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Phylogenetic Oligonucleotide Arrays (POAs) were recently adapted for studying the huge microbial communities in a flexible
and easy-to-use way. POA coupled with the use of explorative probes to detect the unknown part is now one of the most
powerful approaches for a better understanding of microbial community functioning. However, the selection of probes remains
a very difficult task. The rapid growth of environmental databases has led to an exponential increase of data to be managed for
an efficient design. Consequently, the use of high performance computing facilities is mandatory. In this paper, we present an
efficient parallelization method to select known and explorative oligonucleotide probes at large scale using computing grids. We
implemented a software that generates and monitors thousands of jobs over the European Computing Grid Infrastructure (EGI).
We also developed a new algorithm for the construction of a high-quality curated phylogenetic database to avoid erroneous design
due to bad sequence affiliation.We present here the performance and statistics of our method on real biological datasets based on a
phylogenetic prokaryotic database at the genus level and a complete design of about 20,000 probes for 2,069 genera of prokaryotes.

1. Introduction

The total number of species on our planet is of about 9 mil-
lion, according to the latest biodiversity estimate. However,
the vast majority of these species are not yet discovered and
only over 1.2million species have been already catalogued in a
central database [1]. Most nondescribed species are microor-
ganisms. Microbial communities represent the most impor-
tant and diverse group of organisms living on earth.They play
an important role in the functioning of ecosystems [2]. The
comprehension of the role of microorganisms is then a major

challenge of microbial ecology. Because of the huge micro-
bial biocomplexity, high-throughput molecular tools allow-
ing simultaneous analyses of existing populations are well
adapted to survey microorganisms in complex environments
[3].

Phylogenetic Oligonucleotide Arrays (POAs) are cur-
rently widely used and are one of the most promising ap-
proaches for studyingmicrobial communities.They generally
use oligonucleotide probes to target small subunit ribosomal
RNA (SSU rRNA) genes and discriminate organisms. SSU
rRNA gene is a phylogenetic biomarker largely used in the
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majority of studies. However, the sequences could be highly
conserved leading to some difficulties for species discrimina-
tion. Consequently, specific oligonucleotide probes selection
for POAs could be a very difficult task to obtain a high reso-
lution level [4].

Efficient oligonucleotide probes must have the following
two properties: sensitive and specific. The sensitivity of a
probe means its capacity to detect low levels of its comple-
mentary target in complex samples. A sensitive probe is one
that is able to access its complementary sequence in the target
and returns a strong signal when the target is present in the
hybridized sample. The sensitivity generally increases with
probe length as the binding energy for longer probe/target
hybrid complexes is typically higher and hybridization kinet-
ics are irreversible.

The specificity of a probe means its capacity to hybridize
only with its complementary counterpart target. A specific
probe is one that does not cross-hybridize with a nontarget
sequence and returns a weak signal when the target is
absent from the hybridized sample. The specificity generally
decreases with the increase of probe length: short oligonu-
cleotide probes are more specific, allowing discrimination of
single nucleotide polymorphisms under optimal conditions,
but at the cost of reduced sensitivity. The specificity is the
most important criterion of the probes quality measure
in probe design algorithms [5]. Probe design algorithms
usually use specific algorithms such as suffix array method
or BLAST [6] to check the specificity of probes by searching
possible cross-hybridizations against datasets. However, the
exponential increase of the number of sequences deposited in
public databases induced an important increase in the com-
putational capacity requirements of oligonucleotide probe
design algorithms [7] and also a fundamental change in the
way these algorithms are designed.

It is true that we can find fast probe design software
running on regular PCs because they allow selecting probes
for few DNA sequences or/and do not check the specificity
of the obtained probes. The probe specificity tests against the
large and ever growing biological datasets require a particular
attention to develop a new generation of probe design soft-
ware able to deal with high performance computing. In
this context, parallel and distributed architectures such as
computing clusters or computing grids [8] can provide inter-
esting performances. Computing grids provide a promising
approach to use distributed resources to meet the continu-
ously evolving computational needs of bioinformatics tools
[9]. They are particularly suited when the parallelism can
be based on data splitting providing true independent com-
puting [10]. They allow a transparent use of geographically
dispersed resources for largescale distributed applications.
They are adapted for time consuming algorithms that can be
split into several independent jobs.

