
HAL Id: hal-01110290
https://hal.science/hal-01110290

Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning joint multimodal behaviors for face-to-face
interaction: performance & properties of statistical

models
Gérard Bailly, Alaeddine Mihoub, Christian Wolf, Frédéric Elisei

To cite this version:
Gérard Bailly, Alaeddine Mihoub, Christian Wolf, Frédéric Elisei. Learning joint multimodal behaviors
for face-to-face interaction: performance & properties of statistical models. Human-Robot Interaction.
Workshop on Behavior Coordination between Animals, Humans, and Robots, Mar 2015, Portland,
United States. �hal-01110290�

https://hal.science/hal-01110290
https://hal.archives-ouvertes.fr


Learning joint multimodal behaviors for face-to-face 
interaction: performance & properties of statistical models

Gérard Bailly(1) Alaeddine Mihoub(1,2) Christian Wolf(2) Frédéric Elisei(1) 
(1) GIPSA-Lab, Université Grenoble Alpes/CNRS 

11, rue des Mathématiques, St Martin d’Hères, France 
firstname.lastname@gipsa-lab.fr 

(2) Université de Lyon/CNRS 
INSA-Lyon, LIRIS, UMR5205 F-69621, France 

christian.wolf@liris.cnrs.fr 
 

ABSTRACT 
We evaluate here the ability of statistical models, namely Hidden 
Markov Models (HMMs) and Dynamic Bayesian Networks 
(DBNs), in capturing the interplay and coordination between 
multimodal behaviors of two individuals involved in a face-to-face 
interaction. We structure the intricate sensory-motor coupling of 
the joint multimodal scores by segmenting the whole interaction 
into so-called interaction units (IU). We show that the proposed 
statistical models are able to capture the natural dynamics of the 
interaction and that DBNs are particularly suitable for reproducing 
original distributions of so-called coordination histograms. 

Theme: behavior coordination between animals, humans and 
robots 

Keywords: human-human interaction; multimodal interaction; 
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1 INTRODUCTION 
Deictic expressions [1] such as the famous “put that there” 
explored by Bolt [2] implies a tight coordination between gaze, 
head/torso/arm and finger pointing and speech [3, 4]. This context-
dependent intermodal coordination is further affected by 
interleaving multimodal cues provided by the recipient of the 
information: responsive gaze cues, mimics as well as acoustic 
backchannels pace the effective encoding and decoding of the 
intended message. Several seminal works such as those of 
Richardson et al on swinging [5], MacFarland on respiration [6] 
and Bailly et al on gaze [7] have shown that the patterns of 
multimodal coordination are sensitive to cognitive requirements. 
Coordinated behaviors are traditionally described with an epistemic 
approach: context-sensitive rules describe how speech events and 
gestural strokes respond and align with others’ speech events and 
gestural strokes within discourse units. Initially developed for 
conversational agents, numerous rule-based systems have been 
proposed to cope with such a complex orchestration of multimodal 
streams: see notably the Ymir model proposed by Thórisson [8] or 
the series of mark-up languages developed more recently for 
handling multimodal communication and interaction [9-11]. 
More recently, epigenetic approaches have been proposed to learn 
patterns of coordination from sensory-motor experience. These 
data-driven approaches automatically infer the behavioral models 
from embodied and grounded interaction thanks to machine 
learning techniques and various learning strategies (observation, 
demonstration,etc). We introduce below two of these techniques. 

2 STATISTICAL MODELS 
Statistical models have been used for years for scene analysis, i.e. 
inferring semantic information from signals: speech and speaker 
recognition, visual scene analysis as well as inferring human 
activity, emotions or social features of the conversional partners. 
More recently, statistical models have been used to cope with 
behavior generation, e.g. see [12] for speech synthesis and [13] for 
gesture synthesis.  
Multi-space probability distribution models [14] and various 
statistical models capturing the cross-correlations between time 
series have been further used to generate signals from observed 

ones. Otsuka et al. [15] proposed a Dynamic Bayesian Network 
(DBN) to estimate addressing and turn taking ("who responds to 
whom and when?") from speech and head gestures and generate 
appropriate gaze patterns. Morency et al [16] showed how 
sequential probabilistic models, i.e. HMMs (Hidden Markov 
Models) and CRFs (Conditional Random Fields), can directly 
estimate listener backchannels from a dataset of human-to-human 
interactions using multimodal output features of the speaker 
(spoken words, prosody and eye gaze). For more insights see also 
[17, 18]. More generally, these approaches use probabilistic 
graphical models because they provide a flexible and trainable 
representation of the dynamics of human behavior and capture 
spatiotemporal relationships between multimodal observations 
under uncertainty. 

 
Figure 1. Mapping perception to action using HMM. Hidden 
sensory-motor states are trained using parallel perception and 
action streams. The structuring of these hidden states into 
interaction units facilitates the alignment of states and 
observations at training stage. At run time, states are inferred 
on the sole basis of the observed perception stream and 
generate the corresponding motor stream (see text for further 
explanation). 

