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Vector ordering and multispectral
morphological image processing

Santiago Velasco-Forero and Jesus Angulo

Abstract

This chapter illustrates the suitability of recent multivariate ordering approaches to

morphological analysis of colour and multispectral images working on their vector

representation. On the one hand, supervised ordering renders machine learning no-

tions and image processing techniques, through a learning stage to provide a total

ordering in the colour/multispectral vector space. On the other hand, anomaly-based

ordering, automatically detects spectral diversity over a majority background, al-

lowing an adaptive processing of salient parts of a colour/multispectral image. These

two multivariate ordering paradigms allow the definition of morphological operators

for multivariate images, from algebraic dilation and erosion to more advanced tech-

niques as morphological simplification, decomposition and segmentation. A number

of applications are reviewed and implementation issues are discussed in detail.

1 Introduction

Problems on defining total order arise naturally in different aspects of science and

engineering and their applications in daily life. In our context, “order” denotes an

ordering principle: a pattern by which the elements of a given set may be arranged

[13], and “total” means that the order is a binary relation antisymmetric, transitive

and reflexive. Another name for a total order is linear order. It express the intu-

itive idea that you can picture a total order on a set A as arranging the elements
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of A in a line. Not surprisingly, the task of defining a total order for a given set

depends greatly on the prior knowledge provided. To illustrate this point, imagine

a scenario where two researchers want to order a set of people. The first one de-

fines minimum as the youngest person and the maximum as the oldest person, the

second declares the minimum as the fattest one and the maximum as the thinnest

one. Clearly, two persons that are similar according to the first researcher’s setting

might be dissimilar according to the second’s. Accordingly, the complete list of or-

dered people can be totally different from one researcher to another. In the field

of image processing, the definition of a total ordering among pixels of the image

is the main ingredient of mathematical morphology techniques [20]. In this first

part of this chapter, we study the case where “prior” knowledge about the spec-

tral information of the background and the foreground on the image is available.

We define a supervised ordering as a particular case of reduced ordering where

the minimum (resp. maximum) value should be a pixel in the background (resp.

foreground). This restriction can be included in the computation of the supervised

ordering by using classical machine learning techniques, for instance, by support

vector machines (SVM) [25]. Another possibility for known structure in the total

ordering problem is to assume that the image is composed by two main compo-

nents: background and foreground. Additionally, we include the assumption that the

background is larger than the foreground. We uncover an interesting application of

randomised approximation schemes in multivariate analysis [26]. To summarise, in

this chapter a multispectral image is represented through a total ordering and it is

analysed by mathematical morphology transformations. Prior information about the

spectral information in the image is incorporated into the workflow of mathematical

morphology transformations in two scenarios:

1. Spectral information about the background and the object of interest are avail-

able, i.e., “background/foreground training pixels”.

2. Image can be considered as objects (foreground) over a majority background.

The remainder of this chapter is organised as follows. In Section 2, we present the

fundamental definitions of mathematical morphology in a lattice formulation. The

approach involving a preordering function is presented in Section 3. This section

also contain examples specialising the general approach to more specific settings.

Section 4 explains, implementation issues for any adjunction based morphological

transformation. Finally, Section 5 concludes the chapter.

2 Complete lattices and mathematical morphology

2.1 Mathematical morphology

Basically, there are two points of view about mathematical morphological transfor-

mations: 1) connection based and 2) adjunction based. The first strategy deals with

simplification of a given image in the partition space induced by its connected com-
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Range of the vector image: F= R
d

Discrete support: E= Z
2

x = (i, j) ∈ E

I(x) ∈ R
d

x

RGB or multispectral space

Fig. 1 Notation for a d-variate image, I : E→ F. Note that the image I maps each spatial point x

to a vector x in three dimension for a RGB image or in dimension d for the case of a multispectral

image.

ponents [17, 18, 21]. The second perspective analyses an image by composition of

two basic transformations, dilation and erosion, which form a Galois connection [9].

In this section we provide the theoretical background of mathematical morphology

in its formulation based on adjunction, i.e. by using dilation/erosion operators. Our

approach does not include the “connectivity approach”. We refer keen readers to

[21] for a comprehensive review of connective morphology.

