
HAL Id: hal-01110199
https://hal.science/hal-01110199

Submitted on 28 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Mutual Information for Dissimilarity-Based Image
Segmentation

Lionel Gueguen, Santiago Velasco-Forero, Pierre Soille

To cite this version:
Lionel Gueguen, Santiago Velasco-Forero, Pierre Soille. Local Mutual Information for Dissimilarity-
Based Image Segmentation. Journal of Mathematical Imaging and Vision, 2014, 48 (3), pp.625-644.
�hal-01110199�

https://hal.science/hal-01110199
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Local mutual information for dissimilarity-based

image segmentation

Lionel Gueguen1, Santiago Velasco-Forero3,
and Pierre Soille2

the date of receipt and acceptance should be inserted later

Abstract Connective segmentation based on the definition of a dissimilarity mea-
sure on pairs of adjacent pixels is an appealing framework to develop new hierar-
chical segmentation methods. Usually, the dissimilarity is fully determined by the
intensity values of the considered pair of adjacent pixels, so that it is independent
of the values of the other image pixels. In this paper, we explore dissimilarity
measures depending on the overall image content encapsulated in its local mutual
information and show its invariance to information preserving transforms. This
is investigated in the framework of the connective segmentation and constrained
connectivity paradigms and leads to the concept of dependent connectivities. An
efficient probability estimator based on depth functions is proposed to handle
multi-dimensional images. Experiments conducted on hyper-spectral and multi-
angular remote sensing images highlight the robustness of the proposed approach.

version as of January 24, 2013

1 Introduction

A digital image can be represented by a undirected simple finite graph whose node
set matches the set of picture elements (laying in an Euclidean space) and whose
edge set corresponds to the set of unordered pairs of adjacent picture elements.
The segmentation of an image can be defined as its partition into path-connected
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components given an underlying adjacency graph. Therefore the number of possi-
ble segmentations of an image containing n pixels is equal to its Bell number Bn if
the complete graph is considered. For non-complete graphs such as the usual 4- or
8-adjacency graphs, the number of possible segmentations is smaller than Bn but
is still intractable even for small values of n. In this context, segmentations meth-
ods delivering a hierarchy of nested connected components represented by a tree
rather than a unique partition allow adaptability while remaining computationally
tractable.

Several studies proved that a unique hierarchy of nested segmentations can be
obtained through a parametric connectivity relation defined along paths of adja-
cent pixels of the image grid. A common connectivity relation states that two pixels
of a gray-scale image are connected if there exists a path of pixels linking these
pixels such that absolute differences (or any other dissimilarity measure) between
successive pixels of this path (that is, weights of the edges of the path) do not
exceed a given threshold value. This idea has been introduced in image processing
in [Nagao et al., 1979], and further extended in numerous segmentation methods
[Arbelaez and Cohen, 2006]. A hierarchy of fine to coarse partitions is simply ob-
tained by gradually increasing the dissimilarity threshold value. The single linkage
clustering method, described earlier in pattern recognition [Sibson, 1973], is using
this property to encode efficiently the nested partitions into a dendrogram. Single-
linkage is known to suffer from leakage through elements of transitional values. In
the case of images, leakage occurs at pixels with intermediate values at the bound-
ary of two homogeneous regions in the case of images. To counter this effect, the
framework of constrained connectivity was introduced in [Soille, 2008] to reject the
formation of connected components violating an internal homogeneity constraint
such as an upper bound on the range of values of the connected component.

The diversity existing in the hierarchy of partitions depends strongly on the
choice of the underlying dissimilarity measure. Most dissimilarity measures com-
puted between two adjacent pixels are fully defined by the values of these pixels.
This is the case for the Lm norm. However, in some applications, measures driven
by the values of additional pixels may be of interest. For example, the dissimilarity
presented in [Soille, 2011] takes the maximum between the L1 norm and the point-
wise minimum of the gradients by erosion and dilation calculated for each pair of
adjacent pixels. Hence, this dissimilarity measure between two adjacent pixels in-
volves not only the values of these pixels but also those of their neighbourhood.
Image connectivities driven by the image content go beyond the consideration of
a limited neighbourhood by taking into account statistics computed for the whole
image definition domain (or within a subdomain large enough to estimate these
statistics). By doing so, the resulting connectivity relations adapts automatically
to the image information content. This idea was recently followed in [Gueguen
and Soille, 2011] and led to the notion of frequent and dependent connectivities.
With frequent connectivity, the dissimilarity assigned to the edge linking two ad-
jacent pixels is inversely proportional to the frequency of co-occurrence of the
values of these pixels. With dependent connectivity, their dissimilarity is inversely
proportional to their statistical dependence.

In this paper, we extend our initial results [Gueguen and Soille, 2011] and de-
tail the presentation of the local mutual information as a measure of dependence
between the values of adjacent pixels. The local mutual information is based on
the joint probability of adjacent pixel values and enables the definition of a degree
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of dependence between them. This metric is inspired from the mutual informa-
tion measuring the dependence between random variables [Cover and Thomas,
1991], which was used successfully in image registration [Viola and Wells, 1997,
Maes et al., 1997, Hermosillo et al., 2002, Karacali, 2007] and for template-based
object tracking [Panin and Knoll, 2008, Sun and Hoogs, 2010]. We highlight the
invariance of the local mutual information to any differentiable bijective transform
applied pixelwise to the full image. This property is of main interest for develop-
ing segmentation techniques that are invariant to unknown information preserving
transforms. Having the capacity to define a joint probability between pixels val-
ues, the local mutual information is used to define a dissimilarity measure and
its corresponding hierarchy of nested connected components. Additionally, a ho-
mogeneity constraint defined in terms of the component entropies is proposed to
extend dependent connectivity to the constrained connectivity framework (i.e., by
defining the highest non-horizontal cut of the dependent connectivity dendrogram
such that every segment of the resulting partition satisfies the proposed homogene-
ity constraint). Furthermore, the local mutual information is adapted to handle
multi-band images. Indeed as the dimension (number of bands) increases, the es-
timation of the joint probability distribution becomes less robust and requires the
use of proper tools. The depth function method [Zuo and Serfling, 2000, Zuo,
2003] is used as an estimator of joint probabilities, as it avoids the assumption
of a distribution shape, while maintaining a high approximation power for the
Gaussian distribution. Based on this probability estimation method, an approxi-
mation of the local mutual information is proposed. Experiments are conducted
on simulated data as well as hyper-spectral and multi-angular remote sensing im-
ages. They highlight the practical relevance of the depth function and the local
mutual information for segmentation purposes. The experiment on simulated data
permits to assess the robustness of the depth function, thus the robustness of the
local mutual information to unknown joint probability distributions. After this,
the experiment on a hyper-spectral image shows that the dependence measure
suffers less from the leakage effect than the usual norm based dissimilarity. The
last experiment is performed with multi-angular multi-spectral images. As the
acquisition angle deviates from nadir, the illumination acquired by the sensor is
modified in an uncontrolled way, which can me modelled by an unknown bijective
transform. The results show that the segmentations based on depth function and
local mutual information are less sensitive to varying acquisition angles.

The paper is structured as follows. The concept of local mutual information
and its analytical formulation are presented in Sec. 2 while demonstrating its in-
variance to bijective transforms and analysing its sensitivity to additive noise. The
notion of dependent connectivity and its extension to the constrained connectivity
framework are developed in Sec. 3. Section 4 describes the depth function as a
probability estimator enabling the approximation of the local mutual information
in high dimensions. Experiments are conducted on simulated as well as hyper-
spectral and multi-angular images in Sec. 5. Conclusions are drawn in Sec. 6.

