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We consider the interaction of a ferromagnetic spinor Bose-Einstein condensate with a magnetic
field gradient. The magnetic field gradient realizes a spin-position coupling that explicitly breaks
time-reversal symmetry T and space parity P, but preserves the combined PT symmetry. We
observe using numerical simulations, a first-order phase transition spontaneously breaking this re-
maining symmetry. The transition to a low-gradient phase, in which gradient effects are frozen
out by the ferromagnetic interaction, suggests the possibility of high-coherence magnetic sensors
unaffected by gradient dephasing.

Introduction – The discovery of the very complex vac-
uum in superfluid 3He proved to be highly stimulating to
the theory of symmetry breaking [1] and topological de-
fects [2, 3]. New features of quantum gases emerged with
the first realizations of spinor Bose-Einstein condensates
(SBEC) [4, 5], thanks to the many degrees of freedom –
both internal and external – and to the excellent control
of the experimental parameters. SBECs are extremely
rich and versatile systems to study complex quantum
vacuua [6], for example to test the validity of universal
phenomena like the Kibble-Zurek mechanism [7–9], or to
study Goldstone modes such as gapless magnons [10].

The coupling of SBECs to magnetic fields has been
exploited to study quantum phase transitions in SBECs
[11–13], and to realize point-like topological defects such
as Dirac monopoles [14–16] and 2D skyrmions [17]. In
these works, spin symmetries and topology were induced
by strong gradients, e.g. 37 mT/m in Ref. [14]. Here we
show that via a quantum phase transition at lower gra-
dients ∼ 0.5 mT/m, the ferromagnetic interaction can
“freeze out” the gradient effect. This suggests the possi-
bility of magnetic sensors free from gradient dephasing,
a practical limitation in coherent magnetometry [18–24].

We use group theoretical methods that have proven
fruitful in the analysis and classification of SBEC phases
[1, 25]. The interaction with the gradient realizes an in-
teresting spin-position coupling that explicitly breaks the
parity P and time-reversal T symmetries, only preserv-
ing the combined PT symmetry. Numerically solving the
Gross-Pitaevskii equations of the system, we observe that
below a critical value of the magnetic field gradient, the
PT symmetry is spontaneously broken and a nonzero
overall magnetization appears. This occurs when the
ferromagnetic interactions dominate the coupling energy
between the gradient field and the spins, resulting in a
globally polarized condensate. Moreover, we observe that
this effect is associated with a first-order phase transition.
Interestingly, discrete, and in particular PT , symmetry
breaking is also observed in Bose gases with spin-orbit
coupling [26–28].
System and mean-field energy – We consider a spin-1
BEC with ferromagnetic interactions in the presence of

a magnetic field gradient. More specifically, the numer-
ical calculations are performed for a 87Rb SBEC in the
F = 1 ground state, which is composed of three Zeeman
sublevels mF = −, 0, +.

Within the mean-field approximation, the spin-1 BEC
is described by a spinorial field with three complex
components Ψ(r) ≡ [ψ−(r), ψ0(r), ψ+(r)]

T
, where r =

(x, y, z)T are the spatial coordinates, and ψµ(r) is the
mean-field wavefunction for the atomic distribution in
the magnetic sublevel mF = µ.

The mean-field energy density of the system, coupled
to a magnetic field distribution B(r), is [29, 30]

E [Ψ] =ψ∗α

[
− ~2

2m
∇2 + V

]
ψα +

c0
2

(ψ∗αψα)
2

− gµBBiψ∗αF iαβψβ +
c2
2
ψ∗αψ

∗
µF

i
αβF

i
µνψβψν , (1)

where the Latin letters designate the spatial coordi-
nates (x, y, z) and the Greek letters the spin coordinates
(−, 0,+). The first term is the sum of the kinetic energy
(m is the atom’s mass) and of the trapping potential
V (r), assumed to be harmonic and spatially isotropic.
The third term is the energy density resulting from the
coupling with the magnetic field Bi(r), where g is the gy-
romagnetic ratio, µB the Bohr magneton, and F i is the
generator of spin-1 rotations around the i axis. The terms
containing c0 and c2 < 0 describe the spin-independent
and ferromagnetic spin-dependent collisional energies, re-
spectively.