2.2 Fundamental definitions

Let us introduce the notation for a multidimensional image, as it is illustrated in

Fig. 1, where the object of interest is a d-dimensional image (denoted by I) which

maps the spatial support E to the vector support F, i.e.,

I : E → F= R
d

x → x

Given a vector image I∈F (E,F), i.e. is a mapping from the spatial support to the

vector space of dimensions d. Theoretical formulation of mathematical morphology

is nowadays phrased in terms of complete lattices and operators defined on them.

For a detailed exposition on complete lattice theory in mathematical morphology,

we refer to Chapter 2 (J. Serra and C. Ronse) in [16].

Definition 1 (Complete Lattice) A space L endowed with a partial order ≤ is

called a complete lattice, denoted (L ,≤) if every subset M ⊆L has both supre-

mum (join)
∨

M and infimum (meet)
∧

M .

A minimum (or least) ⊥ ∈M is an element which is least than or equal to any

other element of M , that is, r ∈M ⇒⊥ ≤ r. We denote the minimum of L by
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⊥. Equivalently, a maximum (largest) ⊤ in M is the greatest element of M , that is,

r ∈M ⇒ r ≤⊤. We denote the maximum of L by ⊤.

Definition 2 (Dilation/Erosion) A mapping f : L1→L2 of a complete lattice L1

into a complete lattice L2 is said to be a dilation if f (∨ j∈Jr j) = ∨ j∈J f (r j) for all

families (r j) j∈J of elements in L1. A mapping is said to be an erosion if f (∧ j∈Jr j) =
∧ j∈J f (r j) for all families (r j) j∈J of elements in L1.

The important relationship between dilation and erosion is that they are dual

concepts from the lattice point of view. [9] showed that for any complete lattice L ,

we always have a dual isomorphism between the complete lattice of dilation on L

and the complete lattice of erosions on L . This dual isomorphism is called by Serra

([20], Chapter 1) the morphological duality. In fact it is linked to what one calls

Galois connections in lattice theory, as we will see at the end of this section.

Definition 3 (Adjunction) Let δ ,ε ∈ L → L . Then we say that (ε,δ ) is an ad-

junction of every r,s ∈L , we have

δ (r)≤ s ⇐⇒ r ≤ ε(s) (1)

In an adjunction (ε,δ ), ε is called the upper adjoint and δ the lower adjoint.

Proposition 1 ([9] p. 264) Let δ ,ε ∈L →L . If (ε,δ ) is an adjunction, then δ is

a dilation and ε is an erosion.

Definition 4 (Galois connection) Let L1 and L2 be lattices and let α : L1→L2

and β : L2→L 1 satisfy the following conditions.

1. For r,s ∈L1, if r ≤ s, then α(s)≤ α(r).
2. For r,s ∈L1, if r ≤ s, then β (s)≤ β (r).
3. For r ∈L1, βα(r)≤ r.

4. For r ∈L2, αβ (r)≤ r.

Then (α,β ) is a Galois connection between L1 and L2.

Proposition 2 Let the lattices L1 and L2, maps α : L1→L2 and β : L2→L1 a

Galois connection. Then the following condition holds for all r ∈L1 and s ∈L2:

s≤ α(r) ⇐⇒ r ≤ β (s) (2)

Clearly an adjunction in L is a Galois connection between the dual (L ,≥) and

(L ,≤) (indeed, compare definition 3 and proposition 2).

At this point, we can see that definition of erosion/dilation on a image requires

a complete lattice structure, i.e., a total ordering1 among the pixels to be analysed.

However, there is not difficult to see that the idea of order is entirely absent from

multivariate scene, i.e., there is no unambiguous means of defining the minimum

1 Theoretically, a partial ordering is enough but to make easier the presentation we analyse the case

of total ordering.
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and maximum values between two vectors of more than one dimension. Accord-

ingly, the extension of mathematical morphology to vector spaces, for instance,

colour/multi/hyper/ultraspectral images, is neither direct nor trivial because the pix-

els in the images are vectors. We refer keen readers to [1][2] for a comprehensive

review of vector morphology.

