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Fusion of Range and Stereo Data for

High-Resolution Scene-Modeling
Georgios D. Evangelidis, Miles Hansard, and Radu Horaud

Abstract—This paper addresses the problem of range-stereo
fusion, for the construction of high-resolution depth maps. In
particular, we combine low-resolution depth data with high-
resolution stereo data, in a maximum a posteriori (MAP) formu-
lation. Unlike existing schemes that build on MRF optimizers, we
infer the disparity map from a series of local energy minimization
problems that are solved hierarchically, by growing sparse initial
disparities obtained from the depth data. The accuracy of the
method is not compromised, owing to three properties of the
data-term in the energy function. Firstly, it incorporates a
new correlation function that is capable of providing refined
correlations and disparities, via subpixel correction. Secondly,
the correlation scores rely on an adaptive cost aggregation step,
based on the depth data. Thirdly, the stereo and depth likelihoods
are adaptively fused, based on the scene texture and camera
geometry. These properties lead to a more selective growing
process which, unlike previous seed-growing methods, avoids the
tendency to propagate incorrect disparities. The proposed method
gives rise to an intrinsically efficient algorithm, which runs at
3FPS on 2.0MP images on a standard desktop computer. The
strong performance of the new method is established both by
quantitative comparisons with state-of-the-art methods, and by
qualitative comparisons using real depth-stereo data-sets.

Index Terms—Stereo, range data, time-of-flight camera, sensor
fusion, maximum a posteriori, seed-growing.

I. INTRODUCTION

Many computer vision methodologies, including dense 3D

reconstruction [1], [2], gesture recognition [3], [4], and object

detection [5] have benefited from recently-developed depth

sensors. These sensors rely on active-light principles, including

modulated-light and pulsed-light cameras, commonly denoted

time-of-flight (TOF) [6], [7], or projected-pattern triangulation

cameras [8]. Regardless of the working principle, however,

these sensors provide low-resolution (LR) or mid-resolution

depth maps that are inadequate for a number of applications

such as 3DTV and film production. For example, many tasks

in the film production industry greatly benefit from a high-

resolution (HR) and high-quality depth map [9].

While HR depth maps can be obtained from multiple-view

matching and reconstruction using standard color cameras, it

is well known that stereo matching is problematic when the

scene contains weakly textured areas, repetitive patterns, or
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Grenoble Rhône-Alpes, 655, avenue de l’Europe, 38330 Montbonnot Saint-
Martin, France, email:georgios.evangelidis@inria.fr, radu.horaud@inria.fr

M. Hansard is with the Vision Group, School of Electronic Engineering
and Computer Science, Queen Mary, University of London, Mile End Road,
London E1 4NS, UK, e-mail:miles.hansard@qmul.ac.uk

occlusions; these situations are very common in both indoor

and outdoor environments. Active-light sensors do not suffer

from these limitations, although their own depth data are quite

noisy in the presence of scattering, non-Lambertian materials,

and slanted surfaces. The complementary nature of HR stereo

and LR depth sensors leads to the design of mixed camera

systems [10]–[18], which seem to be the most promising

approach, at present, for high-quality 3D depth maps.

In this context, this paper addresses the problem of HR 3D

reconstruction from the combination of a photometric camera

pair and an active-light camera, provided that the multiple-

camera setup is calibrated [19]. The combination of a stereo

matching algorithm and of an active-light sensor raises the

central question of devising a matching algorithm with the

following features: (i) it considerably increases the resolution

of the depth data, e.g., by a factor of ten, (ii) it eliminates

depth-sensor errors wherever possible, (iii) it overcomes the

limitations of stereo algorithms in textureless areas, and (iv) it

is able to compete with a depth sensor in terms of speed.

Hence, the availability of an efficient and robust stereo al-

gorithm that takes advantage of LR depth sensors and that

provides dense and accurate HR depth maps, possibly with

subpixel accuracy, is particularly desirable.

To this end, we propose a 3D reconstruction method that

merges depth-sensor measurements with photo-consistency

stereo matching. We address the problem from the perspective

of seed-growing, starting from a small number of control

points whose disparities are then propagated to yield a dense

disparity map. We show that this can be cast into maximum a

posteriori (MAP) formulation (Sec. III), which leads, in turn,

to a series of local optimization problems that are solved

hierarchically by a novel region-growing process (Sec. V).

While the proposed method may not reach the global optimum,

it allows us to devise an intrinsically efficient methodology

that bridges the gap between global optimizers based on

Markov random fields (MRF) and locally-optimal winner-take-

all (WTA) strategies (Sec V-E).

Efficient stereo-only or stereo-depth fusion methods rely on

control points, by exploiting either feature correspondences

in stereo [20], [21] or depth data in fusion [14], [15], and

they assume that these points are of very good quality. A key

contribution of this paper is that this requirement is relaxed

in order to devise a method tolerant to bad control points. We

propose to truly combine LR depth-sensor data with HR rich

photometric information, whenever and wherever possible,

showing that fusion is helpful, even in the early stage of

depth initialization (Sec. IV-A & IV-B). The data term of

the proposed MAP formulation benefits from a new cross-
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Fig. 1: The pipeline of the proposed depth-stereo fusion method. The low-resolution (LR) depth data are projected onto the

color data and refined to yield a high-resolution (HR) sparse disparity map. Starting from these disparity seeds, an upsampling

process provides an initial HR dense disparity map. Both the HR seeds and the initial dense disparity map are then used by

the region-growing depth-stereo fusion to produce the final HR depth map. A prominent feature of our method is that fusion

takes place at several data processing stages.

correlation function, which provides real-valued disparities via

subpixel corrections computed in closed-form (Sec.V-B1), and

takes advantage of a depth-guided cross-product aggregation

(Sec. V-B2). Moreover, the data-term adaptively merges the

stereo- and depth-consistency terms guided by the scene

texture and the camera geometry (Sec. V-C). These advantages

lead to a more selective growing-of-disparities process, thus

preventing the algorithm from propagating erroneous depth-

sensor data – a phenomenon that is often associated with

propagation techniques – as experimentally verified (Sec. VI).

It is important to note that the proposed method can be used

‘as is’ with any depth sensor, as it requires neither sensor-

dependent confidence maps nor a sensor-dependent model.

The proposed fusion pipeline is illustrated in Fig. 1.

Supplementary materials, in particular image datasets and

Matlab code are available online.1

II. RELATED WORK

We review pure stereo matching methods with emphasis

on local algorithms, owing to their computational suitability

for HR images. We also review upsampling methods and

depth-stereo fusion methods. More detailed surveys of stereo

matching algorithms and depth-stereo fusion methods can be

found in [22] and [9], respectively.

