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Finding scattering data for a time-harmonic wave
equation with first order perturbation from the
Dirichlet-to-Neumann map

A.D. AgaltsofI]

We present formulas and equations for finding scattering data from
the Dirichlet-to-Neumann map for a time-harmonic wave equation
with first order perturbation with compactly supported coefficients.
We assume that the coefficients are matrix-valued in general. To our
knowledge, these results are new even for the general scalar case.

Keywords: inverse boundary value problems, inverse scattering,
time-harmonic wave equation, Yang—Mills potentials

Subjects: partial differential equations, mathematical physics

AMS classification: 35R30 (Inverse problems), 35Q35 (PDEs in
connection with fluid mechanics), 35Q40 (PDEs in connection with
quantum mechanics)

1 Introduction

We consider the following equation:

d
Ly SE —Ap — 20> Aj(2)0p, 0+ V(2)p = By, zeDcRY (L1
j=1

Wherex:(ml,...,xd),axj:8/830]-,A:3§1+---+62 EecC,d=2,3,

Tq?

D is a bounded open domain in R with 0D € C?, (1.2)
Ay, ..., Ag, V are sufficiently regular M, (C)-valued functions on D and M,,(C)
is the set of n X n complex matrices.

We also assume that

E is not a Dirichlet eigenvalue for operator L in D. (1.3)
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Note that equation ([1.1) can be written in the form

d
S (—ids, + Aj(2) "% + v(@)y = B, (1.4)
j=1
where
d d

v(a)=V(z) = > AXz)+iY_ 0n Ajx). (1.5)

j=1 j=1

For equation (or (1.4)) we consider the maps ®(E), A(E) such that
_w
O(E)(¥lop) = 5~ =

0
ME)wlon) = (5 +i 2w )|
Jj=1
for all sufficiently regular solutions v of in D = DU D, for example for
all v € C'(D, M,,(C)) N C*(D, M,(C)) satisfying (1.1), where v = (v1,...,vq)
is the unit exterior normal to 0D. The map ®(F) is known as the Dirichlet-to-
Neumann map for equation in D.
In a similar way with [IN1], assumption can be dropped by considering
an appropriate Robin-to-Robin map instead of the Dirichlet-to-Neumann map.
Note that A(F) is invariant with respect to the gauge transformations

Aj _>gA]g_1+7f(ang)g_l7 j: 1a7d7

1

- (1.6)
v—gvg -,

where g is a sufficiently regular M, (C)-valued function on D with det g(z) # 0,
x € D and g(x) = Id,, on D, where Id,, is the identity n x n matrix. Note
also that ®(E) is invariant with respect to the gauge transformations
under the additional assumption that 2?21 vj0z;9 = 0 on dD. Furthermore,
if 2421 vjA; = 0 on 0D (in particular, if A;, ..., Ag have compact supports
in Dﬁ, then A(E) = ®(F). Besides, if A;, ..., Ay are known on 0D, one can
easily compute A(F) given ®(F) and vice versa.

For n = 1 equation can be considered as a Schrédinger equation at
fixed energy E with magnetic potential A = (44,...,A4) and electric potential
v, see, e.g., Refs. [HN1], [ER1], [ER3].

Equation for n > 2 with Hermitian matrices Ay, ..., Ay and with
scalar matrix v can be considered as a Schrédinger equation for a particle in an
external Yang-Mills field, see Refs. [ST1], [ST2], [TU], [ER2].

Besides, equation for n = 1 is a model equation for the time-harmonic
(e~™?) acoustic pressure ¢ in a moving fluid, see, e.g., Refs. [RW/|, [RE|. In this
setting



where j =1, ..., d, ¢ is a reference sound speed, n is a scalar index of refraction,
u = (uy,...,uq) is a normalized fluid velocity vector.

In addition, for n > 2, d = 2, equation arises as a wave equation in the
mode representation for a time-harmonic acoustic pressure ¥ in a moving fluid
in a three-dimensional cylindrical domain of finite height and with base D, see
Ref. [BBS].

We also consider equation in the entire space:

d
Lip=—A¢— 20y Aj(2)0y, 0+ V() = B¢, z€RY, (1.7)

j=1
where Ay, ..., Agq, V are sufficiently regular M, (C)-valued functions with suf-

ficient decay at infinity.

There are scattering functions 1™, f and Faddeev-type generalized scattering
functions ¢, h and v, h., associated with equation (L.7).

Functions ", f can be defined as follows:

vh(z, k) = e*r1d,, + /G+(x —y, k)X

Rd

< ZZZA )0y, +V(y ))W(y,k)dy

z§wd
G*(z, —(2m)” /52 5. , (1.9)

where z € R?, k € R\ 0;

(1.8)

fk, 1) = (2m)~ /—“x( 222,4 )0y, + V(z ))W(x,k)dx, (1.10)

Rd

where k € R¥\ 0, | € Rd Actually, we consider and its differentiated
versions, where 0., j = , d, are applied to both 51des of ([1.8), as a system
of coupled linear 1ntegral equatlons for ¥F, 0,9, j =1, d

Functions v and h are defined as follows:

W(x, k) = e™*1d,, + /G(:c —y,k)x

Rd

( mZAJ Oy, + V(y )>w(y,k> dy,

(1.11)

. 'wad
Gz, k) = ezkmg(x, k), g(zk) / e 225 (1.12)



where z € R?, k € C?\ RY,

d
h(k’l)_(2ﬁ)d/eizz<2¢ZAj(x)amj +V(x))1/)(x,k) dz, (1.13)
j=1

Rd

where k, [ € CY\ R?, Imk = Iml, k* = [®. In a similar way with (L8],
we consider (1.11}) and its differentiated versions as a system of coupled linear
integral equations for v, 0,1, or, more precisely, for pu, 0, p, j =1, ..., d,
where 1) = e?** .

Finally, functions v, and h. are defined as follows:

w’Y(xa k) :¢($,k+10’7), h’)’(kvl) = h(k+Z07,l+10’7)7 (114)

where € R, k, 1 € R4\ 0, k2 = 12, v € S971, and S9! is the unit sphere
in R%,

Note that the history of functions +, h and 1., h, goes back to [Fal], [Fa2].

Functions f(k,l) and h.(k,l), where k, | € R4\ 0, k> =12 = E, vy € S,
and h(k,l), where k, | € C*\R?, Imk = Im1, k? = [?> = E, are considered as the
scattering data Sg for equation at fixed E € (0, +00). Function h(k,l), k,
1 € C*\RY Imk = Iml, k* = I> = E, is considered as the scattering data Sg
for equation at fixed E € C\ (0, +00).