In addition to the use of known probes in POAs that
allow us to simultaneously study several thousand known
organisms, it is also important to design explorative probes
that can detect unknown sequences not yet available in public
databases and explore the vast majority of microorganisms
that are still nondiscovered [3].

Here, we present a new parallelization method of a probe
design algorithm to select known and explorative oligonu-
cleotide probes using a computing grid. This software runs
on the European Grid Infrastructure (EGI). EGI is a multi-
disciplinary grid infrastructure providing more than 250.000
CPU cores and more than 100 petabytes over 51 countries
(http://www.egi.eu/). We introduced an efficient paralleliza-
tion method to take advantage of the computing power avail-
able in the EGI grid to perform largescale oligonucleotides
selection. We present also a new algorithm for the construc-
tion of a personal high-quality phylogenetic database that can
be used to select specific, sensitive, and explorative probes
targeting any prokaryotic or fungal taxonomic group, for
phylogenetic oligonucleotide microarrays.

2. Related Works and Limitations

Phylogenetic Oligonucleotide Arrays (POAs), targeting the
SSU rRNA genes, are known as one of the most interesting
approaches to study the microbial diversity in complex envi-
ronments [11]. In the last ten years, several works were done
to study the biodiversity of different environments using
such POAs. A microarray composed of 132 probes of length
18mers was proposed to monitor prokaryotic microorgan-
isms involved in sulphate reduction [12]. Another microarray
considered as the most evolved POA called “PhyloChip” was
developed by Brodie et al. [13] based on the Affymetrix
GeneChip platform. The PhyloChip is composed of nearly
500 000 oligonucleotide probes targeting almost 9000 oper-
ational taxonomic units. This tool has been used to charac-
terize prokaryotic communities fromvarious ecosystems [13–
17].

Additionally, several tools were proposed to select probes
for phylogenetic arrays; they are discussed hereafter and in
Dugat-Bony et al. [3].

The PRIMROSE program [18] was proposed to select
both oligonucleotide probes and PCR primers. The probe
design mechanism of PRIMROSE consists in first producing
a multiple alignment for a given group of sequences. Probes
are then selected and subsequently tested against an input
database, to search for potential cross-hybridizations and
to verify the coverage of the targeted group of sequences.
PRIMROSE has been mainly used in PCR-based and FISH
(fluorescent in situ hybridization) approaches [19, 20], but
only a few applications of POAs using PRIMROSE have been
reported [21]. The PRIMROSE tool does not allow selecting
explorative probes. The ARB software package [22] proposed
a probe design tool that allows selecting oligonucleotide
probes with a length of 10 to 100mers. This tool consists
in searching all possible signature sequences of a targeted
group of organisms specified by the user. Probes are then
selected andmatched against a database using the ARB Probe
Match software. The ARB probe design tool has been used to
design low-density custom-made POAs, composed of only a
few hundreds of probes [23–25]. However, this probe design
software is not well suited for large scale oligonucleotide
probe design. Furthermore, it allows selecting only probes
targeting known organisms and does not allow selecting
explorative probes.
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ARB and PRIMROSE tools allow selecting promising
probes or primers for a single organism or a group of related
organisms. However, emerging experimental approaches
seek to simultaneously detect numerous organisms of interest
thereby requiring the identification of large numbers of com-
patible probes [7, 26].

Oligonucleotide retrieving for molecular applications
(ORMA) [27] is one of the most recent software proposed to
select oligonucleotide probes. ORMA is composed of a set of
scripts developed underMatlab and uses the BLAST program
to check the specificity of the oligonucleotide probes selected.
It allows designing probes for molecular application experi-
ments on sets of highly similar sequences. ORMA was first
applied to the design of probes targeting 16S rRNA genes, but
it can also be used on any set of highly correlated sequences.
This probe design tool has been used to design the HTF-
Microbi-Array allowing high taxonomic level fingerprinting
of the human intestinal microbial community [28].

All of these programs allow selecting probes targeting
only knownmicrobial communities with available sequences
in public environmental databases. A few tools such as
PhylArray [29] were designed with the possibility of selecting
explorative probes for phylogenetic microarrays. PhylArray
was developed with the Perl language. It allows selecting
probes for a group of SSU rRNA sequences to globally survey
known and unknown bacterial communities. Probe selection
using PhylArray can take several days for only one large group
of sequences.