2.3 Preorder by h-function

Let E be a nonempty set and assume that L is a complete lattice. Let h : E→L be

a surjective mapping. Define an equivalence relation =h on E as follows: x =h y⇔
h(x) = h(y) ∀x,y ∈ E. As it was defined in [8], we refer by ≤h the h−ordering

given by the following relation on E

∀x,y ∈ E, x≤h y⇔ h(x)≤ h(y)

Note that≤h preserves reflexivity (x≤h x) and transitivity (x1 ≤h x2 and x2 ≤h x3⇒
x1 ≤h x3). However, ≤h is not a partial ordering because x ≤h y and y ≤h x implies

only that x =h y but not x = y. Note that h-ordering is a preorder in E.

An operator ψ : E→ E is h−increasing if x ≤h y implies that ψ(x) ≤h ψ(y).
Additionally, since h is surjective, an equivalence class is defined by L [r] = {y ∈
E|h(y) = r}. The Axiom of Choice [8] implies that there exist mappings h← : L → E

such that hh←(r) = r, for r∈L . Unless h is injective, there exist more than one such

h← mappings: h← is called the semi-inverse of h. Note that h←h is not the identity

mapping in general (but h←h =h id). However, we have that for any h−increasing

ψ : E→ E the result ψh←h =h ψ and hence hψh←h = hψ . Let us introduce ψ̃ the

operator associated to ψ in the lattice L . A mapping ψ : E→ E is h−increasing if

and only if there exists an increasing mapping ψ̃ : L →L such that ψ̃h = hψ . The

mapping ψ̃ is uniquely determined by ψ and can be computed from

ψ̃ = hψh←

We can now define the h−erosion and h−dilation. Let ε,δ : E→ E be two map-

pings with the property

δ (x)≤h y⇔ x≤h ε(y), ∀x,y ∈ E

then the pair (ε,δ ) is called an h−adjunction. Moreover, let (ε,δ ) be h−increasing

mappings on E, and let ε 7→h ε̃ , δ 7→h δ̃ . Then (ε,δ ) is an h−adjunction on E if and

only if (ε̃, δ̃ ) is an adjunction on the lattice L . Therefore a mapping δ (resp. ε) on

E is called h−dilation (resp. h−erosion) if δ̃ (resp. ε̃) is a dilation (resp. erosion) on

L . h−adjunctions inherit a large number of properties from ordinary adjunctions

between complete lattices. Assume that (ε,δ ) is an h−adjunction then

γ = δε ≤h id≤h ϕ = εδ .
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Hence, γ is h−anti-extensive and φ is h−extensive. The operator γ on E is called

h−opening if the operator γ̃ on L determined by γ 7→h γ̃ is an opening. The operator

γ is also h−increasing and satisfies γγ =h γ (h−idempotency). The h−closing is

similarly defined.

(a) Spectral information in R
d . (b) Example of linear ordering on (a)

(c) Supervised ordering, the set of pixels are

analysed through a total order relation.

(d) Anomaly based ordering, the set of pix-

els are analysed through a total order rela-

tion.

Fig. 2 In the complete lattice representation, the set of pixels are analysed through a linear order

relation denoted by h : Rd →L in their spectral representation. In (c) the linear order starts from

the background pixel (in red) and ends at the foreground pixel (in blue). In (d) the linear order

starts from the centre of the greatest cluster in R
d .
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2.4 Morphological analysis on the h-function

From the preliminary section we have the ingredients to define morphological colour

(F=R
3) and multispectral (F=R

d) erosion and dilation. We limit here our develop-

ments to the flat operators, i.e., the structuring elements are planar shapes. The non-

planar structuring functions are defined by weighting values on their support [19].

Let us assume that we have an adaptive mapping2 h :Rd→R. The h-erosion εSE,h(I)
and h-dilation δSE,h(I) of an image I at pixel x∈ E by the structuring element SE⊂ E

are the two mappings F (E,F)→F (E,F) defined respectively by

h
(
εSE,h(I)(x)

)
= ε̃SE (h(I))(x), (3)

and

h
(
δSE,h(I)(x)

)
= δ̃SE (h(I))(x), (4)

where ε̃SE (I) and δ̃SE (I) are the standard numerical flat erosion and dilation of im-

age I ∈F (E,L ):

ε̃SE (I)(x) =
{

I(y) : I(y) =
∧

[I(z)] ,z ∈ SEx

}
(5)

δ̃SE (I)(x) =
{

I(y) : I(y) =
∨

[I(z)] ,z ∈ ŠEx

}
(6)

with SEx being the structuring element centred at point x and ŠE is the reflected

structuring element. If the inverse mapping h−1 is defined, the h− erosion and dila-

tion can be explicitly written as:

εSE,h(I)(x) = h−1 (ε̃SE (h(I)))(x),

and

δSE,h(I)(x) = h−1
(

δ̃SE (h(I))
)
(x).