2 Local Mutual Information

The local mutual information is increasingly used in the literature for language
processing [Church and Hanks, 1990, Bouma, 2009], finance modeling [Cherubini
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et al., 2004], and change detection [Gueguen and Datcu, 2009, Gueguen et al.,
2011]. The concept of local mutual information and its analytical formulation are
recalled in Sec. 2.1 and Sec. 2.2. We then demonstrate its invariance to bijective
transforms and analyse its sensitivity to additive noise in Sec. 2.3 and Sec. 2.4
respectively.

2.1 Definition

The mutual information I is defined between two random variables X,Y thanks
to their joint probability distribution pX,Y [Cover and Thomas, 1991]:

I(X;Y) =

Z

pX,Y(x,y) log
pX,Y(x,y)

pX(x)pY(y)
dxdy, (1)

where pX(x)pY(y) is the product of their marginal distributions:

pX(x) =

Z

pX,Y(x,y)dy, (2)

pY(y) =

Z

pX,Y(x,y)dx. (3)

The mutual information measures the quantity of shared information by the vari-
ables, and assesses their statistical dependence. However, this measure is global
and recent work proposed to consider the local mutual information [Church and
Hanks, 1990, Winter et al., 1997] to attribute a dependence measurement to each
realization.

Let X, Y be two random variables linked by their joint probability distribution
pX,Y and let x, y be two realizations of the joint random variable. The local mutual
information i is a function of the realizations expressed by [Gueguen et al., 2011]:

i(x;y) = log
pX,Y(x,y)

pX(x)pY(y)
, (4)

= log
pX|y(x | y)

pX(x)
, (5)

= log
pY|x(y | x)

pY(y)
. (6)

The expectation of the local mutual information gives back the mutual informa-
tion:

I(X;Y) = EX,Y [i(X;Y)] . (7)

Informally, the local mutual information compares the probability of observing
x and y together with the probability of observing x and y by chance. In the
framework of Bayesian test of independence [Palomar and Verdu, 2008], the local
mutual information is understood as a test statistic to decide if the realizations
x and y are dependent or independent with respect to a known joint probability
distribution pX,Y. This metric can be normalized as described in [Bouma, 2009].

While the mutual information is a symmetric function defined between two
random variables, the local mutual information is not necessarily symmetric. In-
deed, the local mutual information is symmetric if and only if the joint probability
distribution is itself symmetric: i(x;y) = i(y;x) , pX,Y(x,y) = pX,Y(y,x).
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2.2 Local Mutual Information of Gaussian Variables

Let assume two multidimensional random variables X and Y, such that the
composite Z = [X,Y] follows a Gaussian probability distribution N (µZ, ΣZ).
By marginalisation, the variables X and Y follow the Gaussian distributions
N (µX, ΣX) and N (µY, ΣY), respectively. The functions parameters are linked
by:

µZ = [µX, µY] , (8)

ΣZ =

 

ΣX ΣXY

ΣYX ΣY

!

, (9)

where ΣXY = ΣT
YX are the cross correlation matrices. The variable W following

the equivalent joint independent distribution pX ⇥ pY is also a Gaussian variable
N (µW, ΣW) such that:

µW = µZ, (10)

ΣW =

 

ΣX 0

0 ΣY

!

. (11)

Proposition 1 The local mutual information of any realization z = [x,y] of the
Gaussian variable Z = [X,Y] is expressed by :

iG(x;y) =
1

2
(z− µZ)

T (Σ−1
W −Σ−1

Z )(z− µZ)−
1

2
log

detΣZ

detΣW

. (12)

This formulation is essentially proposed by [Theiler and Perkins, 2006] while dis-
regarding the scaling and constant factors, and is also referred to by [Cherubini
et al., 2004]. The local mutual information of Gaussian variables is illustrated in
Figs. 1–2. It can be interpreted as a hyperbolic paraboloid shaped like a saddle,
where the saddle point is localised at the mean µZ. The realization dependence de-
creases as the points get further from the maximum correlation hyperplane passing
by the mean and defined by the covariance matrix ΣZ. On the contrary, the real-
ization dependence increases along this hyperplane as the realizations get further
from the mean µZ.

2.3 Invariance to Bijective Transform

The local mutual information is invariant to any bijective transform applied margi-
nally [Gueguen et al., 2012]. Indeed a deterministic transform should not change
the statistical dependence of the transformed realizations.

Proposition 2 Let b be a bijective and differentiable function defined between
two multidimensional random variables X and Z, such that the realizations are
deterministically linked by z = b(x). Then, for any third random variable Y and
any of its realizations y, we have i(b(x);y) = i(x;y).
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(a) pX,Y(x,y) (b) pX(x)pY(y) (c) iG(x;y)

Fig. 1 The joint probability distribution of a 2-dimensional Gaussian variable is represented
in (a) with its corresponding independent joint distribution in (b). The corresponding local
mutual information expressed in (12) is depicted in (c).

(a) pX1
× pX2X3

(b) pX2
× pX1X3

(c) pX3
× pX1X2

(d) iG(x1; [x2,x3]) (e) iG(x2; [x1,x3]) (f) iG(x3; [x1,x2])

Fig. 2 The top row (a)–(c) represents the isosurfaces of the joint distribution pX1X2X3
in

blue superimposed on the corresponding possible joint independent distributions displayed in
green. The bottom row (d)–(f) represents several isosurfaces of the respective local mutual
information function as defined by (12).

Proof The change of variable condition states that for any bijective differentiable
function b the probability distributions are linked by:

pZ(z)dz = pX(x)dx, (13)

pZ(z) = pX(b−1(z))| det

✓

dx

dz

◆

|, (14)
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where dx
dz

is the Jacobian of the inverse of b evaluated at z, and its determinant
is not null because b is bijective. The same equivalence holds for any conditional
distribution pZ|y(z | y) = pX|y(b

−1(z) | y)| det
(

dx
dz

)

|, and the local mutual in-
formation of the couple (b(x),y) with respect to the joint distribution pZ,Y is
expressed by:

i(b(x);y) = log
pZ|y(z | y)

pZ(z)
, (15)

= log
pX|y(b

−1(z) | y)| det
(

dx
dz

)

|

pX(b−1(z))| det
(

dx
dz

)

|
, (16)

= log
pX|y(x | y)

pX(x)
, (17)

= i(x;y). (18)

ut

With the same reasoning, the property holds for the second variable y. In partic-
ular, the local mutual information is invariant to any invertible linear transform
applied independently on each variable z = Ax, w = By, such that i(x;y) =
i(Ax;By) = i(z;w).

Such a property is of particular interest in situations where the original data
are transformed by an unknown or non computable function which is deterministic
and bijective. The practical relevance of this property will be demonstrated for the
segmentation of multi-angular satellite images in Sec. 5.3.

2.4 Local Mutual Information of Noisy Data

While deterministic transforms do not impact the local mutual information, the
presence of noise decreases realization dependences. Assuming an additive noise
model, the local mutual information can be analytically linked to the noise free
local mutual information.

Proposition 3 Let X and Z be two multidimensional variables, such that Z =
X+N and N is a noise component. Then, for any third random variable Y and

any of its realizations y, we have i(z;y) = log
(pX,Y⇤pN)(z,y)
(pX⇤pN)(z)pY(y) , where ⇤ is the

convolution operator.

Proof Given the probability distributions of X and N and knowing that N is
independent of X as it is an additive noise component, the distribution of Z is
expressed by:

pZ(z) =

Z

pX(z− n)pN(n)dn = (pX ⇤ pN)(z). (19)

The same equality can be derived for the joint probability pZ,Y(z,y) = (pX,Y ⇤
pN)(z,y).

ut
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Fig. 3 The {0, 0.25, 0.5, 0.75, 1}-quantiles of the iG(z;y) values are represented in the form of
boxes for various signal to noise ratios, where Z = X+N.