The magnetic field is chosen to be a pure gradient (no
bias) along the z axis, i.e. the divergenceless field

B(r) = B′(x/2, y/2,−z)T = B′Λr, (2)

where we defined the metric Λ ≡ diag(1/2, 1/2,−1). The
mean-field energy density associated with the gradient
coupling is thus

EG[Ψ](r) = −gµBB′ Λr · F(r), (3)

where F ≡ (Fx,Fy,Fz)
T and Fi ≡ ψ∗αF iαβψβ . This inter-

action realizes a spin-position coupling (similar to spin-
orbit coupling L ·F). The total mean field energy related
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to the interaction with the magnetic field gradient is

EG[Ψ] ∝
∫ [
−1

2
xFx(r)− 1

2
y Fy(r) + z Fz(r)

]
d3r. (4)

Symmetries – We now study the symmetries of the
problem, that is, the transformations that leave invari-
ant the mean-field energy E[Ψ] =

∫
E [Ψ](r) d3r. Fo-

cussing on the invariance of the gradient coupling energy
[Eq. (4)], we observe that the spin-position coupling ex-
plicitly breaks several symmetries, both continuous and
discrete.

We first consider the continuous symmetries. In ab-
sence of magnetic field gradient, the energy is invariant
under both spin and space rotations. When a gradient
is present, the system is only invariant under combined
spin-space rotations around the z axis. More precisely,
we define the operator Rz(θ) acting on Ψ as

Rz(θ)Ψ(r) = eiθF
z

Ψ
(
e−iθL

z

r
)
, (5)

where Lz is the generator of spatial rotations around the
z axis. The set of all such transformations for θ ∈ R
is a one parameter rotation group, denoted SO(2)F z+Lz .
From Eq. (4), it is straightforward to show that

EG[Rz(θ)Ψ] ∝
∫ [
−x
′

2
Fx (r′)−y

′

2
Fy (r′)+z′ Fz (r′)

]
d3r,

(6)
where r′ ≡ e−iθLz

r. After the change of variable r′ → r,
we obtain EG[Rz(θ)Ψ] = EG[Ψ], proving the invariance
under SO(2)F z+Lz . In other words, the spin-position
coupling explicitly breaks the SO(3)F × SO(3)L symme-
try into SO(2)F z+Lz . Therefore, the magnetization F
and the orbital angular momentum L are no longer in-
dependently conserved, and only the total longitudinal
angular momentum F z + Lz is conserved [31].

Beyond continuous symmetries, the mean-field energy
also exhibits discrete symmetries. We define the spatial
inversions, corresponding to the parity symmetry, as

Px : Ψ(x, y, z) 7→ Ψ(−x, y, z), (7)

and similarly for Py and Pz. The spin inversions, corre-
sponding to the time-reversal symmetry, are defined as

Tx : ψµ 7→ (−1)µψ∗µ, (8)

Ty : ψµ 7→ ψ∗µ, (9)

Tz : ψµ 7→ ψ∗−µ. (10)

The energy functional EG is not invariant under parity
nor time-reversal[32], however it is invariant under a com-
bined space-spin inversion. For example, we consider the
combined action of Px and Tx on the mean-field energy

EG[PxTxΨ] ∝
∫ [

+
1

2
xFx(−x, y, z)− 1

2
y Fy(−x, y, z)

+ z Fz(−x, y, z)
]
d3r, (11)

and a change of variable x→ −x leads to EG[PxTxΨ] =
EG[Ψ]. Therefore, EG is invariant under the discrete
group PT x ≡ {1,PxTx}. By analogous arguments, the
mean-field energy is also invariant under PT y and PT z,
defined analogously. Therefore, EG is fully symmetric
under PT ≡ PT x × PT y × PT z [33].

Finally, the energy is also invariant under a phase-shift
Ψ(r) → eiφΨ(r), i.e., under the gauge group U(1)φ. As
a consequence, the global symmetry group of the mean-
field energy is

G = U(1)φ × SO(2)F z+Lz × PT . (12)

Numerical simulations – Whereas the U(1)φ symmetry
is spontaneously broken by the Bose transition, different
breaking scenarios are possible for the remaining factors
of the group G, as a result of the competition between
magnetic field gradient coupling and spin-dependent in-
teractions. Here, using a numerical simulation, we study
the spontaneously broken symmetries and characterize
the different phases.

