical models. Human-Robot Interaction.
Workshop on Behavior Coordination between Animals, Humans, and Robots, Mar 2015, Portland,
United States. hal-01110290

HAL Id: hal-01110290
https://hal.science/hal-01110290
Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01110290
https://hal.archives-ouvertes.fr

Learning joint multimodal behaviors for face-to-face
interaction: performance & properties of statistical models

Gérard Bailly” Alaeddine Mihoub™?

W GIPSA-Lab, Université Grenoble Alpes/ICNRS
11, rue des Mathématiques, St Martin d’'Héres, France

firstname.lastname@gipsa-lab.fr

ABSTRACT

We evaluate here the ability of statistical modakmely Hidden
Markov Models (HMMs) and Dynamic Bayesian Networks
(DBNs), in capturing the interplay and coordinatibetween
multimodal behaviors of two individuals involved anface-to-face
interaction. We structure the intricate sensoryenaboupling of
the joint multimodal scores by segmenting the wtinteraction
into so-called interaction units (IU). We show tltlaé proposed
statistical models are able to capture the nadyabmics of the
interaction and that DBNs are patrticularly suitaolereproducing
original distributions of so-called coordinatiorstugrams.

Theme: behavior coordination between animals, humans and

robots

Keywords: human-human interaction; multimodal interaction;
behavioral models; machine learning; statisticatleting.

1 INTRODUCTION

Deictic expressions [1] such as the famous “put ttere”
explored by Bolt [2] implies a tight coordinatioretiveen gaze,
head/torso/arm and finger pointing and speech][3[Hs context-
dependent intermodal coordination is further affdct by
interleaving multimodal cues provided by the resipi of the
information: responsive gaze cues, mimics as wellaeoustic
backchannels pace the effective encoding and degodi the
intended message. Several seminal works such ase tod
Richardson et al on swinging [5], MacFarland orpigion [6]
and Balilly et al on gaze [7] have shown that thétepas of
multimodal coordination are sensitive to cognitigquirements.
Coordinated behaviors are traditionally describét anepistemic
approach: context-sensitive rules describe howcspegents and
gestural strokes respond and align with othersédpevents and
gestural strokes within discourse units. Initiatgveloped for
conversational agents, numerous rule-based systews been
proposed to cope with such a complex orchestrationultimodal
streams: see notably the Ymir model proposed byi3un [8] or
the series of mark-up languages developed morenttgcéor
handling multimodal communication and interactierifL].

More recently epigeneticapproaches have been proposed to learn

patterns of coordination from sensory-motor expeme These
data-driven approaches automatically infer the biehal models
from embodied and grounded interaction thanks tcchine
learning techniques and various learning strate@@éservation,
demonstration,etc). We introduce below two of thtesniques.

2 STATISTICAL MODELS

Statistical models have been used for years fareseealysis, i.e.
inferring semantic information from signals: speenid speaker
recognition, visual scene analysis as well as iimfgr human
activity, emotions or social features of the cosi@ral partners.
More recently, statistical models have been useddpe with
behavior generation, e.g. see [12] for speech sgigtand [13] for
gesture synthesis.

Multi-space probability distribution models [14] danvarious
statistical models capturing the cross-correlatibesveen time
series have been further used to generate sigrafs dbserved
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ones.Otsuka et al. [15] proposed a Dynamic Bayesian Wetw
(DBN) to estimate addressing and turn taking ("wasponds to
whom and when?") from speech and head gesturegemetate
appropriate gaze patterns. Morency et al [16] skiovhew

sequential probabilistic models, i.e. HMMs (Hiddéwarkov

Models) and CRFs (Conditional Random Fields), cénecty

estimate listener backchannels from a dataset wiahtto-human
interactions using multimodal output features oé thpeaker
(spoken words, prosody and eye gaze). For morghtsssee also
[17, 18]. More generally, these approaches use apibtic

graphical models because they provide a flexibld &ainable
representation of the dynamics of human behaviat eepture
spatiotemporal relationships between multimodal eolegions

under uncertainty.
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Figure 1. Mapping perception to action using HMM. Hdden
sensory-motor states are trained using parallel peeption and
action streams. The structuring of these hidden stas into
interaction units facilitates the alignment of states and
observations at training stage. At run time, statesre inferred
on the sole basis of the observed perception strearnd
generate the corresponding motor stream (see texoif further
explanation).

2.1 Hidden Semi-Markov Models (HSMMs)

Sensory-motor scores (i.e. perceptual input andomoutput
trajectories) are here supposed to be generatednbpserved
(hidder) states of a Markov process. In a hierarchical ehatiese
hidden sensory-motor states are organized imi@raction units
(IUs) [19] (such as thinking, informing, listeningaking turn,
glazing over, etc). Each U is thus responsiblenfiodeling several
parts of the sensory-motor scores that share consemrantic or
pragmatic information. The number, extend and dandeof these
IUs depend on the task. The sequencing of the ids,their
syntax, provides a sort of behavioral grammar tbhains
elementary interaction units. A given IU can bensag an instance
of the joint cognitive stateof the interacting dyads. A similar
concept was used in [20] in which the authors psepa gaze
model driven by the cognitive operations of a \dttagent. Note
that disjoined or desynchronized cognitive statas loe modeled
via coupled or product HMMs.