The convolution by the distribution of the additive noise spreads the probability
in the dimension of X and thus decreases the dependence of the noisy observations
with respect to the third random variable Y.

In the case of Gaussian random variables, the noise increases the variance of
the right member while keeping constant the cross correlation matrices. Therefore,
as the noise variance increases to infinity, the noisy random variable Z becomes
independent of anyY which reduces the dynamic of their local mutual information.
This effect is illustrated in Fig. 3, where the quantiles of the values iG(z;y) are
represented for various Signal to Noise Ratio. In this illustration, the initial random
variables X and Y are Gaussian, and the first one is affected by an additive
Gaussian noise, Z = X + N. As expected, the range of the iG(z;y) values tends
to 0 as the noise variance increases (which is equivalent to a decreasing signal to
noise ratio).

3 Dependent Connectivity Based Segmentation

The notion of dissimilarity based connective segmentation, widely described in the
literature [Nagao et al., 1979, Serra, 1988, 2006, Meyer and Maragos, 2000, Soille,
2008, 2011], is recalled in Sec. 3.1. A local mutual information based dissimilar-
ity, which was presented at ISMM 2011 [Gueguen and Soille, 2011], is detailed in
Sec. 3.2 while introducing the concept of dependent connectivity based segmen-
tation. Novel properties of the dependent connectivity are discussed with regard
to the local mutual information invariance. This connectivity relation is then ex-
tended to the framework of constrained connectivity in Sec. 3.3.

3.1 Dissimilarity Based Connective Segmentation

Let f be a digital image and G = (V,E) an undirected simple finite graph with
vertex set V matching the image pixels and edge set E consisting of unordered
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Fig. 4 A 5× 3 image seen as a graph G = (V,E), with circled vertex values and boxed edge
values. This example shows a path P in green between the blue vertices.

pairs of vertices indicating the adjacency relations between the image pixels (for
example, 4 or 8-connected graphs for 2D images on the square lattice, 6 or 18-
connected graphs for 3D images on the cubic lattice, and Delaunay graph for
images sampled at irregularly spaced points). A path P between two pixels p and
q in G is a sequence of n > 1 pixels hp = p1, . . . , pn = qi such that any two
successive pixels of the sequence are adjacent: {pi, pi+1} 2 E for 1  i < n. The
image f assigns to each element of V (that is, the pixels), a vector of values. Such
a graph based representation is exemplified in Fig. 4.

The partition of a graph G = (V,E) into connected components relies on a
function associating a weight w to its edges. This function can be viewed as a
measure of the degree of dissimilarity between adjacent vertices. For grey level
images, the most common dissimilarity is the absolute difference. A dissimilarity
measure involving a larger neighbourhood to prevent chaining through transitions
while favouring it within homogeneous regions is presented in [Soille, 2011]. In
this paper, we consider dissimilarity measures obtained through a dissimilarity
function defined for any pair of value vectors.

Definition 1 ([Gueguen and Soille, 2011]) Let I be the space of image value
vectors. A dissimilarity function indexed by the intensity values of the image f is
defined as any function d from I ⇥I ! R

+
0 such that d(f(p), f(q)) = d(f(q), f(p)),

where p, q 2 V are two pixels of the image. This latter property is imposed by the
symmetry property of dissimilarity measures.

The most natural dissimilarity functions are obtained by considering the Lm norm
of the difference of the input value vectors: dLm(f(p), f(q)) = kf(p) − f(q)km.
Typical choices for m are 1, 2, or 1. Another common choice for multispectral
images is the spectral angular distance [Kruse et al., 1993].

Given a dissimilarity function d, the weight of an edge {p, q} of the adjacency
graph underlying an image f is denoted by wd: wd({p, q}) = d(f(p), f(q)). Given
a dissimilarity threshold α, two distinct pixels p and q of an image f are dα-
connected if there exists a path going from p to q such that the weight wd between
any two successive pixels of this path does not exceed the value of the dissimilarity
threshold level α. In addition, to ensure the reflexivity property of an equivalence
relation, a pixel is always said to be dα-connected to itself.

Definition 2 ([Gueguen and Soille, 2011]) Let an image f be represented by a
graph G, where the edge weights are given by a dissimilarity function d(f(p), f(q)) =
wd({p, q}), (p, q) 2 E. The connected component dα-CC(p) of a pixel p is the set
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of pixels which are dα-connected to this pixel:

dα-CC(p) = {p} [ {q | 9 P = hp = p1, . . . , pn = qi,

d(f(pi), f(pi+1))  α, 8 1  i < n}.
(20)

The dα-connectivity being an equivalence relation, it induces a unique partition
of the image f support into maximal connected regions being the dα-connected
components [Soille, 2008]. We denote the resulting partition by Πd

f (α). This ap-
proach for segmentation was put forward implicitly in [Nagao et al., 1979] for the
segmentation of multispectral images using the L1 norm (see also [Baraldi and
Parmiggiani, 1996]). For grey level images, the Lm norm boils down to the abso-
lute difference that is denoted by dA. The corresponding connected components are
called quasi-flat zones [Meyer and Maragos, 1999] or lambda-flat zones [Zanoguera
and Meyer, 2002] in mathematical morphology. Because the dissimilarity value
between adjacent pixels of a connected component can be arbitrarily large, the
terminology α-connected components was suggested in [Soille, 2008, 2011]. Rather
than using the notion of equivalence relation and path-based connectivity, Serra
[2006] proposes a more general approach to image segmentation based on the lat-
tice theory and that does not require the definition of paths. With this theory,
the existence of a maximum partition is secured if and only if the homogeneous
classes form a connection based on the so-called connective criterion. The result-
ing segmentation was called a connection in [Serra, 2006] and lately referred to
as a connective segmentation [Ronse and Serra, 2008, Ronse, 2008]. The Boolean
connective criterion underlying the dα-connectivity is detailed in [Gueguen and
Soille, 2011, Ouzounis and Soille, 2011]. Hence, the dα-connectivity turns out to
be a connection and therefore yields a connective segmentation (maximum parti-
tioning).

A fundamental property of the dα-connected components of a pixel is that they
form an ordered sequence (hierarchy) when increasing the dissimilarity threshold
value α [Soille, 2008]:

dα1
-CC(p) ✓ dα2

-CC(p), 8α1  α2. (21)

This hierarchy is at the root of the greedy algorithm by Kruskal [Kruskal, 1956] for
solving the minimum spanning tree problem and at the very basis of the dendro-
gram representation of the single linkage clustering [Gower and Ross, 1969]. Such
a hierarchy can be efficiently encoded in a α-tree [Ouzounis and Soille, 2012].

Definition 3 Let the dissimilarities of a 2-dimensional image f be summarised
by the edge map Ed

f , which represents the maximum dissimilarity between a pixel
p and its right and bottom neighbours pr and pb respectively:

Ed
f (p) = max {d(f(p), f(pr)), d(f(p), f(pb))}. (22)

The edge map is essentially a tool that enables the visual analysis of a dissim-
ilarity computed for a specific image, see experiments in Sec. 5.
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3.2 Dependent Connectivity

When the dimension of the data increases, the volume of the space increases so fast
that the available data becomes sparse. One aspect of the curse of dimensionality
is the distance concentration, which denotes the tendency of distances between all
pairs of points in high-dimensional data to become almost equal and all pairwise
vectors are approximately perpendicular [Radovanović et al., 2010]. Therefore, for
multivariate images, the discrimination power of dissimilarity measures based on
vector distances or spectral angles decreases with the number of dimensions.