In this work, we present a new parallel approach to
select both known and explorative oligonucleotide probes on
computing grids. The probe design strategy is based on the
original algorithm PhylArray described in Militon et al. [29].

3. Material and Methods

3.1. Implementation. Ourmethod was implemented in a pro-
gram called PhylGrid 2.0. It was developed under Linux
CentOS 5.4 with C++ and Perl. It uses three other programs:
BLAST [6], Clustalw-MPI [30], and Opal [31].

Our approach hides the EGI grid to the user who just uses
a regular computer which acts as a grid UI (User Interface:
a grid component for user access to the grid). The first
step was to implement the software on the User Interface
(UI). This allows a direct connection to the EGI grid using
a proxy authentication for the submission of multiple jobs.
The main resources used by our grid application are the
Workload Management System (WMS), a Berkeley Database
Information Index (BDII), Computing Elements (CEs), and
Storage Elements (SEs). We used the gLite middleware API
commands. Submission, jobs management, and file transfer
were implemented.

3.2. SSU rRNA Database Building. Probe design requires
building a SSU rRNA database used as input and also as a ref-
erence database to check the specificity of all possible probes.
This database must be of high quality in order to obtain the
right design and to avoid wrong cross-hybridization results
caused by poor sequences quality and erroneous affiliation in

public environmental databases. Here, we developed a new
algorithm to revisit, for more precision, the initial database
described in Militon et al. [29].

All SSU sequences of the taxonomic divisions Prokary-
otes (PRO), fungi (FUN), and environmental samples (ENV)
downloaded from the European Molecular Biology Labo-
ratory (EMBL) nucleotide sequence database were used as
a reference to build our database carefully crafted for our
probe design software. Several steps were needed. First, small
subunit rRNA gene sequences (16S for prokaryotes and 18S
for fungi) were extracted and filtered according to their
quality and size. We kept only the sequences that met the
following criteria.

(i) The sequence length is greater than 1,200 bases.
(ii) The sequence length is smaller than 1,600 bases for

prokaryotic sequences and 1,800 bases for fungal
sequences.

(iii) The sequence is assigned to the genus level in EMBL
database (taxonomic information is extracted from
the (OC) organism classification EMBL field).

(iv) The percentage of unknown nucleotides (not {A, C,
G, T}) in the sequence is less than 1%.

(v) The maximum number of consecutive unknown
bases must not exceed 5. The last two criteria allow
removing low quality sequences.

These stringent parameters were chosen in order to
allow an efficient probe design. Then, extracted sequences
were grouped at the genus taxonomic rank and each group
was included in its specific kingdom (prokaryote or fungi)
according to the NCBI taxonomy database.

The next step consists in checking the orientation of the
obtained sequences. We used BLASTN program and a ref-
erence sequence to check and correct the orientation of se-
quences that had been incorrectly oriented in the EMBL da-
tabase.

Subsequently, a BlastClust was made on each group to
eliminate redundant sequences, using the following parame-
ters allowing a single-linkage clustering at 100% identity cut-
off:

(i) -p F (nucleotide sequences);
(ii) -S 100 (similarity threshold);
(iii) -L 1 (minimum length coverage);
(iv) -b F (required coverage as specified by -L and -S on

only one sequence of a pair).

Finally, for each group, we checked the homogeneity of
its sequences. The aim was to eliminate sequences badly
annotated and to create a homogeneous group of sequences
to allow selecting specific probes for this group.This step was
done using a modified version of Clustalw [32] to compute
distances between sequences and the K-means method [33]
to clustering sequences.

We used this algorithm to build a 16S rRNA database at
the genus level. We obtained 2,069 prokaryotic genera; each
is composed of a set of homogeneous sequences representing
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Figure 1: Summary of algorithm steps.

the whole diversity. Our algorithm can be easily adapted and
used to build high-quality SSU rRNA databases for different
taxonomic ranks (family, order, class, etc.).

3.3. The Probe Design Algorithm. Our algorithm uses 4 main
input parameters: probe length, maximum degeneracy of a
consensus probe, specificity threshold (the minimum value
used to determine if the probemay hybridizewith a nontarget
sequence), and maximum number of cross-hybridizations.
Figure 1 shows the different steps of our algorithm linked to
the EGI grid.