In a similar way with the map A(E), scattering data Sg is invariant with
respect to gauge transformations (1.6), where g is a sufficiently regular M, (C)-
valued function on R decaying fast enough at infinity with det g(z) # 0 for
r € RY, see, e.g., Ref. [AN] for the case n = 1.

Let D be a fixed domain satisfying . Let

Ay, ..., Ag, V e CY(D, M, (C)) for some 0 < a <1, (1.15)

where C%%(D, M,,(C)) denotes the space of M,, (C)-valued component-wise Hélder-
continuous functions with compact support in D. As it was noted above, in the
case of coefficients satisfying the maps ®(E) and A(FE) are the same.
For coefficients Aj, ..., Ay, V satisfying we consider the Dirichlet-to-
Neumann map ®(F) for equation (1.1)) and the scattering data Sg for equation
. In the latter case we define coefficients Aq, ..., Ay, V outside of D by
zero matrices.

Problem 1.1. Given ®(E) at fivred E (or for E in some fized set) find Ay, ...,
Aq, V of (1.1) (modulo gauge transformations (1.6])).
More precisely, we develop the approach of [Nol] (where this approach was

suggested for n = 1, Ay, ..., Aq = 0) and reduce Problem [I.1]to the following
inverse scattering problem for equation (|1.7):

Problem 1.2. Given Sg at fized E (or for E in some fized set) find A4, ...,
Aq, V of (L.7) (modulo gauge transformations (1.6])).



Concerning the results given in literature on Problem without the as-
sumption that A; =0, ..., Ag =0, see, e.g., Refs. [NSU], [Pa], [FKSU]|, [KLU],
[IY], [KU] for n = 1 and Ref. [Es] for n > 1. Besides, see Refs. [NS1], [NS2]
for the case d = 2, A; =0, A, =0, n > 1. Concerning the results for the case
n=1 A4, =0, ..., Ag = 0, see Refs. [Nod], [Buk], [No5], [BSSR], [IN2], [Sa]
and references therein.

Concerning the results given in literature on Problem without the as-

sumption A = 0, ..., Ag = 0, see, e.g., Refs. [Sh], [HN2]|, [No2] (p. 457),
[ER1], [ER3], [Ar], [Ni], [PSU], [AN] for n = 1 and Refs. [HN3], [ER2], [Es],
[Xi] for n > 1. The case A; =0, ..., A; =0, n > 1, was considered, e.g., in

Ref. [NS2]. Concerning the results for the case n =1, 41 =0, ..., A4 =0, see
Ref. [No6] and references therein.

The main results of the present work consist of Theorems and of
Section 2. In Theorem we give, in particular, formulas and equations for
finding Sg from ®(E) — ®°(E), where Sg and ®(E) correspond to coefficients
Ay, ..., Ag, V and ®°(E) corresponds to zero coefficients A? =0, ..., A =0,
V0 = 0. In Theorem we give a result on the solvability of equations of
Theorem 211

In fact, the formulas and equations of Theorem are also valid if either
VO(x) is a diagonal matrix for all z € D or V? is a product of a constant ma-
trix by a scalar function, see Theorems and of Section 2. In this case,
the potential V? is supposed to be known. This generalization to the case when
VO(x) is diagonal for all z € D is useful, in particular, in the framework of Prob-
lem for the case of mode wave equation, see, e.g., [BBS] and Subsection 3.1
of [NS2].

Thus, due to the results of Theorems we reduced Problem
to Problem As regards to methods of solving Problem [1.2] we refer to
[AN], [Ar], [ER1], [ER2], [ER3], [Es], [HN1], [HN2], [HN3], [Ni], [No2] (p. 457),
[No6|, [NS2], [PSU], [Sh], [Xi] and references therein.

For the case when n =1, A1 =0, ..., 4,=0, A =0, ..., AY=0,V°=0,
Theorems and were obtained for the first time in [Nol]. These theorems
were generalized to the case when n =1, A1 =0, ..., 43 =0, A} =0, ...,
AY =0, VP20, in [No4|. In [NS2] the authors give formulas and equations for
the case when d =2, n > 1, Ay =0, A, =0, A) =0, A3 =0, V° £ 0. In the
present paper we generalize these results to the case when n > 1, A3 £0, ...,
Ag#0, AV =0,..., AY =0, VO £ 0. To our knowledge, these results are new
even for the general scalar case when n =1 and V0 = 0.

The main results of the present work are presented in Section 2.



2 Main results

Consider equation ([1.7) under assumption ((1.15). We define the sets &, &,,
v € S 1 and £T, as follows:

E={Ce C4\ R?: equation (T.11) at k = ¢ is not uniquely

solvable for 1 = e™** i, where p € WH> (R, Mn((C))}, @1

&, :{C € R4\ 0: equation at k = ¢ + 10y is not 2.2)
uniquely solvable for 1) € W (R, M,(C)}, '

ET ={¢ e R\ 0: equation at k= (+10¢/|C| is not (2.3)

uniquely solvable for 1) € W1 (R, M,(C))}.

The properties of sets &, £, ET are similar to the properties of the analogs of
sets £, &, €T in the case when n =1, A; =0, j =1, ..., d. For the properties
of the latter sets see, e.g., Ref. [No4] and references therein. Restrictions in
space and time prevent us from studying the properties of sets &£, £,, €T in the
present paper.

Theorem 2.1. Let D satisfy and E be fized. Suppose that E is not a
Dirichlet eigenvalue for operators L and —A in D. Let Ay, ..., Agq, V satisfy
. Let ®(E) correspond to coefficients Ay, ..., Ag, V and ®°(E) corre-
spond to coefficients A =0, ..., AY=0, VO =0. Denote by (& — ®°)(z,y, E),
x, y € OD, the Schwartz kernel of operator ®(E) — ®°(E). Then the following
formulas and equations hold:

Wk, 1) = (2m) / / (@ — ) (@, y, EYb(y, k) dyde,  (2.4)
oD JOD
where k, 1 € CA\R?, Imk =Iml, k> =12=E, k¢ &;
/w%mzammﬂ+/ Az, g, k)(y. k) dy, = € oD, (2.5)
oD
A($7yak):/ G(m—z,k‘)(@—@%(z,y,E)d; xayeaD7 (26)
oD

where k € C*\ (RYUE), k? = E, and G is defined in formula ([1.12);
m) =0 [ [ @ )y B k) dyds, (2)
oD JoD
where v € S k, e RINO, k2 =12=F, k¢ €&,
Vo (7, k) = e**1d,, —|—/ A (z,y, k)Y (y, k) dy, x € 0D, (2.8)
oD

A (x,y, k) = / Gy(x—2,k) (D — &%) (2,9, E)dz, x,y € 0D, (2.9)
oD

G (x, k) Lo G(x,k +1i0v), x€R?, (2.10)



where vy € S ke RT\ (OUE,), k* = E;
fe) =0 [ [ i@ - a0y Bt R dyde, (200
oD Jop
where k, | € RINO, K2 =12=E, kg ET,

P (@, k) = e5d, + / Aoy k)t (k) dy, ©edD,  (212)
oD

A+('ray7k) = G+($—Z,]€)((D—‘I)O)(Z7y,E)dZ7 xayeaDa (213)
oD

where k € R\ (0UEY), k2 = E, and G+ is defined in formula (1.9).