A. Pure Stereo Matching

Stereo matching methods can be broadly classified into

global and local [22]. Global algorithms [23] typically adopt

an MRF formulation and solve a single optimization problem

based on a MAP criterion. Despite their superiority over local

methods, global algorithms are extremely time-consuming, and

hence unattractive for fast fusing of depth-sensor data with

high-resolution images. Local algorithms solve per-pixel op-

timization problems and the state-of-the-art methods build on

adaptive cost aggregation [24]–[27]. Most methods, however,

must visit the entire cost volume to find an optimal disparity

value at each pixel. This volume grows rapidly with respect

to the input, as the width of the image typically multiplies

the number of disparities. Therefore, although they are able

1https://team.inria.fr/perception/research/dsfusion/

to provide LR disparity maps in real-time, they remain slow

and subject to memory issues in HR stereo. Note that global

algorithms need several approximations to obtain LR disparity

maps in real-time [28].

More interestingly, algorithms that rely on control-point

correspondences [29] are drastically more efficient since they

avoid visiting the whole cost volume. Region-growing ap-

proaches start from reliable but sparse correspondences (seeds)

and propagate them in textured areas [20]. [30] suggests

a similar propagation scheme where orientation-consistent

disparities are propagated to neighbors at the cost of finding

a plane equation per pixel. [21] proposed a generative model,

where the prior disparity comes from a 2D triangulated mesh

whose vertices (control points) are obtained from matches

between low-level features. As with [20], textureless areas

remain intractable and the final map is reliable only when the

matches are dense and uniformly distributed over the images.

Notice that the proposed method relies on the idea of control

points that are transferred from a depth sensor, thus avoiding

the limitation owing to untextured areas.

To obtain continuous disparities that are required in many

scenarios, e.g., 3D reconstruction [31], local stereo algorithms

typically employ two strategies: (i) fitting a curve around the

correlation peak [14], [22] or (ii) integrating an intensity in-

terpolation kernel into the (dis)similarity function [32] whose

optimization leads to subpixel correction. The latter is also the

case in the fusion framework of [16], [17] that inherently takes

advantage of inter-pixel depth estimations.

B. Depth Upsampling and Depth-Stereo Fusion

Any prior depth information, even at low resolution, is

likely to help dense disparity estimation. Apart from a naive

interpolation, the bilateral filter [33] can post-process an

interpolated map using color HR images for guidance [31].

Alternatively, a joint bilateral filter applies spatial and range

kernels to the LR depth map and HR color image respectively,

so that upsampling is a by-product of filtering [34]. Upsam-

pling methods, however, are limited to clean depth LR data

and cannot reconstruct accurate HR maps when LR data are

delivered by depth sensors.
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The above limitation of the upsampling methods gives rise

to fusion approaches that can merge depth and stereo data in

either early or late stages, once the sensors are calibrated. Late

fusion suggests merging two depth maps, one obtained with

stereo and one from the range sensor, possibly upsampled [18],

[35]. The majority of fusion methods, however, merge the

stereo and range-sensor data at an earlier processing level. [10]

estimates a LR TOF-based disparity map, which initializes

a coarse-to-fine stereo scheme [36]. A semi-global dynamic

programming approach is followed in [14] with the TOF-based

disparities, wherever available, being considered as error-free

matches. In a global framework, [11] produces mid-resolution

depth maps by merging TOF and stereo data within a graph-

cut stereo-matching paradigm; each energy term exploits both

modalities. Likewise, MRF-based formulations have been pro-

posed [12], [13], [37]. In [37], ground control points reflect

an extra regularization term in the MRF energy function.

The work described in [12] uses an MRF scheme to merge

depth distributions of each sensor alone, but the goal is a LR

depth map. [13] extends [12] by means of weighted fusion.

A balanced fusion (based on several confidence maps) within

a total variation model is also proposed in [17]. A similar

variational model that infers the HR map in a coarse-to-fine

manner is adopted by [16]. Note that, unlike most fusion

methods and similar to the proposed one, [16] is not tuned

to a specific depth sensor.

More closely to the present work, [15] fuses the data

within the seed-growing method of [20]. In particular, TOF-

based disparities constitute seeds while a triangulation-based

interpolated TOF map regularizes the seed-growing process.

When the TOF data are noisy, however, this approach tends to

produce incorrect disparities, and to propagate false positives

during the growing process. The proposed method differs

considerably from [15] in terms of depth initialization, cost

function, and fusion strategy. The proposed initial map is

robust to depth discontinuities while it also guides the cost

aggregation inside a window. Moreover, our likelihood term

integrates functions that are capable of providing sub-pixel

disparity corrections [32]. This turns out to be very beneficial,

not only for the continuous nature of the final map, but also

for the growing process itself, thus propagating more reliable

messages (disparities). Note that the subpixel disparity correc-

tion is obtained from a closed-form solution – an interesting

feature for efficiency. Finally, our algorithm benefits from an

adaptive fusion scheme that better balances the contribution

of each modality (depth or color), and that results in fewer

unmatched pixels.

III. PROBLEM FORMULATION

The main mathematical notations that are used throughout

the paper are summarized in Table I. As discussed, the direct

upsampling of LR depth data suffers from limitations, in

particular when the upsampling factor is high.2 Therefore, our

goal is to build D by jointly taking advantage of both sensing

modalities. Given a proper calibration, (e.g., [19], [38]), the

2In our experiments, the upsampling factor is 10× in each dimension, that
is 100× in the number of pixels, e.g., from 0.02Mp to 2MP.

TABLE I: The main mathematical notations used in the paper.

p, q: Pixel locations of the high-resolution grid
p↓, q↓: Pixel locations of the sparse grid

dp: Unknown disparity of pixel p, initialized by d0p
dp↓: Known disparity of pixel p↓ (observed)

D: Unknown HR disparity map, initialized by D0

D↓: Known sparse version of D (observed)

D,D0, D↓: Sets of all random variables (disparities) associated
with D, D0 and D↓ respectively, with dp ∈ D,
d0p ∈ D0 and dp↓ ∈D↓

tp: Subpixel disparity correction of p
µp = (dp; tp): Disparity-correction pair referred here to as meta-

disparity with |tp| < 1
M = {µp}: Set of meta-disparities
S = {sp}: Set of observed stereo pixel intensities

Ip: Intensity of pixel p
u(x, y): a vectorized (zero-mean) form of an intensity win-

dow centered at the 2D position (x, y)
Np: Neighborhood of pixel p

med: 2-d median operator
IR, DR: Intensity and disparity maps defined on a sub-region

R
ES(dp), ED(dp): Stereo-based and depth-based energy of p for given

disparity

g(ξ; γ)=e−|ξ|/γ : Exponential mapping of ξ with scale γ

mapping of the LR depth image onto the rectified HR color

images will typically yield a sparse disparity map D↓, which

is almost evenly distributed across the HR grid. Note that

in [20], [21], the initial matches between the stereo images

do not correspond to a uniform sparse version of D, as they

are unpredictably distributed, due to the reliability of properly

detecting interest points in images. Instead, the sparse map

obtained with a depth sensor can be used to guide a stereo

algorithm, regardless of the presence or absence of scene

texture.