This motivated us to develop alternative dissimilarities taking into account co-
occurrence statistics and led to the notion of frequent and dependent connectivities
introduced in [Gueguen and Soille, 2011]. While frequent connectivity aggregates
preferentially frequent pixel pairs, dependent connectivity privileges the pixel pairs
showing a high statistical dependence. The local mutual information is used to es-
timate this dependence so that the pairs of pixels having a high local mutual
information are first connected. This latter approach was shown to be more ef-
fective than frequent connectivity because the frequency is highly related to the
distance between pixel values [Gueguen and Soille, 2011].

Let X,Y be two random variables defined on the product space I ⇥ I, and
any pair of adjacent pixel value (f(p), f(q)) = (x,y), {p, q} 2 E is a realization
of the joint variable (X,Y). Such an image model is widely used in the litera-
ture for characterising textures by the computation of grey level co-occurrence
matrices [Haralick et al., 1973]. Assuming that any pair of adjacent pixel values
(f(p), f(q)) = (x,y) follows an identical distribution pX,Y, it follows that pX,Y is
symmetric, such that pX,Y(x,y) = pX,Y(y,x). The dependence of adjacent pixel
value vectors is then expressed by i(f(p); f(q)) = i(x;y), which is a symmetric
function.

Definition 4 ([Gueguen and Soille, 2011]) Let the dependent dissimilarity
function of an image f be defined in between adjacent pixel values (f(p), f(q)),
{p, q} 2 E by:

dD(f(p), f(q)) = max
x,y

{i(x;y)} − i(f(p); f(q)). (23)

The dissimilarity is symmetric because of the symmetry of the joint probability
distribution and is nonnegative. When the dissimilarity is 0 the image values have
the maximum statistical dependence, while a greater value accounts for statistical
independence.

Given a dissimilarity threshold α, the induced dependent connected compo-
nents are denoted by dDα -CC. They also form an ordered sequence of segmentations
when increasing the value α because of the property of hierarchies expressed by
(21).

A toy example (see Fig. 5(a)) is considered to compare the behaviour of de-
pendent connectivity with respect to the connectivity based on absolute difference
dissimilarity. This image contains two homogeneous parts altered by small fluctu-
ations. The left part is composed of 0s and 1s, while the right part is composed of
5s and 6s. The statistics for computing the dependent connectivity are estimated
from the toy example. The dependent connectivity edge weights (dD) are rescaled
between 0 and 10, and displayed in Fig. 5(b). The corresponding edge weights
obtained by absolute difference (dA) are given in Fig. 5(a). The connected compo-
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Fig. 5 A toy image is represented by a graph, where the nodes (circles) represent the pixel
values. The dissimilarity values are given in the square boxes. a) The absolute difference based
dissimilarity is represented. b) The local mutual information based dissimilarity is represented.
The local mutual information is estimated from the image pixel values and the resulting dis-
similarity dD is linearly rescaled between 0 and 10, for a better visibility.
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(f) dDα -CC with α ≥ 5

Fig. 6 Experiment on synthetic data showing a transition between two homogeneous regions.
a) The image values. The connected components obtained with the absolute difference dissim-
ilarity dA are given in (b) and (c). The connected components obtained with the local mutual
information dD are given in (d), (e) and (f). Both dissimilarities dA and dD are represented
in Fig. 5 for the current image.

nents derived from both dissimilarities are then represented in Fig. 6. We observe
that the possible connected components generated by dA are either the individual
pixels or the full image support, while the image contains two homogeneous parts.
Such situation is due to the leakage effect through the ramp separating these two
parts [Soille and Grazzini, 2009, Soille, 2011]. Because the dependent connectiv-
ity takes into account the statistical dependences, it succeeds to retain these two
image regions, while isolating the ramp, contrary to connected components based
on the absolute difference dissimilarity. This toy example shows how the depen-
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dent connectivity prevents the leakage effect while producing relevant connected
components.

Proposition 4 If the image values f are systematically transformed by a bijec-
tive differentiable transform b : I ! I, the dependent dissimilarity is unchanged
thanks to the invariance property (18), and dD(b(f(p)), b(f(q))) = dD(f(p), f(q)).
Therefore, the dDα -CCs computed independently from both images f and b(f) will

be strictly equivalent so that ΠdD

f (α) = ΠdD

b(f)(α).

For instance, the segmentations shown in Figs. 6d–f are invariant to bijective differ-
entiable transforms applied to the input image. That is, the dissimilarity threshold
values do not need to be tuned accordingly, contrary to the dissimilarities based on
Lm norms. Such a property is of main interest when processing remote sensing im-
ages which undergo radiometric transforms according to atmospheric conditions,
sun spectral irradiance and on-board sensor corrections. In most cases, these ra-
diometric transforms are unknown, but one can assume that they are bijective
differentiable transforms. In addition, such a property is very useful when fusing
bands of different physical dimensions (e.g., spectral and digital surface model),
since any adjustment of the band variances by a linear transform (such as princi-
pal component analysis [Pearson, 1901], maximum noise fraction transform [Green
et al., 1988], or independent component analysis [Comon, 1994]) is a bijective dif-
ferentiable transform.

3.3 Extension to Constrained Connectivity

Constrained connectivity was introduced in [Soille, 2008] to generate partitions
consisting of maximal dα-connected components satisfying a series of constraints.
The most natural constraint regards a condition on the homogeneity of the in-
tensity values of the pixels belonging to each connected component. The simplest
homogeneity measure is the range of these values. For instance, one may look
for the coarsest partition into dαi -connected components such as the dissimilarity
threshold αi does not exceed a given threshold value α and the total range (dif-
ference between the maximum and minimum value) of each connected component
does not exceed a given threshold value denoted by ω.

A constrained connected component of a pixel p is denoted by d(α,ω)-CC(p)
and is defined with respect to a dissimilarity threshold α and a total range ω
[Soille, 2008]:

d(α,ω)-CC(p) = max
{

dαi -CC(p) | αi  α and R(dαi -CC(p))  ω
 

,

where the function R returns the difference between the maximum and minimum
value of the pixels belonging to its argument. Accordingly, the resulting image par-
tition is denoted by Πd

f (α, ω). Note that while the criterion underlying the notion
of dαi -connected components is a connective criterion (see Sec. 3.1), the criterion
underlying the notion of d(α,ω)-connected components is not connective [Ouzou-
nis and Soille, 2011]. Ronse [2011] calls constrained connective segmentation this
approach of segmentation combining connective and constrained criteria.

For multi-channel images, the total range constraint consists of a vector of
scalar constraints, one for each channel [Soille, 2008]. The generalisation of this ap-
proach to arbitrary constraints expressed in terms of logical predicates is presented
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in [Soille, 2007, Soille and Grazzini, 2009, Soille, 2011, Ouzounis and Soille, 2012].
In the case of images with a very high number of dimensions such as hyperspec-
tral images, rather than considering a total range constraint on all channels of the
input image, the n first channels obtained after some transformation space such
as the principal component or maximum noise fraction transformations [Green
et al., 1988] may be considered. This approach is used in the experiments on hy-
perspectral images in Sec. 5.2 where the total range constraint is applied to the
first principal component.

Dependent connectivity generalises directly to constrained connectivity, and
any constraint can be applied to the dD-CCs. However, contrary to what hap-
pens with dissimilarities based on Lm norms, the total range constraint detailed
above is not directly related to the dissimilarity measure based on local mutual
information. One way to address this problem is to define a homogeneity measure
expressed in terms of dissimilarities. This led to the notion of strongly connected
component or components whose connectivity index do not exceed a given thresh-
old value [Soille, 2008]. Nevertheless, it is possible to design a homogeneity measure
directly related to the local mutual information by using entropy measurements.
This latter approach is put forward hereafter.