The mean-field evolution of the system is determined
by three coupled Gross-Pitaevskii equations associated
to the mean-field energy density Eq. (1), explicitly

i~∂tψα =
[
−(~2/2m)∇2 + V (r)

]
ψα + c0ψ

∗
βψβψα

− gµBB′ΛijrjF iαβψβ + c2ψ
∗
µF

i
µνψνF

i
αβψβ ,

(13)

where α ∈ {+, 0,−}. The trapping potential V (r) is cho-
sen isotropic and harmonic with frequency 100 Hz. The
atomic species is 87Rb in the F = 1 hyperfine ground
state, thus m = 1.44×10−25 kg, g = −1/2, and the colli-
sional interaction parameters are c0 = 5.16× 10−51 J·m3

and c2 = −2.39 × 10−53 J·m3. Since c2 < 0 the spins
experience ferromagnetic interactions.

FIG. 1. (Color online) (a) Isoprobability surfaces of the spinor
components: ψ− (yellow, lower), ψ0 (red, middle) and ψ+

(blue, upper). (b) Streamlines (curves tangent to the spinor
field) in three orthogonal planes, and the color map shows
the total atomic density. The magnetic field gradient is B′ =
3× 10−4 T/m and the number of atoms is 5× 105.

The stationary state of the GPEs is numerically de-
termined using an imaginary time method from the
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GPELab 3D solver [34]. The time and space discretiza-
tion is achieved by a backward Euler spectral FFT
scheme. The initial state is an equal superposition of
all mF states: Ψ(r) =

√
f(r) [1, 1, 1]

T
, that is, a state

pointing in the +x direction, and where f(r) is a Gaus-
sian distribution with width the harmonic oscillator ra-
dius of the trapping potential V (r).

As shown on a simulation result in Fig. 1, the magnetic
field gradient induces a spatial separation of the various
mF components along the z axis. We also observe in
Fig. 1 (b) that the spins in the x − y plane are mainly
oriented along x, thus the SO(2)F z+Lz symmetry is spon-
taneously broken by the ferromagnetic interaction. This
effect also appears in Fig. 1 (a), where the ψ0 wavefunc-
tion is not invariant by rotation around z. The prevailing
direction is x in the current simulations due to the choice
of initial conditions, however it can be any direction f̂ in
the x− y plane [35].

0 0.2 0.4 0.6 0.8 1
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0.35
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FIG. 2. Cloud radius over the Thomas-Fermi radius versus
B for various atom numbers. The legend at the top indicates
the number of atoms.

A natural measure of gradient strength is ∆B = R±B
′,

where R± is the mean-square radius of the ± compo-
nents. As shown in Fig. 2, this radius, normalized by the
Thomas-Fermi radius RTF, is nearly independent of the
atom number in the range 2000 & N & 105. Below this
range the low density voids the Thomas-Fermi approxi-
mation, and above this range the large size of the system
exhibits the first-order behaviour of the transition (see
next paragraph).

In Fig. 3 (a), we show the behaviour of the total mag-
netization along x, 〈Fx〉 ≡

∫
Fx(r) d3r [36]. We observe

that, below a critical value of the gradient B′c of the or-
der of 0.5 mT/m, the cloud is spontaneously magnetized
along x, converging towards a fully polarized state for
B′ = 0. The sudden change of magnetization when vary-
ing the gradient B′ is the signature of a phase transi-
tion, in particular the discontinuity at large atom number
(N & 105) shows the first-order character of the transi-
tion. We call weak gradient (WG) phase the phase for
B′ < B′c, and strong gradient (SG) phase the one for

B′ > B′c. The phase transition is also visible in Fig. 2:
R± is independent of ∆B in the SG phase (∆B & 0.7 nT
for N < 105).
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FIG. 3. Total magnetization along x versus the gradient B′

(a) and the magnetic field difference across the condensate
(b). Same legend as in Fig. 2.

Broken symmetries – From the simulation results, we
can study the WG and SG phases from a symme-
try perspective. As already pointed out, U(1)φ and
SO(2)F z+Lz are spontaneously broken as a result of
the Bose/ferromagnetic transition. Thus, all continu-
ous symmetries of G are broken, and only discrete sym-
metries remain. In Fig. 4, we compare the spinor field
streamlines, within slices of three orthogonal planes, for
condensates in both phases. As pointed out earlier, here
the prevailing axis f̂ is oriented along x.