Perception
streams {



Once trained on parallel perception and actiorasige(see Figure
1), sensory-motor HMMs are easily split intoezzognitionmodel
that infers the optimal state sequence on the bBais of the
observed perception stream andyathesismodel that generates
the most likely motor observations given the dedosiequence of
states (see [21] for further explanation).

Incremental Hidden Semi-Markov Models (HSMMs) fith
combine the possibility to model state durationsdalcalled
residence time) and to infer states and generétmaavith limited
look ahead. The bounded version of the Short-TirterM (STV)
algorithm [22] slightly impairs the estimation dfet IUs but with
no substantial degradation of the generated adiz#js

2.2 Dynamic Bayesian Networks (DBNSs)
Classical HMMs are characterized by a fixed depecgegraph
modeling the conditional independence relationshifptween
random variables. Extensions to the standard HMknétism
have been proposed to cope with direct input/outigpendencies
[24]. By representing observations and hidden state random
variables, DBNs are particularly suitable for maadgl the
dynamics of multimodal behaviors in face-to-faceiactions [25]
[25], as their graphical structure can be arbitrarsheSe
dependency structures between variables can bedptbby an
expert but numerous methods have been introducédato the
network’s structure automatically from data both fotra- and
inter-frame conditional dependencies.

An example of such a dependency graph obtainedhierdata
described below is displayed Figure 3. We nicelgover the
causal relations between the gaze, pointing gestspeech of the
instructor and the final grasping gesture of thaimalator.

I tatus OK %

! e
B6/11-2813 — TS 16:44:18:39 - TC #8:81:42:27

Figure 2. The “put-that-there” game.

3 MULTIMODAL INTERACTIVE DATA

We trained our statistical models on interactivéadeollected
during a “put-that-there” game (see Figure 2). Medee trained
to capture the behavior of the instructor. The @gfieal and action
streams are gathered by respectively analyzingithal field of
the instructor via a head-mounted camera and nrargtohis
speech, head, gaze and hand movements (see thie desture in
Figure 2) by motion capture devices. The scenamisists in a
repetitive task that samples the working spaceirteguctor asks
the manipulator to reproduce various cube arrang&smen a
chessboard according to a layout he is the onlytor@ow. The
task of the statistical model is to predict theggEX) and hand
movements (GT) of the instructor given his spee®R)(and the
perceived gestures (MP) of the manipulator. Alleskations are
discretized, e.g. alternative points of interest aze fixations
(cubes, locations, hands, and manipulator's fagesture strokes
(grasp, pick-up, transport, and release), speadte(name, source
and target locations), etc. We distinguish betw6emteraction
units: get instruction, seek cube, point to sodocation, indicate
target location, check manipulation, and validatanipulation.
Note that HMM sensory-motor states are fully coneecseeks,

mutual attentions, errors and repetitions oftenultem state
looping and acyclic graphs that may solicit sevéraés the same
hidden state within one interaction unit.

4 COORDINATION HISTOGRAMS
Observations are here discrete: modal events are gbnerated
each time the statistical model observes or geperattransient
between successive observations. A coordinaticiodriam (CH)
for a couple of modalities is computed as follo¥es: each event,
we search for the nearest event of the other ntgdaid record the
time lag between these two events. The CH for giotrnth
fixations with reference to input streams are camgan Figure 4
with CH for data generated by various statisticaldeis. While
DBN significantly outperforms HSMM — which signiéatly
outperforms HMM — in terms of prediction performanf26],
coordination patterns are also significantly cloger original
ground truth data.
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Figure 3: Dependency graph between interaction ursf
perception and action streams automatically inferrd from
“put-that-there” data for the DBN. Arrows of differ ent colors
(distinguishing intra- vs. inter-modality, intra- vs. inter-frame
dependencies) cue significant dependencies betwagrits and
observations. Contrary to HMM, no latent states hae been
added here.

CONCLUSIONS

We present statistical multimodal behavioral modedéned on
multimodal data collected on dyads involved in duated
collaborative face-to-face interaction. We compardtie
performance of Hidden Markov Model (HMM), Hidden e
Markov Model (HSMM) and Dynamic Bayesian NetworkBS).
We introduce the concept of coordination histograhmat
characterizes how different modalities synchrorbeéwveen each
other. DBN leads to the best performances in ha#tractive units
recognition and behavior generation. It also digpla faithful
coordination between generated trajectories comdpdce the
ground truth. We suggest incorporating such belaVio
characteristics for model assessment and coordimstidies.

We plan to further implement the models on so@abts in order
to gather subjective evaluations and performatbgessments.
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Figure 4: Coordination histograms of the instructofs gaze
with the input streams (his own speech onsets ante onsets of
the manipulator's strokes) for the ground truth (a) and the
predicted gaze by HMM (b), HSMM (c) and DBN (d).
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