The notion of entropy is well established in physics to measure the disorder of
a system, and an entropy based objective function was successfully used in [Zhang
et al., 2003, Guigues et al., 2006] in order to evaluate a segmentation. From this
perspective, the entropy of a connected component can be used to constrain the
segmentation, such that low entropy components are privileged because they have
less disorder.

Definition 5 Given a connected component dα-CC(p) composed of the pixel val-
ues {f(p1), . . . , f(pn)}, its (Shannon)entropy H(dα-CC(p)) is defined:

H(dα-CC(p)) = −
1

n

n
X

i=1

log pCC(f(pi)), (24)

where {f(p1), . . . , f(pn)} are independent and identically distributed with the
probability distribution pCC.

In practice, pCC is estimated from the pixel values of dα-CC(p). The entropy H

generalises the total range R measure, since values lying in a small range interval
get mechanically a low entropy, while the opposite is not always true.

A differential entropy constraint criterion is proposed hereafter in order to
obtain the bijective transform invariance. In general, the entropy can be thought
as the Kullback-Leibler divergence between the considered distribution and the
uniform probability distribution.

Definition 6 The differential entropy HD of a connected component dα-CC(p) is
obtained by comparing the distribution pCC of pixel values inside the component
with the global pixel values distribution pf :

HD(dα-CC(p)) = −
1

n

n
X

i=1

log
pCC(f(pi))

pf (f(pi))
. (25)
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Thanks to the proposition 2, this constraint is invariant to any bijective and dif-
ferentiable function assuming a perfect estimate of pCC, while still privileging the
components being more organised than the full image. In summary, constraint
connectivity based on the local mutual information and the differential entropy
provides a unique partition of any image which is invariant to deterministic trans-
forms. Nevertheless, this constraint is not tested in the experimental section be-
cause of its high computational complexity, and it is substituted by a constraint
on the range of the pixel values in the component.

4 Probability Distribution Estimation

When considering multichannel images the problem of joint and marginal proba-
bility distribution estimation becomes cumbersome due to the explosion of dimen-
sions. Assuming a Gaussian distribution, only the estimation of the mean vector
and the covariance matrix are necessary to compute the local mutual information
(12). Nevertheless, in case this assumption does not hold true, the estimation fails.
Thus, a projection depth function based method for estimating multivariate dis-
tributions is presented, such that it is robust to the number of dimensions without
assuming an a priori distribution shape.

The projection depth function definition is recalled in Sec. 4.1. It is shown
to be equivalent to the Mahalanobis distance for Gaussian random variables in
Sec. 4.2 and is therefore an approximation of the logarithm of centered probability
distributions. This property is exploited in Sec. 4.3 to define the depth function
based local mutual information, which is an original approximation method of the
considered metric for multidimensional signals.

4.1 Projection depth function

The basic concept of a projection depth function was firstly introduced in [Donoho
and Gasko, 1992] and subsequently developed in [Zuo and Serfling, 2000, Zuo,
2003]. It defines the measures of centrality for a vector x with respect to a multi-
variate distribution or a multivariate data cloud (X) as the worst case outlierness
with respect to the one-dimensional scale functional in any one-dimensional pro-
jection. Formally, the projection depth function df for a vector x according to a
data cloud X = [x1, . . . ,xk] is defined as follows [Donoho and Gasko, 1992]:

df(x;X) = sup
u2Sk−1

|uTx−Med(uTX)|

MAD(uTX)
, (26)

where Med is the median, MAD is the median absolute deviation and S
k−1 = {u 2

R
k | kuk = 1} is the k-dimensional sphere. An ilustrative example is provided in

Fig. 7.
Robust estimators of localisation Med and variability MAD are included in (26)

because they are not unduly affected by outliers [Zuo, 2003]. Projection depth has
been used to robust multivariate classification [Cui et al., 2008], classification of
function data [Cuevas et al., 2007], and ordering for performing morphological
transforms on multivariate images [Velasco-Forero and Angulo, 2012, 2011]. The
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(a) (b)

(c) (d)

(e)

Fig. 7 a) Scatterplot of 22 bi-dimensional vectors. b) Given a random vector (u) (red line),
vectors in (X) are projected uTX (Red points). Median on the projection (Med(uTX)) is
represented by a triangle. c) For a given vector x, in this case labeled by ”1”, its value in
the projection depth is the distance in the projection |uTx − Med(uTX)| (solid black line).
In the definition the denominator MAD(uTX) is a scale normalization. d) and e) show the
computation for a second random projection. Note that definition (26) takes the maximum of
those “univariate eccentricities”.
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projection depth function is a nonnegative mapping satisfying the following prop-
erties [Liu, 1990] [Zuo and Serfling, 2000]:

1. df(Ax + b;AX + b) = df(x;X) holds for any random vector x in R
k, any

k ⇥ k nonsingular matrix A, and any b 2 R
k. That invariance to affine trans-

formations means that the depth of a vector x 2 R
k should not depend on the

underlying coordinate system or, in particular, on the scales of the underlying
measurements;

2. df(θ;X) = infx2Rk df(x;X) holds for any X having centre θ. That means, for
any distribution having a unique ’centre’, the depth function should attain its
minimum value at this centre;

3. df(x;X) ≥ df(θ+α(x−θ);X) holds for any X having a deepest point θ and any
α 2 [0, 1], i.e., as a point x 2 R

k moves away from the deepest point along any
fixed ray through the centre, the depth at x should decrease monotonically;

4. df(x;X) ! 1 as ||x|| ! 1, for each X, i.e., the depth of a point x should
approach to infinity as its norm approaches infinity.

Note that df(x;X) cannot be calculated in practice, because it requires the
analysis for an infinite set of random projections. Our approach follows the sug-
gestion in [Zuo, 2006], replacing the supremum in (26) by a maximum over a finite
number of randomly chosen projections, obtaining a random approximation to the
random projection depth. The same argument have been used in [Cuesta-Albertos
and Nietos-Reyes, 2008] for other types of statistical depth functions. Thus, we cal-
culate an approximate value of df(x;X) by using q random projections uniformly
distributed in S

k−1 as follows:

df(x; q,X) = max
u2U

|uTx−Med(uTX)|

MAD(uTX)
, (27)

where U = {u1,u2, . . . ,uq} with ui 2 S
k−1. Clearly, if q ! 1 then df(x; q,X) !

df(x;X).

4.2 Equivalence With Gaussian Distribution

When Gaussian variables are considered, the depth function admits an analyti-
cal formulation expressed in terms of Mahalanobis distance. This analytical for-
mulation shows that the depth function approximate the logarithm of centered
probability distributions up to a normalization scalar.