To design probes for an input group of sequences selected
by the user, a multiple sequence alignment is first made.
For small groups of sequences, Clustalw-MPI [30] is used to
align the sequences of the given group. However, for large
groups of sequences, the multiple alignment is made in three
steps to improve its quality and speed. First, BlastClust is
made on each large group (using the parameters -L .98, -S
98, -p F, and -b F) to construct main subgroups of highly
similar sequences. Then, sequences of each subgroup are
aligned using Clustalw-MPI. Finally, Opal [31] is used to
merge the obtained alignments and to reconstitute a complete
alignment for the whole group.

The alignment file created is then used to construct a
consensus sequence using the IUPAC degenerate nucleotide
codes [34].The aim is not only to obtain a common sequence
that entirely represents thewhole group of sequences targeted
but also to improve alignment and correct possible sequenc-
ing errors. For example, in each column of the alignment
representing a molecular site, if the number of unknown
nucleotides (“N” or gap “-”) is less than half the number
of sequences aligned, all the unknown bases of the aligned

sequences, at this position, are replaced by the specific or
degenerate base calculated from all the specific nucleotides
of this position. Else a gap “-” is inserted in the consensus
sequence at this position.

The next step of the probe design strategy consists in in-
crementing awindowof length “l” (l is the length of probes set
by the user) along the consensus sequence to find all possible
degenerate probes that do not contain gaps (“-”) and whose
degeneracy does not exceed the threshold value of maximum
degeneracy allowed.

Subsequently, a parallelization ismade to distribute all the
extracted degenerate probes into “N” jobs (N is the number
of jobs set by the user). For each job, all the degenerate probes
are processed. Otherwise, all possible specific and explorative
oligonucleotide probes are generated from each degenerate
probe, using IUPAC codes [34]. These oligonucleotides are
checked for cross-hybridizations against the reference SSU
rRNA database initially built, using BLASTN program with
the following parameters: “-W 7 -F F -S 1 -e 100 -b 20000”.

Finally, all the obtained regular and explorative oligonu-
cleotide probes are regrouped and saved in a final result file.
For each degenerate or specific probe, all the associated infor-
mation is provided, such as position, degeneracy, number and
list of cross-hybridizations, and mismatch positions.

3.4. Parallelization Method. Selecting probes for a group
of nucleic acid sequences and checking the specificity of
each possible probe against a complete SSU rRNA database
require a very important computation time. Our software
allows running this kind of design on a computing grid.
First, the user must choose the number of jobs to use. The
consensus sequence, constructed from the alignment file
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Figure 2: Parallelization strategy to define and submit jobs over the grid.

of each group of sequences, is read to extract all possible
degenerate probes that do not contain gaps (“-”), based on
the probe length set by the user. The degeneracy of each
degenerate probe is calculated. If this degeneracy is less than
“maximum degeneracy authorized by the user” (MaxDeg),
the degenerate probe is saved. A weight value is calculated
for each saved degenerate probe based on its degeneracy.

Once this step is performed, all valid degenerate probes
saved are collected and put in the same file.This filemust then
be cut into “N” subfiles (N is the number of jobs set by the
user) depending on theweight value of each degenerate probe
and the sum of all the weight values. First, all the degenerate
probes are sorted in descending order based on their weights.
The mean degeneracy per subfile is then calculated based
on the sum of all the weight values and the number of jobs
desired. Finally, a “worst fit” algorithm [35] is used to put
each degenerate probe in the largest possible free block in
which this degenerate probe can be saved according to its
weight. This method allows avoiding the creation of small
unusable blocks by making the remainder as large as possible
with the aim of making this remainder able to contain other
degenerate probes. The subfiles created will have almost the
same weight (Figure 2) and the same number of potential

probes. Each subfile represents a job that will be submitted
to the EGI computing grid.

Moreover, we have developed job monitoring scripts,
with resubmission in case of failure to improve the reliability
of our grid software. Three cases can be distinguished.

(i) The job submission failed: the job is resubmittedwhen
a network route is found.

(ii) The job is submitted successfully and failed when
executed: a new job is created and submitted.

(iii) The job is submitted successfully and done success-
fully but the other jobs are not finished: the program
waits for all jobs and thenmerges all results in a single
output file.