We propose to model the estimation of D, and therefore the

map D, as a maximum a posteriori (MAP) problem, based on

the available depth and stereo observations. However, instead

of immediately using D↓, we first estimate a dense initial

map D0 and its associated set D0. Then, we obtain the final

disparity map by solving the following optimization problem:

D∗ = argmax
D

P (D|S,D0), (1)

where P (D|S,D0) is the posterior distribution of disparities

given the observations S and D0. The proposed depth ini-

tialization method is described in Sec. IV and the proposed

solution to the MAP formulation (1) is described in Sec. V.

Note that a reliable estimation of D0 is quite important, since

it guides several components of the fusion methodology.

IV. DEPTH INITIALIZATION

A two-step approach is proposed in order to obtain the initial

disparity map D0. First, we refine D↓ to deal with mapping

errors. Second, we upsample the refined sparse map in a novel

way using color information to obtain the initial dense map

D0. As shown below, this leads to an initialization robust to

depth discontinuities, which in turn helps the growing.

A. Sparse-Depth Refinement

We assume a camera setup with a depth camera mounted in

between the two color cameras; other depth-stereo setups are
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(a) (b) (c)

Fig. 2: (Best viewed on screen) (a) The mapping of depth data onto the left image causes artifacts in the presence of depth

discontinuities. A cascade of (b) geometry-consistency and (c) color-consistency filters refines the sparse disparity map. Depth

values are color-coded from red (close) to blue (far).

(a) (b) (c)

Fig. 3: (Best viewed on screen) Depth upsampling results using (a) triangulation-based interpolation [15] after cutting big

triangles, (b) joint bilateral filter [34] and (c) our method. The depth values are color-coded from red (close) to blue (far),

while black areas correspond to non-available values. The white edges in close-ups show the color edges of the image.

discussed in [9]. Regardless of the depth sensor technology

and type, the projection of the depth map onto the left and

right images implies a parallax effect, and hence occlusions.

Moreover, this causes gaps as well as areas with overlapping

depth data close to depth boundaries [15]. In the case of

TOF cameras, these areas are further contaminated from jump-

edge errors [39], or ‘flying pixels’ [40], 3 while a structured-

light camera, e.g., Kinect, leaves more gaps due to the offset

between the position of the light projector and the position of

the infrared sensor. Fig. 2(a) illustrates the artifacts that we

briefly discussed: flying pixels and depth-data overlap in the

top and bottom closeups, respectively. In order to eliminate

these artifacts we apply a geometry-consistency cascade of

two filters: the first one removes isolated pixels (mostly flying

pixels) and the second one keeps the foremost pixel inside a

window to compensate for the above mentioned overlap. An

example of applying this filtering is shown in Fig. 2(b). In

practice this does not fully refine the sparse depth map. We

still observe mismatches near depth discontinuities, because

of depth bias and calibration errors. Therefore, a second filter

that imposes color consistency is applied, as described below.

We consider a window centered at p↓ and split into four

equally sized sub-windows Wi, i = {1 . . . 4}, such that their

intersection is only the pixel p↓ (see Fig. 4). The output, dp↓,

of the filter is:

dp↓ = med(D↓Wi∗
) (2)

with

i∗ = argmin
i

(

|Ip↓ − med(IWi
)|
)

. (3)

3Although not considered here, flying pixels towards the camera can be
also observed.

The output dp↓ is the median disparity of the adjacent sub-

window whose median intensity is closest to that at p↓. For

color images, the term |Ip↓−med(IWi
)| can be replaced by the

average deviation from the median, over the color channels.

This filter leads to a further refinement near depth discontinu-

ities which are pathological areas for stereo algorithms. The

result of this kind of filtering is shown in Fig. 2(c). Note that

both refinement filters apply to sparse locations only so that

their complexity is negligible.

Fig. 4: The window split for the color-consistency filter. The

pixel p↓ is linked with the closest (shaded) sub-window in

terms of the color consistency (links represent color distances

from Ip↓ to med(IWi
)).

B. Sparse-Depth Upsampling

While a naive upsampling of the sparse disparity map could

be performed, e.g., [15], thereby producing an initial map,

strong depth discontinuities are likely to contaminate such

an interpolation. Alternatively, cross-bilateral filtering [41] or

joint bilateral upsampling [34] may upsample the map using
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the HR color image as a guide. The filter support of these

methods jointly counts on spatial and range (color) kernels.

However, both methods apply a linear smoothing once the

filter support per pixel is computed. Instead, we propose a

non-linear upsampling strategy that builds on the median filter.

Specifically, the depth (or disparity) at a dense pixel location

p is initialized by

d0p = med(D↓N c
p
) (4)

where N c
p is a constrained neighborhood of p, that is N c

p ⊂
Np, which contains only sparse depth measurements whose

color is consistent with Ip:

N c
p =

{

q↓
∣

∣ g(Ip − Iq↓; γc) > ǫc

}

(5)

with g(ξ; γ) being an exponential mapping (see Table I).

Unlike common bilateral filters, our upsampling process

makes a more definitive selection of pixels, thus preserving

the depth discontinuities of the scene, while filtering out some

of the noise in the depth data. Once the N c
p is defined, one can

optionally consider a spatial kernel and compute a weighted

average instead, in order to better deal with slanted surfaces.

Fig. 3 compares our initialization with the upsampling results

obtained by [15] and [34]; in the detailed views, the intensity

edges are also shown. The proposed method provides more

discriminative depth boundaries that coincide with intensity

edges. Missing values may be observed in highly textured

areas, since N c
p may be an empty set. In this example, the

radius of Np is 20, γc = 10, and ǫc = 0.2. The same radius

is used for the method of [34] while the scales for spatial and

color kernel are 10 and 20 pixels, respectively. The geometry-

consistency filter reasonably applies in all cases while our

method benefits from our color-consistency refinement as well.

Since the median operator is chosen to account for outliers

within a window, the mean operator can be invoked instead

when the depth variance almost vanishes (homogeneous areas),

thus drastically reducing the computational burden of the

upsampling process. Since the vast majority of pixels belong to

such areas, the complexity of our filter approaches that of joint

upsampling filter [34]. Note that the latter has been extended

in [18] by integrating color segmentation results.

V. DEPTH-STEREO FUSION

Let dp ∈ D have N possible discrete states; the goal is to es-

timate the disparity (state) of each HR image location through

the MAP formulation (1). Once D0 has been initialized, one

can assume that S and D0 are conditionally independent, so

that the posterior distribution of (1) can be decomposed as

P (D|S,D0) ∝ P (S|D)P (D0|D)P (D). (6)

As mentioned, global solutions are prohibitively expensive

for high-resolution disparity maps. Therefore, we focus on

approximate solutions that allow for the decomposition of

the global optimization problem into many local (per-pixel)

optimization problems.

The proposed method is based on the seeded region-growing

framework [20], [42], where the known message of a location

Fig. 5: The principal graph that is iteratively considered in our

region-growing fusion method.