For A a positive definite matrix, and z a given vector, and u a non zero
arbitrary vector, the following equality holds [Johnson and Wichern, 2007, p. 65]:

sup
u 6=0

(utz)2

utAu
= zTA−1z. (28)

Proposition 5 Let X = [x1,x2, . . . ,xn] be a i.i.d. random sample of size n,
where X ⇠ N (µ,Σ), then the depth function can be expressed by the Mahalanobis
distance:

c1df(x;X)2 = (x− µ)TΣ−1(x− µ), (29)

with c1 = (Φ−1(3/4))2 ⇡ .454936, where Φ−1 is the inverse Gaussian cumulative
distribution function.
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Proof Since X ⇠ N (µ,Σ), we can say that uTX is symmetric about uTµ, then
Med(uTX) = uTµ for any u 2 R

k. Additionally, normalising by the norm of u,
we constrain the search-space to random projections being in the k-dimensional
sphere as follows:

df(x;X)2 = sup
u 6=0

⇢

|uTx−Med(uTX)|2

MAD2(uTX)

}

, (30)

= sup
u2Sk−1

(

(uT (x− µ))2

uTΣu

✓

σ(uTX)

MAD(uTX)

◆2
)

. (31)

Multiplying the numerator and denominator terms by σ2(uTX), the variance of
uTX, we obtain:

df(x;X)2 = sup
u2Sk−1

(

(uT (x− µ))

uTΣu

✓

σ(uTX)

MAD(uTX)

◆2
)

,

where the second term is constant and it is the ratio between MAD and the stan-
dard deviation σ for a Gaussian distribution [Sachs, 1984, p. 253], i.e., MAD(X)/σ(X) =
Φ−1(3/4). Thus, the square of the projection depth function can be expressed as:

df(x;X)2 = max
u2Sk−1

⇢

(uT (x− µ))2

uTΣu

}

1

(Φ−1(3/4))2
,

and by using (28):

df(x;X)2(Φ−1(3/4))2 = (x− µ)TΣ−1(x− µ).

ut

4.3 Approximate Local Mutual Information

In the absence of a priori information, the sample covariance matrix is a natural
candidate in the case of small dimensionality but no longer performs very well for
moderate or large dimensionality [Johnstone, 2001]. On the other hand, application
of connectivity by using vector distance is affected by the curse of dimensionality
[Bellman, 1961], so that robust estimation methods are required. Exploiting the
depth function, an approximation of the local mutual information is proposed
hereafter.

Proposition 6 Given a set of realizations {zi = (xi,yi)} following a Gaussian
distribution N (µZ, ΣZ), the local mutual information is exactly expressed with the
depth function from (12) and (29):

iG(x;y) = −
1

2
(z− µZ)

TΣ−1
Z (z− µZ) +

1

2
(x− µX)TΣ−1

X (x− µX)

+
1

2
(y − µY)TΣ−1

Y (y − µY)−
1

2
log

detΣZ

detΣX detΣY

, (32)

= −
c1
2

⇣

df(z;Z)2 − df(x;X)2 − df(y;Y)2
⌘

−
1

2
log

detΣZ

detΣX detΣY

. (33)
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Definition 7 Let {zi = (xi,yi)} be a set of realizations of the random variable
Z = (X,Y), we define the depth function based local mutual information by:

idf (x;y) = −
c1
2

⇣

df(z;Z)2 − df(x;X)2 − df(y;Y)2
⌘

. (34)

Such a function is an approximation up to a constant of the true local information
of Gaussian variables. In the case where the random variables are not Gaussian, the
depth function still captures the structure of the ”centred” distribution, so that
idf (x;y) remains a measure of dependence. The proposed depth function based
local mutual information allows us to define a dependent dissimilarity function
following (23). It can be viewed as an adaptive connective criterion. The approxi-
mation power of (34) is assessed in Sec. 5.1.

5 Experiments

The approximation of the depth function based mutual information is tested with
simulated data in Sec. 5.1. Then two experiments are conducted with remote
sensing images in Secs. 5.2 and 5.3 respectively. The first experiment assesses
the effectiveness of the proposed dissimilarity to segment hyperspectral image.
The second one assesses the invariance property of the proposed local mutual
information by processing multi-angular very high resolution images.

5.1 Simulation of Depth Function Based Local Mutual Information

As expressed by (34), the depth function based local mutual information idf tends
to the local mutual information of Gaussian variables iG, but it does not require
the estimation of the covariance matrix ΣZ nor the mean vector µZ. The curse
of dimensionality affects the approximation requiring more realizations when the
dimension increases, such that more projections are required to obtain a better
approximation. This fact is illustrated in Fig. 8(a), where several sets of real-
izations are drawn from k-dimensional Gaussian distributions Z ⇠ N (µZ, ΣZ).
The minimum number of projections to obtain a significant local mutual infor-
mation approximation is displayed with respect to the number of dimensions. As
expected, the number of required projections explodes as the number of dimension
increases. The optimal number of random projections is still an open question and
it is beyond the scope of this paper. The second important issue is the number of
realizations available for the estimation. In Fig. 8(b), the approximation power of
iG to the true idf is assessed with different sets of Gaussian realizations. As the
number of samples increases the approximation has a lower variance, until reach-
ing a normalised correlation of 0.8. For example, 1000 samples are sufficient for a
estimating the local mutual information in a 20-dimensional space.

Finally, the robustness to non Gaussian random variables is assessed by synthe-
sising realizations from a mixture of Gaussians. To illustrate the performance of the
depth function based local mutual information, we consider random realizations
from mixtures of two Gaussian distributions Z ⇠ (1−β)N (µ0, ΣZ)+βN (µ1, ΣZ),
with different values of the mixing rate β = {0.05, 0.1, . . . , 0.3}. Both means µ0

and µ1 are selected to be separated by a distance equal to maximum variance of
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(a)

(b)

Fig. 8 a) Minimum number of projections to get a correlation coefficient
ρ(idf (x;y), iG(x;y)) > 0.8, given a set of 5000 realizations {zi = (xi, yi)} following a
Gaussian distribution N (µZ, ΣZ). The figure shows the number of projections calculated 50
times for different values of the dimension k. b) Number of samples n vs ρ(idf (x;y), iG(x;y)),
in 25 realizations from a k-variate Gaussian distribution Z ∼ N (µZ, ΣZ), where the dimension
is k = 20 and the number of projections is 2000.
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Fig. 9 The data are synthesised thanks to a mixture of Gaussian: Z ∼ (1 − β)N (µ0, ΣZ) +
βN (µ1, ΣZ), where the dimension is k = 4 and the number of realizations is n = 5000. The
correlation coefficients ρ(idf (x;y), i(x;y)) and ρ(iG(x;y), i(x;y)) are plotted for various values
of the mixture rate β. 25 tests are performed for each definition and β.

ΣZ . As the analytic formulation of the distribution is available, the true local mu-
tual information function i(x;y) can be computed and considered as a reference.
Then, both estimates of the local mutual information idf and iG are compared to
the reference i by computing the normalised correlations. The results are given in
Fig. 9, where the robustness of the depth function is emphasised with respect to
the Gaussian assumption. As the mixing rate increases, the Gaussian local mu-
tual information fails in approximating correctly the dependence, while the depth
function based measure succeeds in maintaining a robust approximation.

5.2 Hyperspectral Image Segmentation

The effectiveness of the proposed dissimilarities is illustrated on a hyperspectral
image. This image covers an urban area including the university of Pavia, and
was acquired by the ROSIS-03 optical sensor. The image has spatial dimensions
of 610 by 340 pixels, with a spatial resolution of 1.3m per pixel and with spectral
coverage of 115 bands ranging from 0.43 to 0.86µm. The 12 most noisy channels
are usually removed when experimenting with this data set [Plaza et al., 2006] so
that our experiments are conducted on resulting 103-band image. The image and
the corresponding edge maps are depicted in the top row of Fig. 10.

The thresholds α, αd, αg are selected such that the segmentations (see Figs. 10(f)–
(h)) have the same number of connected components, i.e. 104 components. The
results show that this criterion by itself tends to connect all the pixels creating
a large connected component. In addition, the number of connected components
with respect to the connectivity threshold is analysed in Fig. 11. While the L1

norm based dissimilarity produces segmentations where the number of compo-
nents drops immediately, the other dissimilarities produce segmentations where
the number of components decreases smoothly in a first stage, before a sharper
decrease. This analysis shows that more segmentation possibilities are obtained
with the local mutual information moving from finer to coarser segmentations.