For running conditions, the database is copied on grid
Storage Elements (SEs) accessible to all the grid jobs of a
probe design. Regarding submission time, it is important not
to overload theWorkloadManagement System (WMS). Oth-
erwise, the programmaywait until each job is entirely associ-
ated with a CE of the EGI grid before submitting the next job.
The following elementary configuration files are necessary to
submit jobs successfully on the EGI grid.
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Table 1: A comparison of the performance of the alignment method used in our software with that used in PhylArray [29], using 100 cores.

Aligned group Number of sequences Number of subgroups Alignment time (seconds) Speedup
PhylArray PhylGrid 2.0

Vibrio 1,174 37 2,542 1,247 2.03
Bacillus 3,947 58 12,586 3,130 4.02

(i) JDL files: each job needs a job description language
(JDL) file to be submitted on the Grid.

(ii) Script files: such files describe the elementary tasks
that will be executed on the grid. The scripts contain
operating system commands and Perl scripts called to
perform probe design among all extracted degenerate
probes. During execution, SSU rRNA database and
subfiles containing degenerate probes are copied on
the CE in which the job is running, and Blastn anal-
ysis is launched to test cross-hybridization.

Finally, the program is designed to be extensible by sepa-
rating independently jobs in distinct designs. It creates a sin-
gle data identifier for each probe design.

4. Results

In this section, we present the results obtained by our
software on real data sets. We show the performance of our
parallelization method compared to the original program
PhylArray [29].

4.1. Database Building. Wedeveloped a new algorithm for the
construction of a high-quality curated phylogenetic database,
as described above. Our algorithm can be easily adapted and
used to build high-quality SSU rRNA databases for different
taxonomic ranks (genus, family, order, class, etc.). We used
this algorithm to build a SSU rRNA database at the genus
level. We obtained about 66,000 16S rRNA gene sequences
representing 2,069 prokaryotic genera; each is composed
of a set of homogeneous sequences representing the whole
diversity. We used PhylGrid 2.0 and this database to create a
complete phylogenetic oligonucleotide database composed of
about 20,000 probes targeting 2,069 prokaryotic genera.

4.2. Alignment of Alignments. Dealing with the multiple
sequence alignment for large groups of sequences, an align-
ment of alignments is achieved to improve the quality and
speed of alignment.The alignment time is given in Table 1 for
different groups with a varying number of sequences.

For instance, the performance of this method is 4 times
faster than a simple multiple alignment when aligning the
bacteria genus group “Bacillus.”

4.3. Load Balancing Method. To distribute the probe design
task on all used jobs equitably, we developed a load balancing
method based on the degeneracy of all possible degenerate
probes extracted from the consensus sequence constructed.
To test the efficiency of our method, we compared it to
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Figure 3: A comparison of our load balancing method with
PhylArray [29] using 16 processors to select probes for “Citrobacter”
group.

the load balancing method used in the original algorithm
PhylArray [29] that selects probes on a computing cluster. To
distribute the computation onN processors, PhylArray splits
the consensus sequence into N equal parts. Each part is then
processed on a processor.

The comparison tests were made on real data sets, using
respectively 16 jobs to select probes for the genus group
“Citrobacter” (Figure 3), 8 jobs to select jobs for the genus
group “Haemophilus” (Figure 4), and finally using 4 jobs to
select jobs for 3 genus groups: “Citrobacter,” “Eubacterium,”
and “Haemophilus” (Table 2).This comparison shows that our
method is more efficient than PhylArray. Using our method
the different parts of the probe design, which processed
each one on a processor, have almost the same value of
degeneracy that is very close to the value of the mean
degeneracy per job. For instance, as showed in Table 2, the
load standard deviation between jobs is very small (0.5 probe)
when using PhylGrid 2.0 compared to the high standard
deviation obtained when using PhylArray (18,647.85 probes).

4.4. Use of the European Grid EGI. Our software allows users
to submit parallel jobs to the EGI computing grid from
Biomed Virtual Organization for the purpose of designing
probes. To test the performance of our approach, we launched
probes design for 10 prokaryotic genus groups simultaneously
(“Eubacterium,” “Citrobacter,” “Propionibacterium,” “Neis-
seria,” “Campylobacter,” “Arcanobacterium,” “Haemophilus,”
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Table 2: A Comparison of our load balancing method with PhylArray [29] using 4 processors to select probes for 3 genus groups.