(the parent) is propagated to its neighbor (the child). This

implies that the estimation of dp is also conditioned by a

parent known disparity dpap , hence dealing with the principal

graph of Fig. 5 for every pixel with unknown disparity (the

visiting order of pixels is made clear later). As a result, if

P (dp) is considered uniform, the posterior probability of dp
can be written as4

P (dp|sp, d
0
p, d

pa
p ) = P (dp|d

pa
p )P (dp|sp, d

0
p)

∝ P (dp|d
pa
p )P (sp|dp)P (d0p|dp) (7)

where dpap is the parent of dp and the probability

P (dp|d
pa
p ) =

{

1

2r+1
|dpap − dp| ≤ r

0 otherwise
(8)

has a uniform distribution. In other words, the disparity range

for each node is a function of the assigned disparity of his

parent. We consider a narrow support area, i.e., a constant

low value for r, e.g., 1 or 2; node-dependent parametrization

of r is left to future work.

A. MAP as Energy Minimization

As is customary, likelihoods are chosen from the exponen-

tial family which leads to an energy minimization framework.

Our model assumes an energy-dependent distribution (Boltz-

mann) for P (sp|dp) and a Laplacian one for P (d0p|dp):

P (sp|dp) ∝ exp
(

−ES(dp)
/

λS

)

(9)

P (d0p|dp) ∝ exp
(

−|dp − d0p|
/

λD

)

. (10)

Based on (7-10), Fig. 6 shows an example with the distribu-

tion of dp being constrained by single or joint observations.

Because of the exponential terms, the pixel-wise maximization

of the posterior distribution reduces to the minimization of the

local energy

E(dp) = ES(dp) + ED(dp) (11)

where ED(dp) = λ|dp − d0p| is the regularization term,

λ = λS/λD and ES(dp) is the (stereo) data-term which

is defined below. The term ED(dp) guides the inference in

textureless areas, while it penalizes mismatches due to depth

discontinuities when the latter are well preserved in D0. Notice

4Strictly speaking, it is an approximation since d
pa
p and d0p may not be

fully independent.
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Fig. 6: An example of the probability distribution of dp
constrained by different observations.

that a smoothness constraint is implicitly enforced because of

the prior term P (dp|d
pa
p ) owing to the low value of r. In

other words, the support area of E(dp) is truncated as shown

in Fig. 6, and the pixel-wise optimization problem becomes

mindp
E(dp)

subject to |dp − dpap | ≤ r. (12)

The order of visiting pixels and solving (12) obeys a most-

confident first-solved rule, as discussed in Sec V-D. Below,

once the data-term is defined, we modify (11) to adaptively

combine the data-term with the regularizer.

B. The Data Term

The proposed data-term benefits from two properties: its

ability to provide energy for subpixel disparities and to adap-

tively consider pixel-wise similarities within a window. Apart

from the advantage of a locally continuous map [31], it is more

important to note that these properties lead to a more selective

growing in areas with texture (owing to the former) and

varying depth (owing to the latter) because of more accurate

and reliable local energies.

1) Subpixel disparity: To obtain energy at interpixel loca-

tions, we make use of meta-disparities (dp; tp) (see Table I).

The estimation of tp builds on [32], which has been shown to

be superior to the parabola-fitting around the peak correlation:

the pixel p = (x, y) of the left image is matched with the

subpixel p′ = (x+dp+ tp, y) of the right image by defining a

bounded correlation function Cdp
(tp) (|Cdp

(tp)| < 1) which

is maximized with respect to tp for a given dp. This allows

us to define our data-term as

ES(dp; t
∗
p) = 1− Cdp

(t∗p), (13)

where

t∗p = argmax
t

Cdp
(t). (14)

Consequently, the total energy (11) is parameterized by t∗p as

well. Note that if t∗p can be estimated via an analytic solution,

the extra computational cost of subpixel disparity estimation

is negligible. It becomes clear that, since Cdp
(t∗p) ≥ Cdp

(0)
in (13), more accurate energy values are estimated and more

reliable messages are propagated.

Since invariance to photometric distortions is important in

stereo matching, we propose to adopt the normalized corre-

lation coefficient, and one of its variants [43], for Cdp
(tp).

While the former has been already extended to deal with

subpixel disparities [32], the latter has never been extended

before. Both use zero-mean vectorized forms of the windows

around p and p′, let uL(x, y) and uR(x+ d+ t, y), with the

latter being written via a first-order Taylor approximation as

uR(x+d+ t, y) ≃ uR(x+d, y)+ t∆uR(x+d, y) where ∆ is

a difference operator along the x−axis. This is also the case

in variational framework [16], [17] where subpixel accuracy

is obtained by the early interpolation of the intensity, rather

than the late interpolation of correlation around the peak [22].
Enhanced Correlation Coefficient (ECC): The ECC func-

tion [32] results from the integration of the above linear

interpolation kernel into Pearson coefficient:

CP
d (t) =

u
⊤
L (uR + t∆uR)

‖uL‖ ‖uR + t∆uR‖
. (15)

If the denominator of (15) is non-degenerate, then CP
d (t) is a

quasi-concave function of t and its maximization results in a

closed-form solution [32].
Enhanced Moravec Correlation Coefficient (EMCC): The

Moravec coefficient [43] replaces the denominator of (15) with

the mean of the variances. This also allows us to introduce a

left-right symmetry, thereby estimating a left disparity −t/2
and a right disparity t/2 instead of t (such a modification with

ECC leads to a complex optimization problem). The enhanced

Moravec correlation coefficient (EMCC) is defined by

CM
d (t) =

2(iL − t/2∆iL)
⊤(iR + t/2∆iR)

‖iL − t/2∆iL‖2 + ‖iR + t/2∆iR‖2
. (16)

Note that one can easily show that the integration of an

interpolation kernel into the cost function of [15] is equivalent

with the EMCC scheme. Although (16) is a rational function

of t, the next proposition guarantees that the maximizer has

an analytic form. We refer the reader to the appendix for the

proof and the exact maximizer.

Proposition I: A rational function of two second-degree

polynomials, as in (16), attains at most one global maximum

if the denominator is non-degenerate; its maximizer is given

by a closed-form solution.

Note that, the estimation of t could be unreliable for strictly

homogeneous areas. The value of the window variance or

entropy is a good criterion to assess the reliability of subpixel

correction, and to enable it accordingly.
2) Adaptive similarity aggregation: The best-performing

local stereo algorithms benefit from an adaptive cost aggre-

gation strategy [24]. This strategy is based on the assumption

that depth discontinuities are most likely to coincide with

color discontinuities, so that each pixel within a window

contributes differently to the (dis)similarity cost based on its

spatial and color distance from the central pixel. However,

only a few color edges correspond to depth edges and the

above assumption should be followed only in the absence of

any prior information about the depth. Since in our scenario

the prior depth information is available, the spatial and color

consistency can be replaced by a depth consistency term.