By considering a unique homogeneity predicate, segmentations (see Figs. 10(j)–
(l)) are derived from the three dissimilarities where homogeneous components are
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Fig. 10 a) The hyperspectral image is represented with the bands [80,70,30]. The edge maps
of the three dissimilarities L1, idf , iG are represented in (b), (c), (d), respectively. e) The
principal component with the highest variance is displayed. The unconstrained segmentations
are displayed in (f)–(h). Finally, the constrained segmentations derived from the dissimilarities
(b)–(d) are displayed in (j)–(l) by adopting a random colour for each connected component. The
constraints are the same for the three segmentations, by using a common threshold ω = 140
on the range of the first principal component rescaled in the interval [0, 255].
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Fig. 11 The number of connected components with respect to the connectivity threshold is
depicted. The three dissimilarities are considered and their thresholds are normalised in the
range [0, 1].

retained. The considered homogeneity criterion exploits the principal component
(see Fig. 10(e)) derived by PCA [Pearson, 1901] from the hyperspectral image.
The predicate sets the maximum range ω between the pixels values of the principal
component belonging to a connected component. Due to the chaining effect [Duda
et al., 2000, p. 554], the absolute difference based segmentation produces large
components absorbing several objects of interest on the ground even though this
effect is reduced by using the ω constraint. On the contrary, the local mutual
information based segmentations mitigates these effects while producing relevant
connected components. On the other hand, the local mutual information prevents
the connection of pixels having values close to the global average spectral re-
sponse. This phenomenon can be understood by analyzing the function iG(x;y)
(see Fig. 1(c)) along the line x = y, where the local mutual information increases
for equal values x = y away from the distribution center. Therefore, this property
prevents the formation of connected components that would be obtained when
considering the L1 norm.

5.3 Multi-Angular Multi-Spectral Optical Images

In this experiment, the dissimilarities are computed from a multi-angular sequence
of multi-spectral WorldView-2 images, where atmospheric spectral distortions in-
crease with the off-nadir view angle [Longbotham et al., 2011]. Such distortions
may be modelled by unknown bijective transforms of pixel spectral values from one
image to the other [Gueguen et al., 2012], while ignoring the geometrical distor-
tions. Therefore, the proposed dissimilarities should be invariant to these unknown
bijective transforms and this property is investigated in this section.

A set of WorldView-2 multi-sequence images is considered for this experiment.
This data set is composed of 5 Ortho Ready Standard WorldView-2 multi-angular
acquisitions, including a 16 bit panchromatic image and a multispectral 8-band
image. These images represent a subpart of the city of Rio in Brazil, and were
acquired on January 2010. The 5 acquisition angles are summarised in table 1.
The corresponding image sequence is depicted in Fig. 12, by displaying the red,
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Table 1 The five acquisition configurations {θ1, . . . , θ5} are summarised by the satellite az-
imuth and elevation, resulting in a decreasing sequence of the in off-nadir view angle.

θ1 θ2 θ3 θ4 θ5
Satellite Azimuth 12.5deg 12.2deg 9.4deg 193.7deg 193.2deg
Satellite Elevation 44.7deg 56.0deg 81.3deg 59.8deg 44.6deg

Off-nadir View Angle 39.2deg 29.8deg 7.6deg -26.7deg -39.5deg

(a) θ1 (b) θ2 (c) θ3 (d) θ4 (e) θ5

Fig. 12 The multi-angular sequence of multi-spectral images, having a size of 513×768×8 and
a resolution of 1.85m, is represented (true colour composition). The five images acquisitions
parameters are summarised in table 1. Credit DigitalGlobe 2010.

green, and blue colour compositions.
In this experiment the multispectral images are analysed and the dissimilarities

based on the L1 norm and the local mutual informations idf and iG are considered.
For notation simplicity, Ed

θi
denotes the edge map of the image θi where edges are

computed thanks to the dissimilarity function d (22). Moreover, Πd
θi
(α, ω) denotes

the segmentation of the image θi composed of the constrained connected compo-
nents obtained with a dissimilarity threshold α and a range constraint threshold
ω. In this case, the constraint is given by the range of the first principal component
inside each component. In the described experiment, the various thresholds α are
selected to obtain an equivalent number of connected components and ω is strictly
the same for all segmentations. The edge maps and segmentations are depicted in
Figs. 13-15 for the 3 dissimilarities, respectively.

By visual inspection of Fig. 13, as expected the edge maps obtained with the L1

norm vary in contrast along the off-nadir view angle. While the most nadir image
θ3 produces sharp edges, the off-nadir edge maps EL1

θ1
, EL1

θ5
exhibit lower contrast,

thus less sharp edges. Accordingly, coarser segmentations are obtained as the image
gets further from nadir acquisition, assuming a constant dissimilarity threshold α
and a constant constraint threshold ω. This instability is noticeable in the series
of segmentation displayed in Fig. 13. On the contrary the edge maps produced
from the local mutual information based dissimilarity highlight stable contrast
across angle (see Figs. 14-15). This behaviour can be explained by the invariance to
unknown bijective transforms (proposition 4). Only the visual analysis of resulting
segmentations indicates that idf is less impacted by the acquisition angle than iG,
as the segmentation sequence based on idf (see Fig. 14) appears more stable than
the one based on iG (see Fig. 15).

To quantitatively assess the impact of the acquisition off-nadir view angle on
the dissimilarity measurements, the various edge maps are compared using he
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(a) EL1

θ1
(b) EL1

θ2
(c) EL1

θ3
(d) EL1

θ4
(e) EL1

θ5

(f) Π
L1

θ1
(α, ω) (g) Π

L1

θ2
(α, ω) (h) Π

L1

θ3
(α, ω) (i) Π

L1

θ4
(α, ω) (j) Π

L1

θ5
(α, ω)

Fig. 13 The first image row contains the edge maps of the five successive multi-angular
images, where the dissimilarity is expressed by the L1 norm. The second image row contains the
constrained segmentations obtained with a constant dissimilarity threshold α and a common
constraint threshold ω = 150.

Pearson’s correlation coefficient which is expressed by

ρ(A,B) =
cov(A,B)

p

var(A)var(B)
.

Note that this metric is impacted by the geometric distortions such as perspective
distortions introduced by varying off-nadir view angles. The Pearson’s correlation
coefficients calculated between pairs of edge maps derived from the corresponding
pair of off-nadir angles and using the dissimilarity measurements L1, idf , and iG
are gathered in table 2. For a given dissimilarity measurement, the correlation
coefficients between two edge maps decrease with the absolute difference of the
off-nadir view angles θi. For example, the highest correlation is observed for all 3
dissimilarities for the image pair corresponding to the smallest angular difference,
i.e., 9.6o = |θ1−θ2|. A comparison between the values obtained for each dissimilar-
ity measurement confirms that the depth function based local mutual information
idf produces the most similar edge maps, as the correlation coefficients are the
highest for all image pairs. Moreover, the results show that the Gaussian local
mutual information iG is less stable than the L1 norm, since the corresponding
correlation coefficients are smaller. This observation shows that the depth function
produces a closer estimate of the joint distribution than the Gaussian assumption,
resulting in a higher stability of the subsequent edge maps.

In order to compare the multi-angular segmentations, we use the asymmet-
ric normalised partition similarity. Having two segmentations ΠA = {CA

i } and
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(a) E
idf
θ1

(b) E
idf
θ2

(c) E
idf
θ3

(d) E
idf
θ4

(e) E
idf
θ5

(f) Π
idf
θ1

(αd, ω) (g) Π
idf
θ2

(αd, ω) (h) Π
idf
θ3

(αd, ω) (i) Π
idf
θ4

(αd, ω) (j) Π
idf
θ5

(αd, ω)

Fig. 14 The first image row contains the edge maps of the five successive multi-angular images,
where the dissimilarity is expressed by the depth function based local mutual information
idf . The second image row contains the constrained segmentations obtained with a constant
dissimilarity threshold αd and a common constraint threshold ω = 150. αd is selected to obtain
an equivalent number of CC as the one obtained with the L1 norm and α.