In the WG phase [Figs. 4 (a) and (b)], the system is
not invariant under Pf̂Tf̂ , that is, the space-spin inversion

along the axis f̂ . Conversely in the SG phase [Fig. 4 (c)],
the system is invariant under both Pf̂Tf̂ and Pf̂⊥

Tf̂⊥
,

where f̂⊥ is orthogonal to f̂ and lies in the x− y plane.
The symmetries of the order parameter in a given

phase constitute the isotropy group, which is a sub-
group of G. For the WG phase, the isotropy group is
HWG = PT f̂ × PT z, where PT f̂ ≡

{
1,Pf̂Tf̂

}
, whereas

for the SG phase it is HSG = PT f̂ × PT f̂⊥
× PT z.

Order parameter space – Many properties of a given
phase can be understood from the broken symmetries
[2], mathematically defined as the quotient of the overall
symmetry group by the isotropy group H of the phase:
R = G/H, called the order parameter space. If Ψ0 is
an arbitrary order parameter of a given phase, called the
standard order parameter, then the order parameter man-
ifold M of the phase results from the action of R onto
Ψ0, that is, M = RΨ0 [37]. It results that many crucial
properties of a phase, fully defined by the manifold M,
are embedded in the order parameter space R. This is in
particular true for the topological properties.

The order parameter space of the WG phase is [38]

RWG = G/HWG = U(1)φ × SO(2)F z+Lz . (14)

From a topological perspective, both U(1)φ and

SO(2)F z+Lz have the topology of a circle S1, and the
order parameter space is a torus: RWG ' S1 × S1 = T2.
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FIG. 4. (Color online) Spin streamlines (solid lines with ar-
row) and total density (color map) for N = 2 × 105. Slices
in three orthogonal planes are presented, from left to right
are slices in y − z, x − z and x − y. (a) WG phase with
B′ = 0.4 mT/m, (b) WG phase with B′ = 0.535 mT/m, and
(c) SG phase with B′ = 0.6 mT/m.

For the SG phase, the order parameter space is

RSG = U(1)φ ×
(
SO(2)F z+Lz/PT f̂

)
. (15)

Let θf̂ be the angle between the vector f̂ and the x axis,
then the quotient by the group PT f̂ identifies the ele-
ments of SO(2)F z+Lz according to the equivalence rela-
tion ∼, defined as for all θ, θ′ ∈ R,

Rz(θ) ∼ Rz(θ′)⇔
(
θ′ = θ or θ′ = 2θf̂ − θ

)
mod 2π.

(16)
As a consequence, the circle associated to SO(2)F z+Lz

becomes a closed line, topologically equivalent to a closed
interval: SO(2)F z+Lz/PT f̂ ' I, and the order parameter
space of the SG phase is a cylinder : RSG ' S1 × I.

The knowledge of the order parameter space topol-
ogy provides information on topological defects, in par-
ticular their stability. For both phases, the order pa-
rameter space is connected and therefore domain walls
are unstable. However, these spaces are not simply
connected, and thus stable 1D defects such as vortices
can form. In the SG phase the fundamental group of
RSG is π1

(
S1 × I

)
= Z, and vortices are classified by

a single winding number. Whereas for the WG phase,

π1
(
T2
)

= Z × Z and the vortices are characterized by
pairs of winding numbers, one related to the superfluid
phase and the other to the magnetization. Moreover,
higher order homotopy groups are trivial, and in partic-
ular point-like topological defects are unstable.

Conclusion and outlook – We have studied the ground-
state properties of a ferromagnetic F = 1 spinor conden-
sate in the presence of a magnetic field gradient, a con-
figuration that breaks both time-reversal T and parity
P symmetries, but preserves the combined PT symme-
try. Simulation reveals a phase transition that sponta-
neously breaks also this PT symmetry for weak gradient
strength. Distinct topological defects are predicted in the
weak- and strong-gradient phases. The fact that the po-
larization of the WG phase, parallel to f̂ , is free to precess
about the z axis while protected by a first-order phase
transition suggests an attractive system for coherent field
sensing. In contrast to other atomic field sensors [18–24],
gradient-induced dephasing may be frozen out by the fer-
romagnetic interaction. This possibility motivates study
of the dynamics of this system under a combined gradient
and bias field.
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