To be specific, we adopt here the exponential g(·) (see

Table I) to compute pixel-wise weights wq:

wq = g
(

d0p − d0q; γd
)

, (17)
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with q ∈ Np. The weights apply element-wise to uL, uR,

∆uR and ∆uL in (15) and (16). In other words, we compute

the subpixel correction and the optimum local energy after

down-weighting pixels in the window that belong to another

surface compared to the one of the central pixel. It becomes

clear now that not only the term ED(dp) but also the stereo

term ES(dp) in (11) benefit from an upsampling method that

is robust to depth discontinuities. Moreover, even if the initial

depth map is biased, it is sufficient enough to guide the

aggregation step within the window.

C. Adaptive Fusion

While a constant fusion may be reasonable for specific types

of scenes (e.g. highly-textured scenes), an adaptive balance of

the two terms in (11) is usually preferred, i.e., the less we

count on ES(dp), the more we should count on ED(dp) during

the inference.5 This suggests a convex combination when the

scene point of p is viewed by all cameras.

A summary of methods that perform weighted fusion is

discussed in [17]. However, most of them consider TOF-based

weights for the regularizer (e.g., [13]) which contradicts our

goal of a sensor independent fusion. Moreover, directly using

the confidence map of a TOF image is not a good strategy [40].

Therefore, we only rely on stereo data to obtain the mixing

coefficients. It is well known in stereo or optical flow that the

matching of a point is reliable when its associated image patch

contains sufficient texture [44], [45]. Since a good indicator

for the texture presence is the image entropy [44], an entropy

filter provides us with an adequate reliability factor ep for each

window centered at p.

Let us now consider the left image as reference and compute

the initial left-to-right disparities. Likewise, we can build a

right-to-left disparity map based on the right image, and a

cross-checking of these maps can provide an estimation of

the major occlusions due to strong depth discontinuities, with

respect to the reference image. We refer to these areas as

stereo-occlusions and we denote them as ΩSO. Recall now

that some points in the left image are not seen by the depth

camera, and that this gives rise to gaps in the initial disparity

map which can be easily detected. We refer to these areas

as depth-occlusions and we denote them as ΩDO. It becomes

obvious that the evaluation of ES(dp) and ED(dp), in ΩSO

and ΩDO respectively, should be avoided. Hence, we propose

the following adaptive fusion

E(dp) = ηSpES(dp) + ηDp ED(dp) (18)

with the pair (ηSp , η
D
p ) being defined as

(ηSp , η
D
p )=



















(0, 1) if p ∈ ΩSO \ ΩDO

(1, 0) if p ∈ ΩDO \ ΩSO

(ep, 1−ep) if p ∈ Ω \ ΩSO

⋃

ΩDO

(inf, inf) if p ∈ ΩSO

⋂

ΩDO

(19)

where Ω defines the whole image area and ep is the normalized

output of the entropy filter. We intentionally add the last

case in (19) which shows that the fusion in ΩSO

⋂

ΩDO is

meaningless and a post-filling method should be followed.

5Here we omit the disparity correction t.

It is important to note that the so-called ordering constraint

in stereo is valid when large foreground objects appear in the

scene, while it is violated when very thin objects are close to

the camera (see Fig. 7). The former implies ΩDO

⋂

ΩSO =
ΩDO and the latter implies ΩSO

⋂

ΩDO = ∅, provided that

the depth sensor is mounted between the color sensors. While

the area ΩSO\ΩDO can always be predetected, the area ΩDO\
ΩSO is safely predetected only when the ordering constraint

is not valid.6 This is because ΩSO is detected from the cross-

checking of disparity maps that already suffer from depth-

occlusions, since they are computed from the depth-to-stereo

mapping. Ideally, if the complexity is not an issue, a stereo-

occlusion detection scheme (e.g. [46]) based on stereo image

pair could be enabled beforehand. Therefore, we prefer to not

grow ΩDO that can be optionally filled in a post-processing

step. Fig. 7(c) shows the areas for the example of Fig 2.

D. The region-growing algorithm

As has been explained, our method solves pixel-based

optimization problems in a region-growing manner, based on

the seeds contained in D↓. Since the initial disparities may be

noisy and biased, they do not reflect true matches as opposed

to [15]. This means that we exploit dp↓ to restrict the disparity

range of its neighbor, but once a disparity value is assigned to

the latter, p↓ is reset to a pixel p with unknown disparity. For

our convenience, the set D↓ is augmented to an initial set M
of meta-disparities (dp; 0) with the same cardinality. We also

denote with N (µp) = {µj
p}

4
j=1 the image-based neighbors

of µp, that is, µj
p = (dp̂; tp̂) with p̂ being any of the four

immediate neighbors of p. Note that µj
p does not necessarily

belong to M.

Algorithm 1 describes the growing process. Instead of refer-

ring to pixel p with disparity dp and correction tp, we directly

refer to meta-disparities. The algorithm starts by sorting the

elements of M based on their energy value, while it initializes

6It would be possible to detect all areas if one knows a priori that the
constraint is everywhere valid or invalid.

(a) (b) (c)

Fig. 7: (a) The validity of ordering constraint implies ΩDO ⊂
ΩSO when the depth camera is mounted between the color

cameras; the shorter the baseline is, the more coincident these

regions are. (b) ΩDO and ΩSO do not overlap when the

scene contains very thin foreground objects and the ordering

constraint is invalid. In (c), ΩSO, ΩDO for the example

of Fig 2 are shown. Points that have been removed during

the refinement step (Sec. IV-A) are also marked as depth-

occlusions, while outliers in the initial maps can produce false

positives for ΩSO, e.g. the red points on the right arm of the

person.
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Algorithm 1 Stereo-Depth Fusion

Require: Image-pair IL, IR, set D↓, Threshold T .

1: Transform D↓ into a set M of meta-disparities with tp=0.

2: Compute the initial disparity map D0.

3: Sort M’s elements based on their energy E(µ).
4: Set both the visit and assignment flags fv(µ), fa(µ) to

false, for all candidate meta-disparities, including M.

5: repeat

6: Consider µp with minimum energy and false fv(µp)
7: Set fv(µp) = true

8: for all µj
p ∈ N (µp) with fa(µ

j
p) = false do

9: µj∗
p = argminE(µj

p) (Eq. 20)

10: if E(µj∗
p ) < T then

11: Set fa(µ
j∗
p ) = true

12: Push µj∗
p in M w.r.t. sorting

13: end if

14: end for

15: until card(M) is fixed

16: Compute the dense disparity map D from M
17: return D.

to false the visit- and assignment-flag of all candidate meta-

disparities. Next, it considers the lowest-energy µp with false

visit-flag and switches this flag to true. Then, it assigns values

at each µj
p ∈ N (µp) with false assignment-flag based on the

following minimization scheme

(d∗p̂; t
∗
p̂) = argmin

tp̂, |dp̂−d∗

p|≤r

E(dp̂; tp̂), (20)

where

E(dp̂; tp̂) = ηSp̂ES(dp̂; tp̂) + ηDp̂ ED(dp̂) (21)

and d∗p is the optimum disparity of the parent node of p̂.