Of course, the inverse h−1 only exists if h is injective. In practice, we can impose the

invertibility of h by considering a lexicographic ordering for equivalence class L [x].
In fact, this solution involves a structure of total ordering which allows to compute

directly the h−erosion and dilation without using the inverse mapping, i.e.,

εSE,h(I)(x) =

{
I(y) : I(y) =

∧

h

[I(z)] ,z ∈ SEx

}
, (7)

and

δSE,h(I)(x) =

{
I(y) : I(y) =

∨

h

[I(z)] ,z ∈ ŠEx

}
, (8)

2 Adaptive in the sense that the mapping depend on the information contained in a multivariate

image I. The correct notation should be h(·;I). However, in order to make easier the understanding

of the section we use h for adaptive mapping.
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where
∧

h and
∨

h are respectively the infimum and supremum according to the or-

dering ≤h. Starting from the h-adjunction
(
εSE,h(I),δSE,h(I)

)
, all the morphological

filters such as the opening and closing have their h-counterpart, e.g., the h opening

and closing are defined as

γSE,h(I) = δSE,h(εSE,h(I)), ϕSE,h(I) = εSE,h(δSE,h(I)) (9)

Similarly, any other mathematical morphology operator based on adjunction oper-

ators can be also extended to multivariate images. For instance, geodesic operators

as opening by reconstruction[22], levelings [14], additive morphological decompo-

sitions [27] and so on.

(a) Original Colour image denoted by I (b) Scatterplot of the three-channel image XI.

Fig. 3 Spectral representation of a colour image in the RGB space. A spatial position x in the

image I contains three coordinates in the RGB-space represented by x.

3 Pre-ordering a vector space

Let XI be the set of vector values of a given image I, which can be viewed as a cloud

of points in F. Fig. 3 shows an example of colour image I, and its spectral repre-

sentation as points XI. In general, pixel values in multispectral images are vectors

defined in F=R
d . From previous section, for a given multivariate image I : E→R

d ,

the challenge to build complete lattice structures is to define a mapping h : Rd→L ,

to obtain a mapping E→L , where L is a lattice. In this chapter, we consider the

lattice L of the extended real line (R,≤) using R = R
⋃
{−∞,+∞} and ≤ as the

“less than or equal to” relation (the natural partial ordering). Many authors have al-

ready worked in this idea [1, 2, 3, 25]. Basically, three family of reduced mappings

h for a given x = (x1,x2, . . . ,xd) ∈ R
d can be defined as it is illustrated in Table 1.
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Type of reduced mapping h(x; ·)
Unsupervised

Linear dimensionality reduction[10] hPCA(x) = ∑
d
i=1 λ i

xi

Local unsupervised [11] hLPCA(x) = ∑
d
i=1 λ i

xxi

Distance based

Referenced ordering [1] hREF(x;T ) = ∑
|T |
i=1 λ i

xK(ti,x)

Supervised [25] hSUPER(x;B,F) = ∑
|B|
k=1 λ k

x K(bk,x)+∑
|F |
j=1 λ

j
x K(f j,x)

Anomaly based

Projection Depth [26] hANOM(x;I) = max||u||=1
|uT x−med(uT XI)|

mad(uT XI)

Table 1 Different adaptive multivariate orderings implemented by h-mapping based reduced or-

dering. Note that x is a vector which d components, x1,x2, . . . ,xd , K : Rd ×R
d → R

+ is a kernel-

induced distance, the sets B = {b1,b2, . . . ,b|B|},F = {f1, f2, . . . , f|F |} and T = {t1, t2, . . . , t|T |} are

the background, foreground and training, respectively. The matrix XI is an array containing the

pixel information of a multidimensional image denoted by I, i.e., XI = [x1x2 . . .xn] where XI has

d rows and n columns. The orders considered here depend on an input image I. A schematic rep-

resentation of these orders is given in Fig.2.