Actually, we consider , ., as integral equations for finding v,
¥y, T, respectively, from (I)(E) (E)

In addltlon, we consider (2.4), (2.7), as explicit formulas for finding
h, by, f from ®(E) — ®°(E) and W, zb,y, 1/)*, respectively.

For fixed 0 < 3 < 1 we denote by C1#(dD, M,,(C)) the Banach space of
functions from C1(0D, M,,(C)) with component-wise Holder-continuous deriva-
tives.

Theorem 2.2. Let the assumptions of Theorem [2.1] be fulfilled. Let 0 < 3 < 1
be fized.

1. Fizk € CY\R?, k? = E. Then equation (2.5) is a Fredholm integral equa-
tion of second kind for 1 € CYP(0D, M,,(C)) which is uniquely solvable if
and only if k & £.

2. Fizy € 841, k € R4\0, k? = E. Then equation ([2.8) is a Fredholm inte-
gral equation of second kind for 1., € CYP(9D, M,,(C)) which is uniquely
solvable if and only if k & £,.

3. Fiz k € R\ 0, k* = E. Then equation is a Fredholm integral equa-
tion of second kind for ¢+ € CY#(8D, M, (C)) which is uniquely solvable
if and only if k € £

In fact, Theorems [2.1] and [2.2] are particular cases of more general Theorems
2.1{| and [2.2[| given below. To formulate these results we need to introduce some
notations.

Let coefficients A9, ..., AY, V? on R? satisfy
AY=0,...,A5 =0, (2.14)
and either
VO(x) be a diagonal matriz for all x, (2.15)

or

VO =V%°, where V° € M, (C)

o _ (2.16)
and v" is a slalar function of x.



We also suppose that V? is zero outide of D and coefficients A?, ..., A9, VO
restricted to D satisfy (L.15).

Define Lyo, Eyo, Eyo ., v € S471, and &, by formulas ,,g
[2.3), respectively, using coefficients AY =0, ..., Ay =0, V% in (L.1), (1.11
(1.8) instead of Ay, ..., Ag, V.

Note that, in fact, in the definition of set Eyo (or sets Eyo ,, 5‘%) it is
sufficient to consider the solvability of corresponding equations for ¢ = €%y
with u € L= (R4, M,,(C)) (for v € L>=(R%, M,,(C)), respectively).

We consider the functions R?, RS, v € S9!, and RT" defined as follows:

R%(z,y,k) = G(z — y, k)Id, + /G(x — 2, k)VO(2)R(2,y, k) dz, (2.17)

Ra
where z, y € R, k € C¢\ R? and G is defined in formula (1.12);

Rg(m, y, k) def R%(x,y, k +i0v), (2.18)

R*O(x,y,k) &£ RY . (2,9, k), (2.19)

where z, y € R4, k € R4\ 0, vy € §4-1.
We consider (2.17) at fixed y, k as an integral equation for

ROz, K) = G(z — 3, b)Idy + ¥ 005,y k), (2.20)
where r0(-,y, k) € L=(R?, M,,(C)).
It follows from (2.17), (2.20) that r° satisfies the following equation:

r0(x,y, k) = /g(x — 2, k) V°2)g(z —y, k) dz

Rd

+/g(x — 2, k)V(2)r(z,y, k) dy,
Rd

(2.21)

where z, y € R? and g is defined in formula (1.12).
Note that under assumption (L.15) for coefficients A =0, ..., Ay =0, V°
the following statements are true:

1. Fix k € C4\ R%. Then equation (2.21)) is uniquely solvable for r°(-, y, k) €
L>(R?, M, (C)) for any y € R? if and only if k & Eyo.

2. Fix ¢ € R4\ 0, v € S9!, Then equation (2.21) with k¥ = ¢ + i0y is
uniquely solvable for 7°(-,y, k) € L>(R%, M,(C)) for any y € R? if and
only if ¢ & Eyo .

3. Fix ¢ € R\ 0. Then equation with k = ¢ +40¢/|¢| is uniquely
solvable for 70(-,y,k) € L>*(R% M, (C)) for any y € R? if and only if
CEEN.



Besides, if equation (2.21) at fixed k is uniquely solvable for r9(-,y, k) €
L>(R%, M,,(C)) for any y € R?, then function 7° has the following properties:

(-, - k) € C(R?Y x RY, M, (C)) N L>®(R? x RY, M, (C)) at fized k,  (2.22)

/g(x — 2, k)VO ()0 (z,y, k) dz = /ro(ac,z, E)WVO(2)g(z —y,k)dz, (2.23)
R4 R?

where z, y € R?, B
We also consider the function 1/)2 defined as follows:

Bekd) =1, + [ Gy a -y VR Ddy, (220
R4

where x € R, k, 1 € R?\ 0, k2 =12, v € S9!, We consider (2.24) at fixed k, I,
7 as an integral equation for ¢¥9(-, k,1) € L>(R?, M, (C)).
Theorem . Let D satisfy (1.2) and E be fized. Suppose that E is not a
Dirichlet eigenvalue for operators L, Lyo and —A in D. Consider two sets of
coefficients Ay, ..., Aq, V and AY, ..., AY, VO, satisfying (1.15). Let AY, ...,
AY, VO satisfy (2.14) and either (2.15) or ([2.16). Let ®, 1, h, ¢, hy, ¥, f,

E, &, ET correspond to Ay, ..., Ag, V (as defined above) and ®yo, 0, hO,
%, 9, h9, w0 [0, R, RY, RTY, Evo, Evo s, Efo correspond to AY, ..., AY,
VY (as defined above with coefficients AY, ..., AY, VO instead of Ai, ..., Aa,

V). Denote by (& — Oyo)(x,y, E), z, y € 0D, the Schwartz kernel of operator
O(E) — ®yo(E). Then the following formulas and equations hold:

Wk, 1) = KO(k, 1) + (2m)~ / GO, ~1)(® — Dyo) (2, E)p(y, k) dy da,

oD JOD
(2.25)
where k, | € C!\RY, Imk =Iml, K> =12=E, k € EU Eyo,
vlak) =@ k) + [ Ay kol k) s, zeoD, (220
oD
Alw g k) = [ Rz,2,k)(® — Byo)(zy, E)dz, w,y€dD,  (2.27)
oD
where k € C4\ (RTUEUEyo), k2 = E;
ho (K, 1) = h3(k, 1)
Wy - (2.28)
) [ B0 ok D)@ = yo) o B (5, F) dydo
oD JOD
where v € Sk, 1€ RINO, k2 =1>=FE, k€ E, U0,
(2, k) = 00 (k) + /a Ao k) dy, s€0D, (229

A= [ B k)@ - By E)ds ny€dD, (230
oD



where v € S ke RI\ (0UE, Uy ,), k* = E;

F(k 1) = FO(k,1) + (2m) /8 ) /6 O 1) = Bya) 1 B () dy

(2.31)
where k, L€ R\ 0, k2 =12 =E, kg EY UES,,

(e k) = 60 (o, ) + / At (e, K)ot (k) dy, ©edD,  (232)
oD

A k) = [ REw k)@ - 0y)(ay E) s, sy e 0D, (239)
oD

where k € RT\ (0UET UES), k? = E.

In a similar way with Theorem we consider (2.26), (2.29), (2.32) as
integral equations for finding v, ¥, ¥ from ®(E) — ®yo(E) and °, RY; 1/}3,
RY; 0, R0, respectively.

We also consider (2.25)), (2:28), (2-31) as explicit formulas for finding h, h.,
f from ®(E) — yo(E) and hO, 40, ; h9, ¥, vs; fO, v0, 4, respectively.

Theorem [2.1]] is proved in Section 3.

Theorem [2.2]. Let the assumptions of Theorem[2.1] be fulfilled. Let 0 < 8 < 1
be fived.

1. Fiz k€ CT\ (R4UEyo), k2 = E. Then equation (2.26) is a Fredholm in-
tegral equation of second kind for ¢» € CY5(0D, M, (C)) which is uniquely
solvable if and only if k & £.

2. Fixy € S ke RV (0U&Eyo,), k* = E. Then equation ([2.29) is
a Fredholm integral equation of second kind for 1, € CYP(0D, M,,(C))
which is uniquely solvable if and only if k € £,.

3. Fizk € RY\ (0UES), k* = E. Then equation (2.32) is a Fredholm inte-
gral equation of second kind for v+ € C*P(0D, M,,(C)) which is uniquely
solvable if and only if k ¢ ET.

Theorem [2.2[|is proved in Section 4.

Remark 2.1. Note that the proofs of equations and formulas of Theorems
remain valid without the assumption that coefficients Ay, ..., Aq, V, V°
have compact supports in D. The assumption that the coefficients have compact
supports in D was introduced in order to simplify the choice of functional spaces
for solving equations (2.5), (2.8), [2.12), (2:26), (2:29), (2.32) and related proofs
of Theorems

It is important to note that equation ([1.11) and formula (1.13) give much
more stable way to find functions ¢°, R from A9, ..., AY, VY than equation

(2.5) and formula (2.4) if | Im k| is sufficiently large.

10



On the other hand, it is known that the solution to equation will be
relatively stable if the norm of the integral operator involved in this equation is
less then 1. If at fixed k coefficients Ay, ..., Ay are sufficiently small whereas
coefficient V' is not small but is sufficiently close to coefficient V°, then the inte-
gral operator in equation will have much smaller norm than the integral
operator in equation (e.g., as a norm of operator on C*#(9D, M,,(C)),
0 < B < 1). In particular, the norm will be less then 1 and we will be able to
use the method of successive approximations to solve (2.26). Hence equation
and formula will give much more stable way to find ¢ and h than
equation and formula , respectively. For more details, see pp. 262-263
of Ref. [No4] and Section 3.2 of [NS2] for related discussion.

3 Proof of Theorem 2.1

3.1 Integral identity
Note that we have the identity

/ O @) (E) - Byo(E))(ulop) (@) de

oD

d (3.1)
_ / WO (2) <2i S A5(@)0,, + V(@) - Vo(x)>u(:c) da.
D j=1

for any sufficiently regular M, (C)-valued functions u, u® on D (for example, for
u, u’ € C%(D, M, (C)) N C*(D, M, (C))) satisfying

d
—Au—2iY  Aj(@)0s,u+V(z)u=Fu, x¢€D, (3.2)
j=1
—Au +VO2)u® = Eu’, 2z €D, (3.3)

where 40 also satisfies

VO(x)u’(z) = u®(x)V°(2), =z € D. (3.4)

Identity (3.1) for the case when n =1, A; =0, ..., Ay = 0 first appeared

in Ref. [Al]. It was generalized to the case when n >2, Ay =0,..., A; =0in
Ref. [NS1].

Identity (3.1)) can be deduced from the second Green formula. More precisely,
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formula (3.1]) follows from the following chain of equalities:

/D ( 22214 2)0y; +V(x) — Vo(m)>u(x)dx
-./ z)(A + E)u(z) — VO(z)u’(z)u(z)) dz
E3 / Al (@)u(e)) de
— [ @)@(B) - Byo(B)(ulon)(e) do

oD
" /a ) (u0<x>¢>vo<E><u|aD><x> - <I>vo<E><u0|aD><x>u<w>) da
— [ @)@(B) - Byo(B) ulo)(e) do
oD
0 O(2)u(z) — VO z)ul (z)u(z T
+ [ (Pv @i - V@) )
W (@)(D(E) — Byo(E))(ulop) (x) da,

oD
where u satisfies (3.3) and @|op = ulsp.

3.2 Symmetries of functions ¢°, /9, "% and R’, R}, R™?

We denote by L°(R?) the set of compactly supported functions from L>(R?).

Lemma 3.1. Let V° € L°(RY) satisfy either (2.15) or (2.16). Then the fol-
lowing identities hold:

VO(@)p® (2, k) = ¢°(a, )V (2), (3.5)
VO(@)R®(2,y, k) = R°(2,y, k)V°(x),, 3.6
Ro(xa Y, ) - (y )
where x, y € RY, 2 # y, k€ C*\ (RTU Eyo).
Proof. Let k € C?\ (RYU&y0) be fixed. Then equation (1 with 4; =0, .
Ag =0,V = VO is uniquely solvable for 0 = ¢**,0 Wlth ud € LOO(Rd M, ((C))
Suppose, first, that (2.15) holds. In this case it follows from formula
that ¢°(x, k) is a diagonal matrix for all x € R%. Hence (3.5) holds.