Note that (21) extends (11) by adding the subpixel disparity

parameter into the stereo term, and making the fusion pixel-

dependent. In other words, what we do for each neighbor p̂
with false assignment-flag is the following. For each candidate

integer value dp̂ ∈ [d∗p − r, d∗p + r] the optimum t∗p̂ that

minimizes the term ES(dp̂; tp̂) is obtained based on (16)

or (15) and the local energy E(dp; t
∗
p) is computed from

(21). Among the 2r + 1 values, the disparity minimizer d∗p̂
is finally chosen and the corresponding subpixel correction

is assigned, as it is shown in (20). Recall that r has a low

value in contrast to conventional stereo algorithms where it

equals the whole disparity range. If E(d∗p̂; t
∗
p̂) < T , then

the meta-disparity (d∗p̂; t
∗
p̂) is pushed into M with respect to

the sorting, and its assignment-flag becomes true. The above

process is repeated with unvisited meta-disparities until the

cardinality of M remains fixed. The visiting order depends

on local energies, since the lowest-energy meta-disparity is

always picked from the stack. The final set M corresponds

to the final dense disparity map while a post-filling method

can deal with missing disparities; their number depends on

threshold T . It is important to note that the algorithm cannot

get stuck in a loop, because it propagates disparities in a tree

structure, and a true visit-flag can never be reset to false.

Fig. 8: Dependency network for (a) WTA and (b) MRF models

in an 1D example. Initial and two final candidate graphs for

the proposed scheme are shown in (c), (d) and (e) respectively.

E. Comparison with Other Inference Formulations

State-of-the-art stereo or fusion methods adopt an MRF

model that provides a straightforward way to integrate multiple

sensor data. If we recall equation (6), the term P (D) can

be written as a Gibbs distribution whose energy is a sum of

potential functions over maximal cliques [47], hence a sum of

pairwise potentials when a 4-pixel neighborhood is considered.

This in turn offers a smoothness term in the global energy

equation that leads to piecewise smooth disparity map. There

exist exact solutions for such models, under very specific

conditions [23]. Their computational complexity, however, be-

comes more and more severe as the number of states increases,

thus becoming prohibitively expensive in the case of HR-

stereo. Therefore, one has to focus on feasible approximate

inferences that decompose the global optimization problem

into a series of local optimization problems.

MRF stereo generalizes the winner-take-all (WTA) ap-

proach [22] which can be seen as the simplest inference.

Fig. 8(a) and (b) show an 1D-grid example of the MRF and

WTA networks. In essence, links between disparity nodes in

WTA disappear and each node is connected only to input

data (observations). This implies a uniform prior distribution

P (D) and the maximization of P (D|S,D0) reduces to a

set of independent pixel-wise maximization problems of type

P (dp|sp, d
0
p). As with the proposed method, we tacitly assume,

that sp are not intensities but they represent the stereo data of

local windows centered at p and its candidate correspondence.

This is necessary in WTA since the likelihood cannot count

on single pixels only, while it can be optionally used in global

MRF solutions as well. It is worth noticing that our algorithm

switches to a WTA solution when r = N , since the visiting

order of nodes and their connectivity becomes meaningless and

the uniform distribution P (dpap |dp) is not truncated anymore.

Another MRF approximation that finds pixel-wise optimiz-

ers without breaking the connectivity between nodes is the

iterated conditional modes (ICM) method [48]. After a proper

initialization of all disparity nodes, ICM-like schemes visit

one node (pixel) at a time and assign the disparity value that

maximally contributes to the global posterior distribution. On
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the contrary, our approach requires the initialization of few

nodes only, at least one in principle. Moreover, the graph in

our case is a set of directed trees, i.e., a forest, so that each

non-root node has only one parent. It is important to note,

however, that it is the output of our algorithm that defines the

final network since nodes may be re-ordered, links may be

cancelled and arrows may be reversed during the inference.

To be more specific, let us consider the graph of Fig. 8(c)

and let us assume the clamping of d2 and d5 to the observation

d02 and d05. Starting from d2, we can ‘propagate’ d02 to its

neighbor d3 (and d1), i.e., to look for the optimum value

of d3 but being strictly conditioned by the value d02. Note

that ICM would look for the best assignment of d3 value by

taking into account both initial values d02 and d04. Moreover,

ICM would search, in principle, among all (here N ) states for

the optimum d3’s assignment, while our scheme looks only

around d02, namely d3 takes values in {d02 − r, ..., d02 + r},

with r being a small integer. Once d3’s assignment is done,

d02 can be passed to d1 in a similar way. Next, another node is

visited, here one of d3 and d5, and its disparity is propagated

to its neighbors. As a result, the principal graph of Fig. 5 is

iteratively considered. Note that ICM assigns a new value to

d3 anyway, while our scheme invokes a criterion that validates

the assignment. If d3’s assignment is not valid, our algorithm

will possibly assign a new disparity value to d3 only after

d4’s assignment. Fig 8(d) and (e) show possible final graphs

obtained by different realizations of our algorithm. In the

example of Fig 8(e), the initial disparity of d5 was cancelled

by the validation process, thus all nodes were filled due to d02.

It is now clear that, as opposed to WTA solution, the final

inference we obtain depends on the visiting order of nodes.

The visiting order of the ICM scheme is either fixed in advance

(e.g. raster-scanning), or random. Inspired by [47] and [20],

however, we instead adopt a highest confidence first (HCF)

scheme that suggests visiting the nodes based on their local

evidence (energy). This means that we keep the nodes sorted

with respect to their energy, and we visit each time the least-

energy node that has not been visited yet. For instance, in

Fig. 8(d), starting with d2 implies that d2 is more confident

than d5. The above validation process relies on thresholding

the local energy as explained in Sec. V-D. Table II summarizes

some properties of MRF-based solutions (Graph-cut [49] and

ICM [48]), WTA, and our approach.

VI. EXPERIMENTS

In this section, we evaluate our algorithm, and quantitatively

compare it to the state-of-the-art, based on both simulated

and real data-sets. We also test our algorithm and provide

qualitative comparison on a new and challenging dataset.

A. Simulated Data

We use the Middlebury database, and focus on a challenging

data-set which contains 1.5MP images (1300 × 1100) along

with ground-truth maps (GTM) [50]. To simulate an LR

disparity map from another viewpoint, we proceed as follows.

