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ABSTRACT

Nonnegative Matrix Factorization (NMF) is a powerful took fde-

composing mixtures of audio signals in the Time-Frequedy) (
domain. In applications such as source separation, thepkasev-
ery for each extracted component is a major issue sinceeih ééads
to audible artifacts. In this paper, we present a methogofog

evaluating various NMF-based source separation techsiiguelv-

ing phase reconstruction. For each model considered, aarisop

between two approaches (blind separation without pri@rimétion

and oracle separation with supervised model learning)riepeed,

in order to inquire about the room for improvement for thereat

tion methods. Experimental results show that the High Reiol

NMF (HRNMF) model is particularly promising, because it Hea
to take phases and correlations over time into account witeat
expressive power.

Index Terms— Nonnegative matrix factorization, audio source
separation, phase reconstruction, time-frequency aisalys

1. INTRODUCTION

The problem of separating polyphonic music mixtures intdaed

Several extensions to NMF have been introduced, which in-
clude a phase model [7, 8, 9], but do not refer to phase censit
Wiener-like filtering is used for instance in [7]. The sepadacom-
ponents are then derived by inverting a TF representatioose/h
phase is that of the STFT of the mixture. This technique exssur
phase consistency as long as only one source is active vétth
TF bin. In order to handle the case of overlapping sourcestite
methods [10, 5] minimize the inconsistency of the recomstul
TF representation. On the other hand, some NMF-inspiredefaod
combine phase modeling and spectrogram factorization. cohe
plex NMF model introduced in [8] was later improved by meafis o
consistency constraints [11]. More recently, High ResotulNMF
(HRNMF) has been introduced in [12]. It models a TF mixture as
a sum of autoregressive components in the TF domain, thlinglea
explicitly with a phase model which takes time dependenfrizs
one TF bin to another into account.

All the above-mentioned models are suitable for blind seurc
separation of audio signals since they factorize the spgem,
reconstruct the phase and enforce its consistency. In Hperp
we propose a methodology for assessing their potential arfdrp
mance. This methodology is based on a comparison between two
approaches: blind separation without prior informatiod @nacle
separation with supervised model learning. This comparisper-

sources has become very popular in the last 15 years. Théyfamiformed in order to inquire about the room for improvementtfe

of techniques based on nonnegative factorizations, ofpplieal to
spectrogram-like representations, has proved to provaleeessful
and promising framework for this task [1].

NMF, originally introduced as a rank-reduction method Ej;
proximates a nonnegative data matkixas a product of two low-
rank nonnegative matricé® and H. In audio signal processingy;
is often chosen as the magnitude or power spectrogram ofghal s
whose factorization is interpretable intuitively7 is a dictionary of
spectral templates arfd is a temporal activation matrix. Usual alter-
native versions constrain NMF to enforce properties sucpassity
[1], smoothness or harmonicity [3, 4].

However, when it comes to resynthesize the separated tgne si

nals, the recovery of the phase of the corresponding Showe-T
Fourier Transform (STFT) is necessary. Even if common pract
consists in applying Wiener-like filteringe.g soft masking of the
complex-valued STFT of the original mixture), phase recpvs

still an open issue, for this kind of filtering does not entopghase

estimation methods. Algorithms are evaluated with BS&LE[14],
a set of objective criteria dedicated to measuring sourparatéion
quality. Finally, the algorithms are tested on differentadgypes.
Since difficulties often arise when sources overlap in theldmaain,
a particular emphasis has been put on the related tests.

The paper is organized as follows. Section 2 presents the con
sidered NMF-based algorithms. Section 3 describes theadeth
ogy of this benchmark, through objectives and protocol.tiSect
presents results and interpretations of the tests cordiocte vari-
ety of data, and Section 5 draws some concluding remarks.

2. NMF-BASED SOURCE SEPARATION ALGORITHMS

2.1. NMF main principle

The NMF problem is expressed as follows: given a matfiof
dimensionsF’ x T with nonnegative entries, find a factorization

consistency. That is, the obtained complex-valued matrix is not theV ~ W H whereW and H are nonnegative matrices of dimen-

STFT of a time signal. It is worth noting here that consisyecan
also refer to specific properties of the instantaneous pbleasinu-
soidal component [6], but we will hereafter emplognsistency in
the first usage only.