3.1 Unsupervised ordering

That can be obtained by using the more representative projection in a statistical di-

mensional reduction technique, for example a linear approach as PCA [10] or some

non-linear projections approach [12]. To illustrate, we consider the first projection

to induce the ordering, i.e., x1 ≤ x2 ⇐⇒ hPCA(x) ≤ hPCA(x2), where hPCA is the

first eigenvector of the centred covariance matrix XT
I XI. The intuition behind this

approach is simple and clear: pixels are ordered according to their representation in

the projection with greatest variance. An example is illustrated in Fig. 4(b). In this

example, we can see that the induced minimum and maximum have no practical in-

terpretation. A second disadvantage is that in this case, the minimum or maximum

can drastically change by altering “a pixel” or a “limited number of pixels” in the

original image I.

3.2 Distance based ordering

Let us focus on the case of h-ordering based on distances. This approach is moti-

vated by the intuition that order computation should be adaptive to prior information

given by application interests.

3.2.1 Referenced ordering

As a starting point for distance based ordering, we consider the work of Angulo

[1], who defines a function hREF(·, t) that computes the similarity for a given pixel
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(a) Colour image: I (b) hPCA (c) hANOM

(d) B and F sets. (e) hREF (f) hSUPER

Fig. 4 Comparison of different h-mappings considered in this chapter for a given colour im-

age. Referenced and supervised h-mappings requires prior information given by the sets B and

F . Anomaly based ordering is intrinsically adapted to the image.

x to a colour reference t by measuring its spectral distance, i.e., x1 ≤hREF x2 ⇐⇒
K(x1, t)≤K(x2, t), where K : Rd×R

d→R
+ is a kernel-induced distance[15]. The

original formulation in [1] uses the case of Euclidean distance in the colour space as

kernel-induced distance3. Thus, the ordering based on a reference spectrum exhibits

a lattice where the minimum has been fixed. However, that maximum is associated

with the “farthest” vector but that does not have a simple interpretation. To illustrate

the result of this approach, we generalise the definition of a referenced order for a

training set T as follows, x1 ≤hREF x2 ⇐⇒ mini ||x1− ti|| ≥ mini ||x2− ti|| for all

ti ∈ T . The geometric interpretation is that hREF(x;T ) is basically the distance in

L∞ of x to the convex hull of vectors in T (if x is not in the convex hull). Thus,

is not so difficult to see that hREF can be expressed as hREF(x;T ) = ∑
|T |
i=1 λ i

xK(ti,x)
where λ i

x 6= 0 only for argmini ||x− ti||. Fig. 4(e) shows the referenced mapping

for the colour image in Fig. 4(a). The training set are the pixel in the red region

of Fig 4(d). Note that hREF “detects” the girl but at the same time the border of the

swimming-pool. Associated morphological adjunction and gradient are illustrated

in Fig. 5(g-i).

3 In this case the sense of the inequality change, i.e., x1 ≤hREF x2 ⇐⇒ ||x1− t||2 ≥ ||x2− t||2.
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(a) δSE,hPCA (I) (b) εSE,hPCA (I) (c) Gradient by hPCA

(d) δSE,hANOM (I) (e) εSE,hANOM (I) (f) Gradient by hANOM

(g) δSE,hREF (I) (h) εSE,hREF (I) (i) Gradient by hREF

(j) δSE,hSUPER (I) (k) εSE,hSUPER (I) (l) Gradient by hSUPER

Fig. 5 Comparison of colour dilation, erosion and associated gradient using different h-orderings

(see Table 1). Gradients have been normalised from 0 to 1 to make easier the visual comparison.

3.2.2 Supervised ordering

A most general formulation for distance based ordering has been introduced in [25].

It defines a h-supervised ordering for every vector x ∈ R
d based on the subsets

B = {b1, . . . ,b|B|} and F = {f1, . . . , f|F |}, as a h-ordering that satisfies the following

conditions: h(b) = ⊥ then b ∈ B, and h(f) = ⊤ then f ∈ F . Note that ⊥,⊤ are the

smallest and largest element in the lattice L . Such an h-supervised ordering is de-
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noted by hSUPER(·;B,F). Fig. 2(c) illustrates the main intuition for a h-supervised or-

dering function: it is a linear ordering from the pixels in background set (B⊆L (⊥))
to the ones in foreground set (F ⊆L (⊤)). The main motivation of defining this new