Given the calibration parameters, we transform the ground-

truth disparities into 3D points, as viewed from the midpoint

of the baseline. We then apply a 3D rotation to the point-

set and we downsample the points by a factor of 10. The

rotation is such that the average disparity bias is more than

2 pixels. Finally, we back-translate the points into sparse

biased disparities and we add colored noise, that is, a 2D mid-

frequency sinusoidal signal with peak-to-peak distance equal

to 2σ, where σ denotes the noise deviation. Note that [15],

[31], [34] only downsample the GTMs in their experimental

setup. Algorithm performance is quantified in terms of the

so-called bad matching pixels (BMP) percentage in the non-

occluded areas [22], i.e., (1/No)
∑

p(|Dp − Gp| > δ) where

G is the GTM and No is the number of the non-occluded

pixels. While the threshold level δ = 1 is mostly used for

mid-resolution images, HR stereo justifies the value δ = 2 as

well [21]; a value δ < 1 is chosen when subpixel accuracy is

to be evaluated.

The same parameter settings are used for our method, in all

of the experiments. The radius of the upsampling filter is 20
and the values γc and ec are 10 and 0.2 respectively. Because

of the propagation strategy, we choose a relatively small

window, i.e., 9× 9. The local energy in (11) and the weights

in (17) are obtained with λ = 0.01 and γd = 5, respectively.

We enable subpixel correction when the normalized entropy

in the (left) window is above 0.4. As mentioned, we use a

fixed (and strict) search range around the disparity parent, that

is r = 1, which leads to the most efficient solution. As for

the threshold, we set T = 0.5. Note that the energy validation

threshold implies a tradeoff between accuracy and density. We

recommend setting a middle threshold value and post-filling

sparse missing disparities, e.g., with the upsampling filter,

rather than using a high threshold that incorporates erroneous

disparities in a fully dense map. The density obtained with this

strategy is about 90% in HR images. As with all algorithms,

large remaining gaps are filled with a streak-based filling [21].

We refer to our methods as Fusion-ECC (F-ECC) and Fusion-

EMCC (F-EMCC).

Before comparing with the state-of-the-art, we show the

performance gain in terms of the new modules that are

integrated compared to EPC method [15], thus quantifying

the contribution of the new data-term and the adaptive fusion.

Note that [15] (EPC) follows a seed-growing approach by

using a quadratic model for both stereo and depth consistency

terms respectively. To better evaluate the contribution of the

enhanced correlation coefficients presented in the data-terms,

we use LR images (450 × 375 on an average) whose GTM

contains subpixel disparities. The noise deviation in the sparse

map is σ = 2. We intentionally do not fill any remaining

large gaps, in order to assess the net contribution of each

module, and we compute the error for the filled area only

(85% density). Table III shows the BMP error averaged over

eight images. We also evaluate our approach when none of the

modules are enabled, i.e. pure correlation is used along with

a fixed fusion of the terms; we refer to this method as simple

fusion. All of the variants start from the same initial depth

map, obtained by our upsampling method. As can be seen,

both the data-term and the adaptive fusion process contribute

to a better reconstruction, compared to simple fusion. The

use of the proposed energy data-term leads to more accurate
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TABLE II: Properties of inference algorithms in stereo and/or depth-stereo fusion.

MRF (graph cuts) MRF (ICM) WTA Proposed

Dependency network undirected graph (MRF) undirected graph (MRF) independent minor graphs independent directed trees (forest)
Inference exact* approximate approximate approximate
Prior distribution Gibbs Gibbs uniform truncated uniform
Invariance to visiting order yes* no yes no
Disparity search range full (r = N ) full (r = N ) full (r = N ) narrow (r ≪ N )
Complexity in HR stereo/fusion too high high high low

*under specific conditions [23], [49]

results, while the adaptive fusion eliminates large errors (see

the error with δ = 2). Even the simple fusion has a lower BMP

than EPC, owing to the different stereo- and depth-consistency

terms (we use a linear model for the latter). The two proposed

criteria behave similarly, with the F-ECC being slightly more

accurate, since it achieves higher correlation values (see also

Table IV). Note that our results were systematically worse

when the initialization of [15] was used.

To compare with the state-of-the-art, we implemented the

upsampling methods of [34] and [31] (two-view version), as

well as the MRF-based fusion [12] by modifying the MRF-

stereo toolbox of [23], referred here to as F-MRF. While [12]

uses belief propagation, we experimentally found that Graph-

Cuts [49] perform better. Specifically, we tried ten different

parameter settings and we found that the best performing algo-

rithm is the expansion mode with Birchfield-Tomasi cost [51]

truncated at 7, linear disparity differences truncated at 5 and

quadratic cost for the smoothness-energy; the weights for the

stereo-, depth- and smoothness terms were 1, 1.2 and 10. We

refer to [12] instead of [13] for MRF-based fusion since the

latter relies on a TOF-based reliability fusion which cannot be

implemented here.

Fig. 9 plots the BMP curves of the upsampling and fu-

sion algorithms as a function of the noise deviation for the

challenging low-texture HR image Lampshade1. We just add

noise here in the down-sampled GTMs. Except for [34], all

schemes start from the same HR map, obtained by a naive

interpolation, while its BMP curve is plotted as well. As can

be seen, F-MRF and EPC are more affected by the noisy prior

disparity, in contrast to the proposed algorithm, which is less

sensitive to initialization. It is clear that the pure up-sampling

methods provide acceptable results only when the initial LR

disparity map is very accurate.

We now proceed with a detailed comparison including effi-

cient and well-known stereo algorithms as well. Specifically,

we include four recently proposed methods, [21] (ELAS), [20]

(CGS), [25] (FastAgg), [27] (NonLocalAgg) and two MRF-

based stereo algorithms, Graph Cuts (GC) [52] and constant-

space belief propagation (CSBP) [28]. The top-performing lo-

TABLE III: Contribution of various modules of the proposed

algorithm (BMP error averaged over eight LR images).

BMP (%) for δ = 0.5 / δ = 1 / δ = 2
F-ECC F-EMCC EPC [15]

Simple Fusion 22.4 / 7.7 / 3.4 23.3 / 7.9 / 3.5
33.0 / 11.6 / 3.7Data-term 16.8 / 6.4 / 3.2 17.2 / 6.7 / 3.3

Data-term+
Adap. fusion

14.6 / 5.8 / 2.4 15.0 / 6.2 / 2.7

cal algorithms, FastAgg and NonLocalAgg, build cost volumes

that depend on both the image size and the disparity range.

This leads to a huge memory footprint (∼ 3GB) in the case

of HR images, and the authors’ implementations could not

be run as is. In order to be able to run FastAgg, the cost

volume has been split into slices and cached on disk. The

NonLocalAgg was run using the maximum allowed resolution

while the disparity map produced by the algorithm was finally

upsampled. Note that both methods invoke a left-right consis-

tency checking, combine color and gradient information and

enable refinement steps. Authors’ implementations for ELAS,

GCS, GraphCut, CSBP (local-minima version+bilateral post-

processing) were used in the comparisons, with the default

settings suggested by the authors. We also implemented the

ICM algorithm for the MRF-based fusion using the same

parameters with GC. For a fair comparison, all fusion schemes

merge stereo data with the same initial disparity map, which is

obtained here by our upsampling process. Due to the simulated

experimental setup, however, the error of the initial map

obtained from this process is very close to that of Kopf et

al.’s method [34] (the average difference of their BMP error

is below 0.5) and is thus omitted.