This work is partly supported by the French National Rese&gency
(ANR) as a part of the EDISON 3D project (ANR-13-CORD-0008-0

sionsF' x K andK x T. In order to reduce the dimension of data,
K is chosen such tha'(F + T') < FT. In audio source sepa-
ration, V' is generally the magnitude or the power spectrogram of a
TF representatio’X of a mixture signal (most of the time an STFT).
One can interpret? as a dictionary of spectral templates aHd

as a matrix of temporal activations. ¥, denotes thé-th column

of W and Hj, denotes thé:-th line of H, thenV,, = Wi Hy is



the magnitude or power spectrogram of the component indeyed
kandV = 35 Vi. Note that this result expresses an additiv-
ity property of spectrograms, which only approximatelydsolvhen
sources overlap in the TF domain. This factorization is gaheob-
tained by minimizing a cost functio®(V, V). Popular choices for
D are the Euclidean distance, Kullback-Leibler divergerfjeahd
Itakura-Saito divergence [7]. Our benchmark uses mutigive up-
date rules (MUR) [15], in order to estimate a regular NMF wvifte
Kullback-Leibler divergence (KLNMF).

2.2. Phase reconstruction

Estimating a complex TF representati@in of a separated source by
applying Wiener filtering [7] consists in computing:

= M - Vk X. (1)
Yo WiH, 1%

This method will be referred to &8MF-Wiener.

Xk

2.4. High Resolution NMF

More recently, the HRNMF model has been introduced in [12]. |
consists in modeling each frequency band of the TF reprasent
by means of auto-regressive filtering. This technique adijucap-
tures phase relationships and dependencies over time.

The mixture TF representation is modeled as follows:

K

X(f>t) :n(f,t)+ZXk(f7t)

k=1

(4)

wheren(f, t) is a white Gaussian noise. Each soulcg f, t) is ob-
tained by autoregressive filtering of a non-stationary &ligg( f, t):

P(k,f)
Xe(fit) =be(£, )+ > ap(k, ))Xk(fit—p)  (5)
p=1

Alternatively, a regular NMF can be combined with a phase rewhere P(k, f) is the order of the autoregressive filter for soukce

construction algorithm based on the minimization of a costfion
which penalizes inconsistency. TKiffin-Lim algorithm [10] is
an iterative method described in Eq. (2) for recursivelynesting
the k-th component. For each iteration

Vi i+1
=k _yit
it

Xi — v =R — x5 )

where F = STFT o STFT~'. It has been shown to make the
Euclidean distance betwedn, and |Y{| decrease over iterations.
This method will be referred to &8MF-GL .

ThelLeRoux algorithm [5] consists in explicitly calculating and
minimizing the inconsistency defined as the Euclidean déstde-
tweenX and F(X). Iterative optimization techniques then lead to
update rules for the phase of the reconstructed source inRtdn-
main. This method will be referred to &8VIF-LR .

In NMF-GL andNMF-LR , the magnitude is constant over it-
erations. The user can force it to be equal’ig obtained from the
NMF. However, experiments show that initializi@yiffin-Lim and
LeRoux algorithms with the magnitude of;. in Eq. (1) provides
better results.

2.3. Complex NMF

Complex NMF [11] consists in factorizing a magnitude spagtam
while reconstructing a phase field for each source. The maxtl
representation is modeled as follows: for each TF(Hirt),

K

X(ft)=Y"

K

Xk(f,t) = > Wi(H)He()e 0. (3)
k=1 k=1

This method will be referred to aSNMF. An explicit phase
consistency constraint [11] leads to a consistent TF reptagon.
It will be referred to asCNMF-LR . The main advantage of this
technique is to jointly estimate the magnitude and phasanpar
ters, instead of deriving the phase from an imposed magnitasiin
NMF-LR).

and frequencyf, of coefficientsa, (k, f). Finally, bx(f,t) follows
a centered normal distribution of varianeg( f, t) such thatV;
Wy Hy, and allb,(f, t) are independent.

The model parameters can be estimated either by a regular
EM algorithm, which is computationally costly, or by a vaidmal
Bayesian EM (VBEM) algorithm, allowing faster computatioith-
out significant quality loss. We conduct an experience tonegée
the best HRNMF initialization and algorithm in Section 4 Note
that recently, HRNMF has been extended to multichannelasign
and convolutive mixtures, and is now able to model correfetiover
frequency [13].

3. METHODOLOGY

3.1. Objectives

In order to assess audio source separation quality, we uSeEB&_
[14], a set of objective criteria dedicated to this purpoSeom the
original sources;, and the estimated sourceg, k = 1, ..., K, BSS
EVAL computes various energy ratios: the SIR (signal to interfee
ratio) that measures the rejection of interferences, thR Signal
to artifact ratio) for the rejection of artifacts, and the SBignal to
distortion ratio) for the global quality.

In order to evaluate the room for improvement for these tech-
nigues, we compare the results obtained with a blind appraad an
oracle approach. The blind approach consists in estimtimgod-
els directly from the mixture without using any prior infoation
about the isolated sources. The oracle approach consistaiinat-
ing, for each technique, the best performance possiblepaham-
eters are learned from each isolated source. A compariderebe
those two approaches informs us about the opportunitiefuftrer
enhancement of these methods.