Group Citrobacter Eubacterium Haemophilus
Software PhylArray PhylGrid 2.0 PhylArray PhylGrid 2.0 PhylArray PhylGrid 2.0
Mean degeneracy 26,722.75 26,722.75 37,132.25 37,132.25 20,100.75 20,100.75
Degeneracy job 1 13,068 26,723 41,435 37,133 28,600 20,101
Degeneracy job 2 41,782 26,723 43,466 37,132 32,335 20,101
Degeneracy job 3 16,381 26,723 10,273 37,132 4,314 20,101
Degeneracy job 4 35,660 26,722 53,355 37,132 15,154 20,100
Standard deviation 14,142.836 0.5 18,647.85 0.5 12,853.09 0.5
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Figure 4: A comparison of our load balancing method with Phy-
lArray [29] using 8 processors to select probes for “Haemophilus”
group.

“Kaistobacter,” “Bacteriovorax,” and “Riemerella”), using the
following parameters:

(i) probe length = 25;
(ii) specificity threshold = 0.88 (the probe must not have

a similarity greater than or equal to 88%, with a
nontargeted sequence);

(iii) maximum number of cross-hybridizations = 100;
(iv) maximum degeneracy = 2000.

This task needs more than 8 months to be processed on a
single CPU core. We have launched probe designs for these
groups on the EGI grid using a total of 586 jobs. We have
repeated this test 3 times and the median result in terms of
computational time was considered. Finally, we obtained all
results successfully after less than 55 hours (with submission
and waiting latency). Results are illustrated in Figure 5.

The obtained performance is here of about 106x for
586 jobs despite the submission and waiting latency of the
EGI grid. Jobs submitted to a grid spend hours waiting in
queues. The unavailability of some grid resources such as
a Computing Element or a Storage Element can also cause
the loss or blockage of jobs. This can of course increase the
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Figure 5: The median execution result of probe selection for 10
genus groups on the EGI grid using 586 jobs.

global computing time of our software which will however
resubmit failed and lost jobs. For instance, in Figure 5, we
can see a small decrease in throughput of returned completed
jobs in the time window between 20 and 30 hours. This
is due to the important resubmission of failed jobs at this
computing phase. These jobs were submitted successfully at
the beginning, but they failed orwere blockedwhen executed.

5. Conclusions

In thiswork,we show that it is possible to select probes at large
scale on a grid infrastructure with significant performance
gains, without any particular grid submission optimizations
(such as using pilot jobs). Our software allows selecting both
specific and explorative (discovery of possible new species)
probes with respect to excellent sensitivity and specificity. It
takes advantage of the computing power offered by the EGI
grid to propose at once probe design for thousands of groups.
We also developed job monitoring scripts to improve the re-
liability and efficiency of our grid software.

The design of oligonucleotide probe on a computing grid
requires optimizing the distribution of the probe design algo-
rithm. This is why we developed an efficient parallelization
method based on the degeneracy of all possible degenerate
probes extracted from the consensus sequence that represents
the input group. The probe selection is equally distributed
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over a given number of jobs. We have compared our paral-
lelizationmethodwith the original algorithmPhylArray [29].
We have shown that our approach ismore efficient and allows
a fine load balancing by sharing equitably the processing of
probe selection for the input group across jobs. The com-
parison results of our load balancing method with that used
in PhylArray—for a probe design with a mean degeneracy
per job equal to 37,132.25 probes—showed that our software
allowed creating jobs with a small load standard deviation of
only 0.5 probe while PhylGrid generated a high load standard
deviation of 18,647.85 probes between jobs.The experimental
results obtained have shown that the parallel implementation
of our software had significantly increased performance up
to 106x when running around 600 jobs on the European
Computing Grid (with submission and waiting latency). The
performance of our software depends on the grid resource
availability and also on the number and the size of designs
that can be simultaneously launched. Hence, we have to
consider Grid Computing only for large designs; otherwise,
the queue waiting time and the time of data transfer on and
to the grid can far exceed the computing time. For small
groups of sequences, the use of a computing cluster or a mul-
tiprocessor will be more efficient than the use of a grid
infrastructure for latency reasons. In our case, if we do not
have tens of jobs with a job running time around 12 hours, we
estimate that it is not worth submitting jobs to a computing
gridwhere our jobsmay queue for hours; instead our software
suggests to consider local submissions to computing clusters.
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