ΠB = {CB
j } compound of disjoint sets covering the image grid set, the directional

matching Γ between the segmentation sets is obtained by maximising the Jaccard
metric J [Jaccard, 1901]:

ΓΠA)ΠB (CA
i ) = arg max

D2{CB
j }

J (CA
i , D), (35)

J (CA
i , CB

j ) =
|CA

i \ CB
j |

|CA
i [ CB

j |
. (36)

Definition 8 The asymmetric normalised partition similarities SJ is defined as
the weighted average of the Jaccard indices, giving more weights to larger compo-
nents:

SJ (ΠA ) ΠB) =

P

i |C
A
i |J (CA

i , ΓΠA)ΠB (CA
i ))

P

i |C
A
i |

. (37)

Comparable weighted partition similarity measurements are investigated in [Meila,
2003]. Indentical partitions have a similarity SJ equals to 1. If one segmentation
is finer than the other one ΠA ✓ ΠB , then SJ (ΠA ) ΠB)  SJ (ΠB ) ΠA).
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(a) E iG
θ1

(b) E iG
θ2

(c) E iG
θ3

(d) E iG
θ4

(e) E iG
θ5

(f) Π
iG
θ1

(αg , ω) (g) Π
iG
θ2

(αg , ω) (h) Π
iG
θ3

(αg , ω) (i) Π
iG
θ4

(αg , ω) (j) Π
iG
θ5

(αg , ω)

Fig. 15 The first image row contains the edge maps of the five successive multi-angular im-
ages, where the dissimilarity is expressed by the Gaussian local mutual information iG. The
second image row contains the constrained segmentations obtained with a constant dissimi-
larity threshold αg and a common constraint threshold ω = 150. αg is selected to obtain an
equivalent number of CC as the one obtained with the L1 norm and α.

Definition 9 A symmetric normalised partition similarity is obtained by taking
the average of the asymmetric normalised partition similarities:

SJ (ΠA, ΠB) = SJ (ΠB , ΠA) =
SJ (ΠA ) ΠB) + SJ (ΠB ) ΠA)

2
.

This metric is computed between the unconstrained segmentations obtained from
the multi-angular sequence of images, selecting a constant dissimilarity threshold
for all angles. The results are collected in table 3. It shows that the local mutual
informations produce segmentations which are more stable than the ones obtained
using the L1 norm, despite the smaller cross correlation of the Gaussian mutual
information. In addition, we observe that the depth function based local mutual
information gives the segmentations which are the most similar. An analysis of the
asymmetric normalised partition similarities also revealed that the segmentations
obtained for the depth function based local mutual information are more balanced
that those obtained for the other two dissimilarities. Indeed, the mean of the
absolute difference of the asymmetric normalised partition similarities obtained
for all pairs of multi-angular images is equal to 2.59, 2.38, and 3.34 for L1, idf , and
iG respectively.

The numbers of connected components produced by the unconstrained segmen-
tations Π performed on the multi-angular sequence are shown in Fig. 16. These
numbers are given for the three dissimilarities and are represented with respect
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Table 2 Pearson’s coefficients ρ obtained between the edge maps E computed from the multi-
angular sequence of off-nadir view angles θi. The highest normalised correlation coefficients
among the 3 dissimilarities L1, idf , and iG are highlighted in bold.

ρ(A,B) EL1

θ1
EL1

θ2
EL1

θ3
EL1

θ4
EL1

θ5

EL1

θ1
1.00 0.79 0.57 0.51 0.50

EL1

θ2
- 1.00 0.67 0.54 0.51

EL1

θ3
- - 1.00 0.60 0.52

EL1

θ4
- - - 1.00 0.75

EL1

θ5
- - - - 1.00

ρ(A,B) E
idf
θ1

E
idf
θ2

E
idf
θ3

E
idf
θ4

E
idf
θ5

E
idf
θ1

1.00 0.86 0.73 0.66 0.63

E
idf
θ2

- 1.00 0.77 0.69 0.65

E
idf
θ3

- - 1.00 0.75 0.67

E
idf
θ4

- - - 1.00 0.85

E
idf
θ5

- - - - 1.00

ρ(A,B) E iG
θ1

E iG
θ2

E iG
θ3

E iG
θ4

E iG
θ5

E iG
θ1

1.00 0.66 0.44 0.39 0.37

E iG
θ2

- 1.00 0.55 0.43 0.37

E iG
θ3

- - 1.00 0.47 0.38

E iG
θ4

- - - 1.00 0.62

E iG
θ5

- - - - 1.00

Fig. 16 The numbers of connected components resulting from the unconstrained segmenta-
tions obtained from the multi-angular image sequence are represented. The three dissimilarities
are considered and their thresholds are normalised in the range [0, 1].

to the normalized dissimilarity thresholds. This analysis highlights the variability
(with respect to the angle) of the number of connected components in the hier-
archies induced by the considered dissimilarities. The results confirm the higher
stability of the dependent connectivities across the view angles.

In summary, these experiments show that the depth function based local mu-
tual information is less sensitive to unknown spectral distortions such as those
occurring for multi-angular views of the same scene.
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Table 3 Symmetric normalised partition similarities SJ obtained between the unconstrained
segmentations Π performed on the multi-angular sequence. The dissimilarity thresholds
α, αd,mg are selected to obtain equivalent numbers of connected components for the most
nadir image θ3. The highest partition similarities among the 3 dissimilarities are highlighted
in bold.

SJ (A,B) Π
L1

θ1
(α) Π

L1

θ2
(α) Π

L1

θ3
(α) Π

L1

θ4
(α) Π

L1

θ5
(α)

Π
L1

θ1
(α) 1.0 0.27 0.18 0.19 0.22

Π
L1

θ2
(α) - 1.0 0.27 0.24 0.19

Π
L1

θ3
(α) - - 1.0 0.28 0.17

Π
L1

θ4
(α) - - - 1.0 0.21

Π
L1

θ5
(α) - - - - 1.0

SJ (A,B) Π
idf
θ1

(αd) Π
idf
θ2

(αd) Π
idf
θ3

(αd) Π
idf
θ4

(αd) Π
idf
θ5

(αd)

Π
idf
θ1

(αd) 1.0 0.56 0.49 0.38 0.44

Π
idf
θ2

(αd) - 1.0 0.52 0.39 0.44

Π
idf
θ3

(αd) - - 1.0 0.40 0.46

Π
idf
θ4

(αd) - - - 1.0 0.46

Π
idf
θ5

(αd) - - - - 1.0

SJ (A,B) Π
iG
θ1

(αg) Π
iG
θ2

(αg) Π
iG
θ3

(αg) Π
iG
θ4

(αg) Π
iG
θ5

(αg)

Π
iG
θ1

(αg) 1.0 0.33 0.28 0.28 0.24

Π
iG
θ2

(αg) - 1.0 0.33 0.28 0.26

Π
iG
θ3

(αg) - - 1.0 0.31 0.26

Π
iG
θ4

(αg) - - - 1.0 0.32

Π
iG
θ5

(αg) - - - - 1.0

6 Conclusion

The dependent connectivity is presented as an alternative connection measure
to perform image segmentation. The dependence measure is based on the local
mutual information between adjacent pixel values. This measure is extended to
multi-dimensional images by the introduction of the depth function being robust
in high dimensions. This dependence measure is shown to be invariant to any
differentiable bijective transform, such that the induced image segmentations have
the same invariance property. Experiments with hyper-spectral image show the
interests of such dissimilarity to produce segmentations which are less sensitive
to the leakage effect. Other experiments with multi-angular multi-spectral images
highlight the higher stability of the proposed approach with respect to unknown
bijective transforms.
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