Since phase recovery is a major issue in source separdtien, i
interesting to evaluate if the consistency constraint usedrious
methods MF-GL , NMF-LR andCNMF-LR)) is related to audio
quality.

Finally, we want to evaluate the expressive power of the nspde
that is to say their ability to represent a variety of sigratiserved
in music analysis. We use both synthetic and real data, with a
without TF overlap.



3.2. Datasets and protocol 4. EXPERIMENTAL RESULTS

We perform audio source separation on several datasesslyFive ~ 4.1. HRNMF initialization and estimation algorithm
synthesize&0 mixtures of two harmonic signalg{ = 2) which con-
sist of damped sinusoids whose amplitude, origin phasguénecy
and damping coefficients are randomly-defined, afidl@B additive
white noise. The damping coefficient is the same for all haiio®
One set of30 mixtures does not include TF overlap while the other
one does (see an example in Figure 1).

HRNMF requires a well-chosen initialization to produce meg-

ful results (likely because of the great number of local miaiof
the cost function). The data to be processed is a mixture af re
notes without frequency overlap. We consider the regularai-
rithm [12] and the VBEM algorithm [13]. Initializations cdre ran-
dom, KLNMF [15] or Itakura-Saito NMF (ISNMF, [7]), computed
by means of MUR algorithms.

Table 1 Influence of HRNMF initialization and algorithm on source
separation performance

Algorithm | Initialization | SDR | SIR | SAR | Time (s)
Random 5.3 6.4 14.3 379
EM ISNMF 15.0 | 21.2 | 17.0 376
KLNMF 17.0 | 22.2 | 18.7 377
Random 1.4 2.8 11.1 1.03

frequency (Hz)
frequency (Hz)

0
0 0.2 0.4 0.6 0.8 1

time (s)

0 0.2 0.4 0.6 0.8 1

e VBEM ISNMF 16.9 | 25.3 | 17.7 0.95
KLNMF 16.9 | 245 | 17.8 0.89

Fig. 1. Synthetic data spectrograms: without TF overlap (left) an

ith TF overlap (right
W verlap (right) Results are presented in Table 1 (the best performancetis hig

lighted in bold font). We observe that initializing HRNMF tivia

The MAPS (MIDI Aligned Piano Sounds) dataset [16] provides prior NMF algorithm provides significantly better resuliai apply-
various data to design mixtures of real piano sounds. Fotetstis  ing the EM or VBEM algorithm directly on random parameterbeT
on real data, we consid&0 mixtures of two piano notes, selected choice of the NMF (KL or IS) does not influence much the results
randomly in the MAPS database. We also enforce TF overlap iWWe also see that the VBEM algorithm provides results sintdahe
some data. Finally, we tested the benchmark arb@ second-long  EM algorithm, with a dramatic reduction of the computatiorest.
MIDI audio excerpt. It is composed of several occurrencethafe ~ We will thus use the VBEM algorithm with KLNMF initializatio
bass notes and one guitar chofd E 4). for our benchmark.

The data is sampled df; = 11025 Hz. It is important to
note that HRNMF involves more diverse parameters than the re 4.2, Synthetic data
ular NMF model. Indeed, correlations across time are takém i . . .
account by means of autoregressive filtering in each fregusub- ~ Benchmark results for synthetic harmonics are presenteigine 2.
band of ordetP(k, f). In our experimentsP(k, f) was settal for ~ Box-plots compile data for blind approach. Each box-planisde
all (k, f). This means that the HRNMF model uses twice as many/P Of a central line indicating the median of the data, uppef a
spectral parameterdi( anda) as regular NMF { only). In order ~lower box edges indicating the™ and 3" quartiles, and whiskers
to make a fair comparison, it is interesting to compare botilels |nd|cqt|ng the minimum and maximum values. The triangled an
with the same total number of parameters. The STFT is thusical Stars indicate the performance of the oracle approach.
lated with a512 sample-long normalized Hann window witt3%

overlap for testingCNMF, CNMF-LR andHRNMF models, and SDR SR SAR
with a 1024 sample-long window for testinMF-Wiener, NMF- 18| N * N
GL andNMF-LR models. 50 . e
For both blind and oracle approaches, KLNMF and CNMF are ® :
estimated with 30 iterations of MUR algorithms, and phasemne aor S A
struction algorithms involve 50 iterations. HRNMF is ialized 3
with a 30-iterations KLNMF and estimated with 30 iteratiaighe wl e ! P
VBEM algorithm for the blind approach, and 10 iterations loé t » * N R «
VBEM algorithm for each source learning (oracle approachje . IR @ T
compute BSS FAL scores on the different mixtures (for synthetic o ! ; T ‘
and real data) and on 30 different initializations (for Mi@zta). BT ' % % % H E E E S -
The numbers of iterations are chosen such that the perfaenan "0 % 1 ‘ Jag % !
is not further improved beyond. Energy ratios are expreBsd. 5 { H } L1l LF SR
of, i L
INote that the total number of parameters involved in the CNiMflel is 23 Tu 233 7. S35 7
higher than the dimension of the TF data itself, becausehals@ coefficients £55228 5552:z¢ 55228