Suppose now that (2.16) holds, so that V°(x) = V%0 (x), € R%. Let U be
a non-degenerated n x n matrix such that

A 100 0
Ay - 0 0 A 1 0

DU EEA= | A=
0 A, 0 0 0 1
0 0 A

12



where Aj € M, (C), j =1, ..., s. Define ¢/ = Uy°U~'. Then 1’ satisfies the
equation

Ve k) = T+ [ Gl =y kA )0 (5, ) dy, (38)
Rd
Since the solution to (3.8) is unique it follows that ¢’ has the block-diagonal
form:
W -0
=1 . :
0 -
where ¢} € My,;(C), j =1, ..., s. Hence the following equations hold and have
the unique solutions:
vlek) =1, + [ Gl -y DAYk (39)
Rd
where j =1, ..., s.

We write ¢}, for the element in position (4,1) in matrix ¢7. Fix j and
consider the last row of matrix equation (3.9). We have the followmg equations:

w;-’il(x, k) =\ /G(x -, k)vo(y)w},il(y, k)dy, i=mn;, 1l<n,. (3.10)

We claim that equation has only the trivial solution. Suppose that, on
the contrary, there is a nontrivial solution ¢ to equation (3.10). Then we can
construct a solution ’LZ/ to (3.9) different from Y%, putting {bvg n=vinto
and zp’ i =Y for all other i, [. This is a contradiction since we showed that
equatlon has the unique solution. This shows that equation ) has
only the tr1v1al solution and 'L//ﬂl =0 for ¢ =n; and I < n;.

Writing the equation (3.9) componentwise for rows with numbers ¢ = n; — 1,

, 2 we show by 1nduct10n that ¢} ;, = 0 for i > l.

' Fix i, | with i ;é l. Subtractlng equation ) for the element in position

(1,1) from equation (3.9) for the element in posmon (i,1) we get the equation

7/}] zz(z k) ¢;,ll(z7 k) = )\j /G(x - Y k)vo(y) (w;,zz(y7 k) - ¢;‘,ll(y7 k)) dy
Rd
Since equation ((3.10) has only the trivial solution, it follows that ¢ = 1/)] 0
Now fix i, [ Wlth i1 # 1,4 >1,1> 1. Write equation (3.9) for the elements in

positions (¢ — 1,4) and (I — 1 l) and subtract one from another This leads to
equation

1/1;‘,2‘—1,1(1”7 k) — w;,l—l,l(xa k) =X\; /G(fl? -y, k)x
Rd
Xvo(y) (1/’;',1—1,1(% k) — w;,l—l,l(ya k)) dy + 1/1;,1'@(957 k) — lb;,zz(xv k).
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But we showed that wj i = wj ; and that equation (3.10) has only the trivial
solution. This implies that ¢}, ;, =}, .
Proceeding inductively, we obtain that w; has the following upper triangular

form:

Yin Yz Yiis o Ve Vi
0 Y Ve o Viina Yiin
Ll A :
0 0 0 T ;',11 2,12
!
0o 0 0 - 0 .
It follows that ¢ (x, k) commutes with A; for all z € R?, j =1, ..., s. Hence
Y/ (z, k) commutes with A and ¢ (z, k) commutes with V° for all € R?. Prop-
erty (3.5) is proved.

Formula (3.6) can be proved in a similar way.
The proof of (3.7) for the case when n = 1 Was given in [No3]. This proof
also works in the case when n > 2 if either or ) holds. O

Remark 3.1. In a similar way with Lemma [3.1]it can be proved that if V° €
L>°(RY) satisfies either (2.15) or ([2.16), then the following formulas hold:

VO(@)pl (2, k) = 95 (z, )V (2), (3.11)
VO(a) R (2, y, k) = (x Y, k)VO (), (3.12)
Rg(x,y, k)= ( ,x, —k), (3.13)

where y € S 2, y e RY, o £y, k€ R\ (0U Eyo ,);

VO(2) 0z, k) = 702, k) VO (x), (3.14)
VO(x)R™ (2, y,k) = RTO(x,y,k)V° (2), (3.15)
R™%(z,y,k) = R™%(y, z, —k), (3.16)

where z, y € R%, 2 £y, k € R\ (0UE).
Lemma 3.2. Let V° € L2 (RY). Then:

1. if k1 € CO\RY, k2 =12, Imk = Iml, k & Eyo, then | & Eyo and the
following formula holds:

R%(x,y,k) = R°(x,y,1), (3.17)
where z, y € RY, x £ y;

2. ifk, lERINO, k2 =12 k ¢ EVO, then | & 5% and the following formula
holds:
R™(x,y,k) = R*(x,y.1), (3.18)

where z, y € R, x #£ 5.
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Proof. Part 1 follows from and from the following formula of Ref. [HN1]:
G(x,k) = G(x,l), xRN0, k,leCI\R? k* =12 Imk =Iml.
Part 2 follows from formulas (2.17), and from identity
Gz, k) =G (x,1), zeRI\O0, k1RO, k? =12,
which is a consequence of the following well-known explicit formulas:

7
GH(a.k) =~ HV (Kll2]), d=2,

cilkllz]

G+($7k):_m7 d:3a

where Hél) is the Hankel function of the first kind. O
3.3 Reformulation of equations ([1.8), (1.11)) and formulas

(1.10]), (1.13) in terms of background coefficients
Subtracting equation (1.11)) written for ¢ from equation (1.11)) written for ¢)°

we obtain formula

(o, k) — 0 k) — / Gl — 5, VO )y, k) — (. k) dy

:/G(m—y, ( 212/1 )0y, + V(y) — VO(@/))«b(y,k)dy,
g

where z € R%, k € C?\ (R?U € U Eyo). Comparing this equation with ([2.17),
we obtain

(o, k) = (@, k) + / RO(z,y, k) %

R4

(3.19)
( 2i ZA )0y, +V(y) — VO(?/))l/}(y, k) dy,
where x € R%, k € C4\ (RYUE U Eyo).
Similarly, we can obtain the following equations:
oy (2, k) = 1/;9/(95, k) + /Rg(:v,y,k)x
e (3.20)

d

x (22' S A4,(9)0y, + V(y) - v0<y>>w¢<y, K)dy,

j=1
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where v € S, 2 € R k€ R\ (OUE, UEyo-);
¥ Y

O (e k) = (o, k) + / RO(2,y, k)

e (3.21)

«(- zzzA 10y, +V(s) = Vo) ) 0.k

where z € RY, k€ RT\ (OUET UES,).
From formula (3.19) with A; =0, ..., 4; =0, V = 0 and from formulas

a , we obtain

eI, = ¢ (x, —1) — / e VO (y) RO (y, . k) dy, (3:22)
Rd

where € R, k, [ € C*\RY, k2 =12, Imk = Iml, k & Eyo.
Further, we have the following chain of equalities:

(2r) h(k,1) T2 [ VO @)t k) d

+ /R de—m( Ei: ()0, + V(z) Vo(x))w(x,k)dx
D [ vigeta s [ o)
<[~ i (@00, + Vi) = V(o) (o) do

[ [ i
(mZA (@), + V() = V(o) (o) iy,

where k, 1 € C4\R?, k? =12, Imk =Iml, k € £ U Eyo.
From this formula and formula (3.19) it follows that

h(k,1) = hO(k,1) + (27r)_d/1/10(9c
’ (3.23)
( QzZA 1)0z; + V(x) — V(](x))¢(x, k) dx,

where k, 1 € C*\R?, k? =12, Imk = Iml, k & £ U Eyo.
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In a similar way with formula (3.23), using formulas (3.21)), (3.15), (3.16),
(3.18) instead of (3.19)), (3.6), (3.7), (3.17), we can obtain formula

£O) = £ + 2m) 0 [ 60,0
. e (3.24)
X (—Qi Z Aj(2)0y, +V(z) — Vo(x)>w+(x, k) dx,

where k, 1 € RI\ 0, k2 =12, k ¢ ET UES,.

3.4 The final part of the proof of Theorem [2.1]

It follows from formulas (3.5), (3.14) that we can apply identity (3.1) to (3.23)
and (3.24). Applying (.1) to (3.23) and (3.24), we obtain (2.25) and (2.31),

respectively.
We recall that function G(z, k) satisfies the following equation at fixed k €
C4\ R, see, e.g., [Fal]:

ALG(z, k) + k2G(z, k) = 6(z). (3.25)

It follows from formulas (2.17), (2.20), (2.23)), (3.25) that R°(x,y,k) at fixed
k€ C%\ (R?U &yo), satisfies the equations:

(A = V() + *)R(x,y,k) = 6,(2)Id,,  at fixed y € RY,
(A, = VOy) + E*)R(z,y. k) = 0,(y)Id,,, at fixed z € R%

Taking this into account, using formula , applying identity to
with z ¢ D and passing to the limit in the resulting formula as x tends to a point
at 0D, we obtain formula . Formulas (2.29) and can be obtained
in a similar way, if we use equations and (3.21) instead of (3.19).

We will prove formula using the ideas of Ref. [No4]. Note that formula
can be written in the form

(3.26)

e 1d,, — 0w, k, 1) — /Gv(x —y, k)VO(y) (™ —40(y, k1)) dy
Rd

| (3.27)
= —/G(a; — 1y, k)VO(y)e™ dy.
Rd

From formulas (2.10), [2.17), ([2.18) it follows that function R)(-,y, k) is well-
defined at fixed y € R%, k € R\ (0U Eyo ) and satisfies

Rg(x, y, k) =G (x —y, k) + /Gﬂ,(x -z, k)VO(z)Rg(z, y, k) dz, (3.28)
Rd
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where z, y € R?, v € $971 L e R\ (0U Eyo ).
Comparing (3.27) with (3.28)), we obtain the following formula:

1, = ok l) = [ R Ga V()€™ dy, (3.29)
Rd
where z € R%, k € R4\ (0UEyo ), L €RY, k2 =12, v € S471.

Replacing k, I, v by —k, —I, —v in formula (3.29)) and using formulas (3.12)),
(3.13)), we obtain the equality

e " Id,, = 40 (x, —k, 1) — / e VO (y) RS (y, 2, k) dy, (3.30)
]Rd

where z € R%, k, 1 e R¥\ 0, k> =12, k & Eyo,, v € 5471

Formula (3.30) is an analog of formula (3.22). The remaining part of the
proof of (2.28) is similar to the proof of formula (2.25).

4 Proof of Theorem 2.2/

4.1 Auxilary results

Consider the following Dirichlet problem for function :

d
L= —A¢p =20 Y Aj(@)de, 0+ V(2)y = B¢, z €D, (4.1)
j=1 .
1/1|8D =¥,

where ¢ is some given function on 9D.
Our goal in this subsection is to prove the following lemma.

Lemma 4.1. Let Ay, ..., Aq, V € C%%(D, M,(C)) for some 0 < a < 1.
Suppose that E is not a Dirichlet eigenvalue for operators L and —A in D.
Then:

1. for any p € C*P(9OD, My (C)), 0 < B <1, there exists the unique solution
W € C*(D, M, (C))NCY(D, M,(C)) to problem (4.1));

2. 1 is the unique solution of class C1(D, M, (C)) to equation
d
0(o) =)+ [ o) (<230 4,00, + V) o) dy, (1)
D j=1

where T'(z,y, k) is the Green function for Dirichlet problem for operator
A+ Ein D, E =k and v° € C*(D,M,(C)) N CY(D, M, (C)), is the
unique solution to Dirichlet problem

{ AY? + By =0 in D,

Ylap = ¢ (43)
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3. the operator S: C1#(9D, M,,(C)) — CY(D, M, (C)), S(p) = 1, is a con-
tinuous linear operator.

We need two other lemmas to prove Lemma

Lemma 4.2. Let Ay, ..., Ag, V € C%*(D, M,(C)) for some 0 < a < 1.
Suppose that E is not a Dirichlet eigenvalue for operator L in D. Then:

1. for any ¢° € C'(D, M, (C))NC?*(D, M, (C)) satisfying (A + E)y° =0 in
D there exists the unique solution ¢ € C*(D, M,(C)) to equation [@.2));

2. ) belongs to C*(D, M,,(C)) and satisfies ([4.1) with p = ¥°|ap;
3. there exists a constant C > 0, not depending on °, such that

Il @) < ClYllor 5)- (4.4)

Proof of Lemmal[.2 1. Reduction to a system of integral equations. We intro-
duce the following notations:

Yo(x) = ¢(x), V(@) = 0z, 9(), i=1....4
vo(a) =9 (), 2(x) = 0, 9°(2), i=1....4,
ap(z) = V(x), a;(x) = —2iA;(z), ji=1,....d,
Po(,y. k) = D(a,y k), T,y k) = Oy, Dl g k), J—1o....d.

Differentiating equation (4.2) we obtain the following system of coupled linear
integral equations for ¢; € C(D), j =0, ..., d:

d
1pj( +Z/ $y7 ( )¢m( )dy7 j:07...,d. (45)
m:O

System can be considered as a Fredholm equation of second kind in space
(C(D, M, (C)))*,

Suppose that functions ¢; € C(D, M, (C)), j =0, ..., d, solve . Denote
1 = 1g. The first equation of implies that ¢ € C1(D, M,,(C)). Differen-
tiating the first equation with respect to z1, ..., x4, we see that 0,,¢ = ;.
Hence ¢ satisfies (4.2)).