2.1 Hidden Semi-Markov Models (HSMMs) 
Sensory-motor scores (i.e. perceptual input and motor output 
trajectories) are here supposed to be generated by unobserved 
(hidden) states of a Markov process. In a hierarchical model, these 
hidden sensory-motor states are organized into interaction units 
(IUs) [19] (such as thinking, informing, listening, taking turn, 
glazing over, etc). Each IU is thus responsible for modeling several 
parts of the sensory-motor scores that share common semantic or 
pragmatic information. The number, extend and ordering of these 
IUs depend on the task. The sequencing of the IUs, i.e. their 
syntax, provides a sort of behavioral grammar that chains 
elementary interaction units. A given IU can be seen as an instance 
of the joint cognitive states of the interacting dyads. A similar 
concept was used in [20] in which the authors propose a gaze 
model driven by the cognitive operations of a virtual agent. Note 
that disjoined or desynchronized cognitive states can be modeled 
via coupled or product HMMs. 



Once trained on parallel perception and action streams (see Figure 
1), sensory-motor HMMs are easily split into a recognition model 
that infers the optimal state sequence on the sole basis of the 
observed perception stream and a synthesis model that generates 
the most likely motor observations given the decoded sequence of 
states (see [21] for further explanation). 
Incremental Hidden Semi-Markov Models (HSMMs) further 
combine the possibility to model state duration (also called 
residence time) and to infer states and generate actions with limited 
look ahead. The bounded version of the Short-Time Viterbi (STV) 
algorithm [22] slightly impairs the estimation of the IUs but with 
no substantial degradation of the generated actions [23]. 

2.2 Dynamic Bayesian Networks (DBNs) 
Classical HMMs are characterized by a fixed dependency graph 
modeling the conditional independence relationships between 
random variables. Extensions to the standard HMM formalism 
have been proposed to cope with direct input/output dependencies 
[24]. By representing observations and hidden states as random 
variables, DBNs are particularly suitable for modeling the 
dynamics of multimodal behaviors in face-to-face interactions [25] 
[25], as their graphical structure can be arbitrary. These 
dependency structures between variables can be provided by an 
expert but numerous methods have been introduced to learn the 
network’s structure automatically from data both for intra- and 
inter-frame conditional dependencies. 
An example of such a dependency graph obtained for the data 
described below is displayed Figure 3. We nicely recover the 
causal relations between the gaze, pointing gesture, speech of the 
instructor and the final grasping gesture of the manipulator. 

 

Figure 2. The “put-that-there” game. 

3 MULTIMODAL INTERACTIVE DATA 
We trained our statistical models on interactive data collected 
during a “put-that-there” game (see Figure 2). Models are trained 
to capture the behavior of the instructor. The perceptual and action 
streams are gathered by respectively analyzing the visual field of 
the instructor via a head-mounted camera and monitoring his 
speech, head, gaze and hand movements (see the deictic gesture in 
Figure 2) by motion capture devices. The scenario consists in a 
repetitive task that samples the working space: the instructor asks 
the manipulator to reproduce various cube arrangements on a 
chessboard according to a layout he is the only one to know. The 
task of the statistical model is to predict the gaze (FX) and hand 
movements (GT) of the instructor given his speech (SP) and the 
perceived gestures (MP) of the manipulator. All observations are 
discretized, e.g. alternative points of interest for gaze fixations 
(cubes, locations, hands, and manipulator’s face), gesture strokes 
(grasp, pick-up, transport, and release), speech (cube name, source 
and target locations), etc. We distinguish between 6 interaction 
units: get instruction, seek cube, point to source location, indicate 
target location, check manipulation, and validate manipulation. 
Note that HMM sensory-motor states are fully connected: seeks, 

mutual attentions, errors and repetitions often result in state 
looping and acyclic graphs that may solicit several times the same 
hidden state within one interaction unit. 

4 COORDINATION HISTOGRAMS 
Observations are here discrete: modal events are thus generated 
each time the statistical model observes or generates a transient 
between successive observations. A coordination histogram (CH) 
for a couple of modalities is computed as follows: for each event, 
we search for the nearest event of the other modality and record the 
time lag between these two events. The CH for ground truth 
fixations with reference to input streams are compared in Figure 4 
with CH for data generated by various statistical models. While 
DBN significantly outperforms HSMM – which significantly 
outperforms HMM – in terms of prediction performance [26], 
coordination patterns are also significantly closer to original 
ground truth data. 

 
Figure 3: Dependency graph between interaction units, 
perception and action streams automatically inferred from 
“put-that-there” data for the DBN. Arrows of differ ent colors 
(distinguishing intra- vs. inter-modality, intra- vs. inter-frame 
dependencies) cue significant dependencies between units and 
observations. Contrary to HMM, no latent states have been 
added here. 

CONCLUSIONS 
We present statistical multimodal behavioral models trained on 
multimodal data collected on dyads involved in a situated 
collaborative face-to-face interaction. We compared the 
performance of Hidden Markov Model (HMM), Hidden Semi-
Markov Model (HSMM) and Dynamic Bayesian Network (DBN). 
We introduce the concept of coordination histogram that 
characterizes how different modalities synchronize between each 
other. DBN leads to the best performances in both interactive units 
recognition and behavior generation. It also displays a faithful 
coordination between generated trajectories compared to the 
ground truth. We suggest incorporating such behavioral 
characteristics for model assessment and coordination studies. 
We plan to further implement the models on social robots in order 
to gather subjective evaluations and performative assessments. 
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Figure 4: Coordination histograms of the instructor’s gaze 
with the input streams (his own speech onsets and the onsets of 
the manipulator’s strokes) for the ground truth (a) and the 
predicted gaze by HMM (b), HSMM (c) and DBN (d). 
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