are free. However, even if comparing CNMF with NMF or HRNMFngs
the same total number of parameters is not possible, thég@sBection 4 . . . .
will show that CNMF is most often outperformed by the otherdels. Fig. 2. Synthetic harmonics separation performance



These results show thairiffin-Lim andLeRoux phase recon-
struction algorithms provide poor results in terms of augliality.
While consistency is increased MMF-GL and NMF-LR , those

methods lead to a decrease of the SDR and SAR scores compared
to NMF-Wiener. Enforcing the magnitude to be constant over iter-

ations seems too constraining to increase audio qu&liMF-LR

is supposed to be a response to the aforementioned problgrt, b
does not provide better results thdMF-LR . It also requires much
more memory for storing the phase field of each source. Wenalso
thatCNMF provides better results th&@NMF-LR , confirming that
consistency may not be a good criterion for audio qualitysuRe

generally drop when TF bins overlap, but not in terms of SAR: a

tifact rejection seems globally increased when overlapiecm the
blind benchmark.

Finally, blind separation with thedRNMF model provides
slightly better results than the other models (except wheslap
occurs in the TF domainCNMF andHRNMF then lead to a sim-
ilar SAR median). This model also provide the best perforraan
in the oracle benchmarlhMF-Wiener is the fastest algorithmt(
ms), the other models are estimated in approximatelyseconds.
Similar computation times are obtained for real data.

The tests performed on synthetic harmonics with vibratioat (t

4.4. MIDI song
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cannot be presented here because of a lack of room) lead ko sim

lar results: theHRNMF model significantly outperforms the other
models in the oracle approach, demonstrating its abiligcturately
represent a variety of signals.

4.3. Piano notes mixtures

Benchmark results for piano notes mixtures are presentedjirre
3. We note that the algorithms do not perform worse than irsyine
thetic data case. The blind benchmark shows HRNMF results
are similar to the other algorithms (or slightly better)t the oracle
results confirm that it is the best model available in termsoténtial
for source separatiolNMF-Wiener is also interesting, because it
provides a fast and relatively accurate audio source separd he
analysis of the results for each mixture reveals that thditguat
NMF-Wiener is slightly worse thatHRNMF when there are over-
lapping TF bins.
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Fig. 3. Piano notes mixtures separation performance

Fig. 4. MIDI audio excerpt separation performance

Figure 4 presents the results obtained with a realistic Mi
dio excerpt. It shows a dramatic reduction of blind sourgsation
quality compared to the previous tests. This signal seemsdm-
plex to obtain an efficient factorization. ThdARNMF estimation
does not improve the result of the initial KLNMF. Howevere thra-
cle approach still shows that this method has a higher patehain
the other models for this applicatioNlMF-Wiener is computed in
60 ms and the others models are estimategitim4 seconds.

5. CONCLUSION

This benchmark presents HRNMF as a very promising model in
terms of source separation quality. It is able to take bothsph
and correlations over time into account, and models a yaoiesig-
nals frequently observed in music analysis. In particuta,oracle
approach showed that HRNMF is likely to be particularly et
when source separation is partially informed. The otheretoand
algorithms appear to be less appealing for source separatcause
sources often overlap in the TF domain, a common phenomenon i
music. More generally, algorithms that take correlatioeroime
and frequencies into account with a great expressive pohaarld
be considered with particular attention. Consistency e lzeen
shown not to be an appropriate criterion for audio qualityhe T
datasets and procedure described in this work can be a gaisl ba
for further evaluation of the potential of source separatimdels.
Besides, the experiments show that the VBEM algorithm used
for estimating HRNMF is highly sensitive to initializatiorSemi-
supervised learning or prior information about the soursesh as
harmonicity, sparsity or temporal smoothness should bredoted
in order to address this issue. Alternative estimation methmore
robust and less sensitive to initialization, could be immated in
future research. Bayesian methods such as Markov ChaineMont
Carlo (MCMC) and message passing algorithms might be aompti
Alternatively, the algebraic principles used in High Resion meth-
ods (such as the ESPRIT algorithm [17]) could also be exqidait
order to address this estimation problem.
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