One can see that solutions v of class C1(D, M,,(C)) to are in bijective
correspondence with solutions ¢; € C(D, M, (C)), j =0, ..., d, to system .

2. Smoothness of solution to (4.2)). It follows from properties of funda-
mental solution I' that any solution ¢ € C(D, M,(C)) to belongs to
C’IO’Z(D M, (C)) (the space of continuously differentiable M, (C)-valued func-
tions on D with locally Holder continuous derivatives) for any 0 < v < 1.

In a similar way with Lemma 4.2, p. 55 of [GT] it can be shown then that
Y € C%(D, M,(C)) and that ¢ satisfies with ¢ = 9°|sp.

3. FEaxistence and uniqueness As we noted in part 1 of the proof of this
lemma, system of equations (4.5| can be considered as a Fredholm equation of
second kind in Banach space (C’ (D, M, (C)))?*!. To show that this equation has
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the unique solution it is sufficient to show that the corresponding homogeneous
equation has only the trivial solution. But if follows from parts 1, 2 of the proof
that any solution to the homogeneous equation gives rise to a solution to (4.1)
with zero boundary condition. Since E is not a Dirichlet eigenvalue for L in D,
it follows that the homogeneous equation corresponding to can have only
the trivial solution.

Hence, using part 1 of the proof, we obtain that system has the unique
solution and this solution gives rise to the unique solution v € C'(D, M,,(C))
to (4.2). By part 2 of the proof this function ¢ belongs to C%(D, M,,(C)) and
satisfies with ¢ = ¢°|sp.

Property 3 follows from Fredholm alternative for system (4.5) which asserts
the existence of continuous inverse for Fredholm operator of O

Lemma 4.3. Suppose that E is not a Dirichlet eigenvalue for operator —A in
D. Then for any ¢ € C#(0D, M,,(C)), 0 < B < 1, there exists the unique ° €
C?*(D, M, (C)) N CY(D, M,(C)) solving Dirichlet problem (4.3)). Furthermore,
there exists such Cg > 0, not depending on ¢, that

1¥°cr ) < Collellcrsop). (4.6)

Proof of Lemmal[{.3 The solution is unique since E is not a Dirichlet eigenvalue
for —A. To show existence, we can reduce problem to a corresponding
Fredholm integral equation of second kind as in Lemma

Existence of such Cg > 0 that holds follows from Lemmas 2.16, 2.23
of [CK]. O

Proof of Lemma[{.1l One can see that solution to is unique since E is not
a Dirichlet eigenvalue for L in D.

Now let /0 be the unique solution to constructed in Lemma Then
Lemma [4.2] gives us the solution to with desired properties.

Property 3 is a consequence of formulas (4.4)), (4.6).
O

4.2 Compactness of integral operators in equations (2.26)),
2-29), (2.32)

In this subsection we show that the integral operator in equation is a

compact linear operator on C*#(9D, M,,(C)) for any fixed 0 < 3 < 1. The case

of operators in equations (2.29), can be considered in a similar way.
Throughout this subsection we assume that k € C¢\ (R?U Ey0) is fixed.
Rewrite equation in the following form:

="+ RO(k)(D(E) — ®yo(E))¢, (4.7)
where RY(k) is the integral operator with Schwartz kernel R°(x, y, k), x, y € dD.

We are going to show that R(k) is a linear continuous operator on the space
CY#(0D, M,,(C)). To show this we use the representation ([2.20)).
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It follows from Theorems 2.12, 2.17 of [CK] that the integral operator on
CY#(0D, M,,(C)) with Schwartz kernel G(z — y, k), z, y € D, is continuous.

To see that the integral operator with Schwartz kernel e =970 (2 y k), x,
y € 9D, is continuous on C#(0D, M, (C)), we will use formula (2.21).

It follows from , (if we take into account that V° has a compact
support in D) that derivatives 0,,7°(z,vy, k), 8miazjr0(x7y,k), i, =1, ...,
d, exist and are continuous for z, y belonging to some neighborhood of set
OD. Hence the operator with Schwartz kernel e*@=%)¢9(z, y k), z, y € 9D,
is continuous on C1#(0D, M,,(C)). Hence R°(k) is also a linear continuous
operator on C#(9D, M, (C)).

If we show that ®(E) — ®y0(E) is a compact operator on C18(0D, M,,(C)),
formula will imply that integral operator in formula, is compact.

Let S be the operator defined in part 3 of Lemma Define Syo by the
same formula using coefficients A =0, ..., A5 =0, V?in (4.2).

It follows from Lemma [.T] part 3, that S, Syo are linear continuous opera-
tors from C%%(9D, M, (C)) to C'(D, M, (C)).

Taking into account equation , we obtain the following formula:

O(E) — dyo(E) = NS — Nyo Sy, (4.8)

where N, Nyo are the linear continuous operators acting from C'(D, M, (C))
to C2(0D, M,,(C)) defined by the following formulas:

d
e = [ gi(w,y,m(—%ZAj(y)ayj n v<y>)w<y> dy,
D J=1
(Veo)(@) = [ 5 DV )0(y) do
D xT

where T' is the Green function for Dirichlet problem for operator A + E in D
and v, denotes the unit exterior normal to 9D at x € 0D.

Taking into accout that inclusion C%(0D, M,,(C)) — C*#(dD, M,,(C)) is
compact, we obtain that N, Nyo are compact operators from C*(D, M,,(C)) to
CY#(0D, M, (C)). It follows from continuity of S, Syo, from compactness of
N, Nyo and from formula that ®(F) — ®yo(F) is a compact operator on
CYP(0D, M, (C)).

Now formula implies that the integral operator in equation is
compact on C#(0D, M, (C)).

In a similar way it can be shown that the integral operators in equations

(2.29), (2.32) are compact.

4.3 Unique solvability of equations (2.26)), (2.29), (2.32)

In this subsection we will finish the proof of the part 1 of Theorem [2.2[l The
proof of parts 2, 3 of Theorem [2.2[| can be finished in a similar way.
In fact, in this subsection we will prove the following lemma.
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Lemma 4.4. Let k € C4\ (RAUEy0), k2 = E, and 0 < 3 < 1 be fized. Suppose
that assumptions of Theorem are fulfilled. Then equation (2.26)) is uniquely
solvable for v € CY“P(0D, M, (C)) if and only if equation (3.19) is uniquely
solvable for 1 (x, k) = e u(z, k) with p € WH>° (R4, M,,(C)).