supervised ordering schema is to obtain maximum and minimum in the lattice L

interpretable with respect to sets B and F . It is important to remind that max and

min are the basic words in the construction of all mathematical morphology oper-

ators. At this point, the problem is how to define an adequate supervised ordering

for a given vector space F and two pixel sets B,F . The approach introduced by [25]

involves the computation of standard support vector machine (SVM) to solve a su-

pervised classification problem to define the function hSUPER(x;B,F). An amusing

geometrical interpretation is based on results from [4], in where the ordering in-

duced by hSUPER, corresponds to the signed distance to the separating plane between

the convex hull associated to F and the one containing the B. From [7], the solution

of the classification case of SVM can be expressed as follows:

hSUPER(x;B,F) =
|B|

∑
k=1

λ kK(bk,x)+
|F |

∑
j=1

λ jK(f j,x) (10)

where λ k are computed simultaneous as a quadratic programming optimisation

problem [7]. For all the examples, given in this chapter we have used a Gaus-

sian Kernel, with the Euclidean distance between colour or spectra, i.e. K(xi,x j) =
exp(−c||xi−x j||

2), where the constant c is obtained by cross-validation on the train-

ing set [7]. Results of this supervised ordering are illustrated in Fig. 4(f). The hSUPER
matches our intuition of what should be maximum and what should be minimum

in the image according to the couple {B,F} in 4(d). The supervised adjunction is

shown in Fig. 5(j-k). Note that the supervised gradient in Fig.5(l) is better defined

on the contour of the girl in comparison to unsupervised and referenced orders. A

second example is presented fro the RGB image in Fig. 3 considering the training

sets in Fig. 6(a). Note that the supervised lattice in Fig. 6(c), is a mapping from

the spectral information to a linear ordering (from top-left corner to bottom right

corner). One advantage of the definition of h-ordering on vector space is that it can

be applied directly to multispectral or even hyperspectral images. In order to illus-

trate this flexibility, we present the case of a RGB and Near-infrared (NIR) image in

Fig. 7(a-b) from [6]. The spectral information is considered on R
4 and background

and foreground sets are the spectra information contained in the marked regions

in Fig. 7(c). For purposes such as segmentation, we would use inner/outer markers-

driven watershed transformation [5]. Fig. 7(i) depicts the results of the segmentation

from the same set of markers Fig. 7(c) in both orders: referenced (f) and supervised

(i). Notice that, supervised approach matches better the general structure of the orig-

inal multispectral image than referenced one.
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(a) Background/foreground training set (b) hSUPER(·;B,F)

(c) Learned Order from (b). (d) δSE,hSUPER (I)

(e) εSE,hSUPER (I) (f) Gradient by hSUPER in (b)

Fig. 6 Background pixels are in blue, and foreground ones in red. The minimum in the supervised

ordering is placed at the top left corner and the maximum at the bottom right corner. Morphological

operators are computed by using a square of side 3 pixels as SE.
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3.3 Ordering based on anomalies

Distance based ordering approaches discussed above are valid if the pair set (B,F)
is available. Obviously, one cannot realistically believe that for every application

the exact spectral information about the background of the image is available. Thus,

if one gives up this paradigm, no other option different to unsupervised ordering

remains. Therefore, in order to take advantage of the physical structure of an image,

it was introduced in [26] an ordering based on ”anomalies” with respect to a back-

ground associated to a majority of points. It is called depth ordering and is maximal

in the “centre” of the spectral representation of a image I and it produces a vector

ordering “centre-outward” to the outliers in the vector space R
d . In this paradigm,

the assumption of existence of an intrinsic background/foreground representation

is required, i.e., given a vector image I : E→ R
d , XI has can be decomposed as

XI = {XB(I),XF(I)} such that XB(I) ∩XF(I) = /0 and card{XB(I)} > card{XF(I)}.
Roughly speaking, the assumption means: (1) the image has two main components:

the background and the foreground; (2) There are more pixels in the background

than in the foreground. Several examples of these kind of functionals have been

analysed in [24]. However, we limited ourselves to the statistical projection depth

case presented in [26] and defined by

hANOM(x;I) = sup
||u||=1

|uT x−med(uT XI)|

mad(uT XI)
(11)

where med denoted the univariate median and mad the median absolute deviation,

i.e., the median of the differences with respect to the median. Not the that the su-

perscript T denotes matrix transposition. Let us now point out some aspects of (11)

in order to better characterise it. First, it is a anomaly based ordering, due to the

fact that if XI ∼N(µ,Σ) a Gaussian distribution with mean vector µ and covariance

matrix Σ then hANOM(x;I)2 ∝ (x− µ)T Σ−1(x− µ), the Mahalanobis distance (see

[26] to details). Secondly, (11) is invariant to affine transformations in the vector

space Rd . Third, unfortunately, the exact computation of (11) is computationally in-

tensive except when the number of pixels n is very small. However, we can compute

a stochastic approximation by using a large number of random projections u and

computing the maximum for a given x [26].

To summarise the above, the statistical projection depth function in (11) induces

an anomaly based ordering for images with background/foreground representation.

That is an ordering based on a data-adapted function and in such a way that the

interpretation of supremum and infimum operations is known a priori, because max

values can be associated with “outlier” pixels in the high-dimensional space and min

are “central” pixels in R
d space. A simple example is illustrated in Fig. 4(c) where

(11) “detects” the girl thanks to the fact that her spectral information is unusual in

comparison to the one from the swimming pool.
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4 Implementation

Once a h-ordering has been defined, it becomes easy in practice to implement mor-

phological transformations on multidimensional images such as colour or multi-

spectral ones. Actually, we can use a scalar to code each pixel on the image, and the

standard morphological transformations for grayscale images can be used directly.

The result is deciphered by mapping back the total ordering in to the vector space.

An effective implementation using a look-up table has been presented in [23]. A

pseudo-code for a multivariate erosion4 is shown in Algorithm 1 in Matlab notation.

The index image and the sorted vector look-up table constructed above are used to

generate an ordered table. At this point, any morphological transformation can be

performed on the lattice image, which can be considered as a grey scale image. The

output of the morphological transformation is converted back to the original vector

space by replacing each pixel by its corresponding vector using a look-up table.

Algorithm 1 Multivariate morphological Erosion: h Erode(im,h function,se)

Require: Multivariate image (im) of size n1n2×d, the preorder (h function) is a vector with

n1n2 components and structuring element (se).

[·,b] = sort(h function);

im latt(b)=1:(n1n2);

im latt=reshape(im latt,n1,n2);

im ero=Erode(im latt,SE);

im out=reshape(im(b(im ero(:)),:),n1,n2,d);

5 Conclusions

Mathematical morphology is a non-linear methodology for image processing based

on a pair of adjoint and dual operators, dilation and erosion, used to compute sup/inf-

convolutions in local neighbourhoods. The extension of morphological operators to

colour images has been the object of many works in the past; however, the general-

isation of such colour approaches to multispectral images is not straightforward. In

this chapter, we illustrated how kernel-based learning techniques and multivariate

statistics can be exploited to design vector ordering and to include results of mor-

phological operators in the pipeline of colour and multispectral image analysis. Two

main families of ordering have been described. Firstly, we focused on the notion of

supervised vector ordering which is based on a supervised learning formulation.

A training set for the background and another training set for the foreground are

needed as well as a supervised method to construct the ordering mapping. Secondly,

4 It is important to note that any adjunction based morphological transformations as openings,

closings, levelings and so on, can be implemented in similar way, i.e., by changing the function

Erode by another grey scale morphological transformation.
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(a) Original image and training

sets

(b) NIR Channel (c) Training sets (F,B)

(d) hREF(·;F) (e) Gradient of hREF (f) Marked watershed on hREF

(g) hSUPER(·;B,F) (h) Gradient of hSUPER (i) Marked watershed on

hSUPER

Fig. 7 Effect of the inclusion of supervised ordering in marked based segmentation. The spectra in-

formation of RGB+NIR image (a) are considered as vectors in R
4. Background (resp. foreground)

set are blue (resp. red) pixels in (c).

we considered an (unsupervised) anomaly-based vector ordering based on statisti-

cal depth function computed by random projections. This leaded us to an intrinsic

processing based on a background/foreground representation. We have illustrated

in the examples the interest of morphological gradients (from pairs of multispec-

tral dilation/erosion) for watershed segmentation. From a theoretical viewpoint, our

framework is based on the theory of h-mapping adjunctions.
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