Lemma, implies the statement of part 1 of Theorem since equation
at fixed k € C%\ (R? U Eyo) is uniquely solvable for ¢ (z, k) = e u(z, k)
with g € W (R? M,,(C)) if and only if k & £.

Before passing to the proof of Lemma note that function ¥° (x, k) of
is defined as the solution to with coefficients A? =0, ..., A =0, VY,
such that ¢¥°(x, k) = e**u(z, k), u° € WL>(R%, M, (C)). Note that function
Y0 (x, k) belongs to C2(R?, M,,(C)) and satisfies the equation

— AP +VO(2)y® = Ey°, zeR% (4.9)

The proof of this fact is similar to the proof of parts 1, 2 of Lemma [£.2]

We will prove Lemma in two steps.

1. Eaxtending a solution to equation to a solution to equation .
Let ¢ € C'P(D, M,(C)), 0 < 8 < 1, be a solution to equation (2.26). We will
show that ¢ gives rise to a solution ¥ (z, k) = €% u(z, k), p € WH°(R4, M,,(C))
to equation (3.19).

Let ¢t € C?(D, M, (C)) N CY(D, M,(C)) be the unique solution to (&.1)
given by Lemma Define ¢~ by formula

¢~ @) =@ )+ [ Ay kol)dy, zeRND.  (410)
Using formulas (2.26), (2.27)), (3.1), we obtain the following formula:

[ (mZA )0, + V() - v0<y>)¢+<y>dy

where x € R?\ D. It follows from (2.20), ([2.22) that formula (4.11)) holds for
z € R\ D. Using formulas (.10, (4.11), we obtain formula

o (@) = ¥0(a, k) + / Rz, y, k)

D

(4.12)
( 222A )0y, +V(y) - Vo(y)><p+(y)dy,

where € R\ D. It follows from (2.20), (2.21), (2.22), (12) that p~ €
CY(R?\ D, M,(C)).
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Note that the following formula holds:
[ (- 2zZA s, + V() = V) ) 1) d
D

= [ 8o v+ | (RO( 2,9, k) 22 W) —f)f:(x,y,kmy))dy,

Ovy
D oD

where z ¢ 0D.
Formula (4.13) follows from the following chain of equalities:

(4.13)

/RO z,y, k ( 2@214 )0y, +V(y) — Vo(y)><p+(y)dy

D

/Ro(z,y, k)Y(A+E-VOy)et(y)dy

5]

/(A +E—VOy))R(z,y,k)o" (y) dy
D

/< (z,y, k V+ (y) — aai(j(a?,y,k)<p(y)>dy
oD

Y

/61(2/)90*(1/) dy + /(Ro(ﬂmy,k)awr (y) - 8RO(96‘,%’f)w(y))dy-

vy Ovy
D oD

Using formulas (4.12)), (4.13), we obtain formula

0
@) =)+ [ (Beanb G ) = G ie) ) (@1)

oD

where z € R%\ D.

It follows from formulas (2.17)), (2.20), (2.22) and from the corresponding
properties of single and double layer potentials that the following formulas are
valid:

/ R°(z + Ovg, y, k)

aRO OR°
v, ——(x + 0vy,y, k)o(y) dy = —p(x) + vy
oD oD

Dt
0
y)dy = / R = 00,3, K) G —(3)

(4.15)
(= Ovg,y, k)p(y) dy,

where v, is the unit exterior normal to 9D at z € 0D, and the argument x+ 0v,
(or z — Ov, ) means that we evaluate function at = +¢ev, (or x —ev,), € > 0, and
then pass € — +0.
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Besides, the following equality follows from (3.26)), (4.13)) and from definition
of function ¢:

@~ v@+ ) ( [ Beab G w

op (4.16)

ZRO (z,y,k)e(y) dy) =0

oD

where x € D.

Formulas ([4.9), imply that the function on the right hand side of
equation (£.14) is annihilated by operator A — V° + E in D and formula
together with property ¢~ |ap = ¢ imply that this function has limit zero as
x approaches 0D from D. Since FE is not a Dirichlet eigenvalue for operator
Lyo = —A +V%in D the following formula is valid:

Op™t ORO
P+ [ (RS - G )d =0, @0
8D
where z € D.

Define o

¢~ (x), zeRI\D,
Y(r) =< o(x), z€dD, (4.18)

ot (z), ze€D.

It follows from formulas (4.13), (4.17) together with formula (4.12) that « sat-

isfies 1|3.1 in Rd
Using (2.17) 2.22)), (3.19), we obtain that 1 € C*(R%, M,,(C)).
s 1

From formula 2.22) it follows that functions r%(x, y, k), 8,,7%(x, y, k),
j=1,...,d, are umformly bounded for y € D, x ¢ D, dist(x,0D) > 1. This
R

fact together with the property that % (z, k) = e** 0 (2, k), u® € Wh>(R4e, M, (C

and with formula (3.19) imply that ¢ (z, k) = e”” w(w, k) with u € Whee(R?, M,,(C
Thus, we have shown that if equation (2.26)) has a solution ¢ € C#(9D, M,,(C

then equation has a solution ¢ (xz, k) = e“””/r(x, k) with p € WHo°(R4, M,,(C)

and ¢¥|sp = . It follows from the latter property that different solutions to

give rise to different solutions to . More precisely, if 1/, ¢" are two
solutions to (3.19), then ¢'|sp = ¥"’|op = . It follows that ', ¢ are two
solutions to (]Eand hence 9'|p = ¢"|p. Finally, it follows from that
wl — ,(/}//.

2. Restricting a solution to equation to a solution to equatz'.
Let (z, k) = e**u(x, k), p € WH(R?, M,(C)), be a solution to (3.19). It
follows from inclusion W1 (R%, M,,(C)) C C(R?, M, (C)) that ¢ = 9|sp is a
continuous function on dD. Repeating the proof of Theorem we can see
that ¢ is a solution to (2.26). We are going to show that ¢ € C?(9D, M, (C)).

It follows from formula that ¢ € C1(R%, M,,(C)). Since A1, ..., Ag,
V have compact supports in D, formula together with formulas (2.20),
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[2:22), also imply that ¢ € C?(R?\ D, M, (C)). Hence ¢ belongs to
C?(0D, M,,(C)).

Now if 1" and 4" are two solutions to such that ¥'|ap # ¥"|op,
then it is clear that they give rise to different solutions to ([2.26)). If, otherwise,
V'op = V" |op then ¢’ = )" as was shown in the end of the preceding part of
this subsection.

We have shown that solutions ¢ to (2.26) of class C1#(9D, M,,(C)) are in bi-
jective correspondence with solutions ¢ to (3.19) such that ¢ (z, k) = e pu(z, k),
p € Whee(R4 M,,(C)). This finishes the proof of Lemma
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