Table IV provides the BMP error for eight HR images

with error threshold δ = 1, while the corresponding table for

δ = 2 is given in the appendix. Bold and underlined numbers

mark the lowest and second lowest errors per column. Weakly

textured scenes (Lampshade1, Monopoly) seem to be prob-

lematic for conventional stereo algorithms, while cylindrical

surfaces (Bowling2, Baby1) present another challenge. It is

not surprising, however, that stereo methods outperform fusion

methods in highly textured images (e.g. Rocks2), or in images

with many thin objects (e.g. Art), since the sparse noisy initial

map negatively affects the fusion. ELAS and FastAgg behave

better than other stereo algorithms. Similar results would be

expected from the NonLocalAgg method, if we were able to

run it at full resolution.

Fig. 9: Left image with superimposed depth map (left) and

BMP curves (right) for the HR stereo pair Lampshade1. The

lower curves show the robustness of the proposed schemes to

the noise of the initial depth map.
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TABLE IV: BMP for high-resolution disparity maps of the Middlebury dataset with δ = 1.

Lampshade1 Art Monopoly Rocks2 Reindeer Bowling2 Baby1 Moebius Average

Stereo

GCS [20] 25.1 20.0 52.4 4.5 14.1 25.4 18.1 19.5 22.4
ELAS [21] 15.2 12.2 38.1 2.6 5.6 14.6 10.4 14.0 14.1
GraphCuts [52] 32.3 26.3 62.1 10.8 28.8 43.1 15.6 19.5 29.8
CSBP [28] 39.4 26.6 61.8 8.3 20.3 31.9 16.4 20.0 28.1
FastAgg [25] 26.8 10.8 44.6 2.0 8.1 15.6 11.5 14.9 16.8
NonLocalAgg [27] 25.0 23.5 32.6 10.7 24.3 28.8 18.0 17.2 22.5

Upsamping
Yang et al. [31] 46.9 47.4 48.5 41.8 42.9 46.3 36.9 41.9 44.1
Kopf et al. [34] 43.7 46.5 45.4 39.4 40.9 42.1 35.1 41.8 41.8

Fusion

EPC [15] 20.7 17.8 20.7 4.2 11.8 20.8 11.9 12.0 14.9
F-MRF (GC) [12] 16.3 17.1 25.7 4.5 12.1 20.0 10.1 10.5 14.5
F-MRF (ICM) 23.1 27.9 43.4 14.7 20.1 24.8 17.9 20.1 24.0
F-ECC 8.4 14.0 7.6 2.9 8.7 8.5 4.4 9.0 7.9

F-EMCC 8.2 14.9 7.5 3.1 9.0 8.5 4.2 10.8 8.2

Stereoscopic and depth data are better fused in general

by the proposed criteria than the other fusion methods. EPC

and up-sampling methods verify the sensitiveness to their

initialization, with the former being more effective due to the

fusion process. As far as the MRF solution is concerned, the

benefit due to the depth data is verified from the results, i.e.

the F-MRF (GC) scheme behaves better than pure-stereo GC.

Moreover, GC in fusion provides better results than the simple

ICM algorithm. Unlike the proposed criteria, F-MRF deals

better with thin objects, since it does not aggregate costs in a

window, hence the lower error in Art and Reindeer. Recall that

[12] refines the TOF depth map based on stereo data, without

increasing the resolution. By putting aside the high complexity,

it seems that MRF-based solutions need to be reformulated for

HR stereo-depth fusion, e.g. high-order connectivity might be

more helpful, semi-global solutions could be investigated, and

conditional random fields [50] might need to be extended to

the fusion framework.

Between the two proposed criteria in our fusion scheme,

ECC and EMCC, it is the image content that makes one

outperform the other. While F-ECC may be slightly better on

average, F-EMCC deals better with images of very low tex-

ture, e.g. Monopoly, which supports Moravec’s argument for

introducing MCC [43]. Moreover, F-EMCC is more affected

by the filling, as it provides less dense maps than F-ECC,

provided that the threshold is the same.

Fig. 10 shows the average performance of all fusion com-

petitors as a function of the error threshold δ, while the

stereo baseline of FastAgg is added for reference. In essence,

this figure reflects the distribution of errors. Evidently, the

contribution of the LR depth prior in the fusion schemes is

verified, as opposed to the stereo baseline whose performance

is bounded. The proposed schemes are more accurate com-

pared to the fusion baselines. However, F-MRF provides lower

errors when the tolerance is not that strict (δ > 2) owing to

its global smoothness constraint. Note that the performance

of [34] approaches the performance of the fusion schemes as

δ is increasing. The other upsampling method of [31] seems

to produce large errors.

Computational efficiency is an important feature of any

depth-stereo fusion method. Table V shows the execution times

of the algorithms for the simulated data, as well as some of

their implementation details. A combined Matlab-C version

of our fusion algorithm requires 2.0s per image triplet while

Fig. 10: The BMP error of fusion algorithms averaged over

the eight test images as a function of the error tolerance δ.

it takes 0.3s (for 2MP images) when GPU hardware is used

for some initializations, and the SSE instruction set accounts

for the online computation of correlation values between

windows. We also developed a GPU-based implementation of

a triangulation-based upsampling (interpolation) that takes less

than 50ms. This allows one to envisage real-time execution

of the proposed depth-stereo fusion framework, despite the

high resolution. Note that it is the Matlab implementation that

makes FastAgg and upsampling schemes slow, while the time

for the NonLocalAgg method is based on matching at half

resolution. We also point out that CSBP attains a solution in

TABLE V: Average execution times of algorithms for the HR

Middlebury data-set [50] in a 2.6GHz machine.

Time(sec) Matlab C/C++ GPU SSE
GCS [20] 1.2 X X

ELAS [21] 1.0 X X

GC [52] > 103 X

CSBP [28] 15 X

FastAgg [25] > 103 X

NonLocalAgg [27] 5.0 X

Yang et al. [31] > 102 X

Kopf et al [34] 88 X

EPC [15] 1.5 X X

F-MRF (GC) [12] > 103 X

F-MRF (ICM) [12] > 102 X

Our upsampling 95 X

F-ECC, F-EMCC 2.0 X X

Upsampling of [15] < 0.1∗ X X

F-ECC, F-EMCC 0.3∗ X X X

* time needed for the 2MP images of our real data-set (see Fig.13)



12

TABLE VI: Evaluation on the dataset of Dal Mutto et al. [18]

MSE of disparity estimation

Scene A Scene B Scene C Average

Stereo [25] 97.52 5.78 93.94 65.74
Initialization 9.33 6.34 5.62 7.09
Our upsampling 9.96 6.54 5.52 7.34
Kopf et al. [34] 10.23 7.45 5.68 7.78
Dal Mutto et al. [18] 3.76 6.56 8.69 6.34
EPC [15] 8.54 6.61 5.72 6.95
F-MRF [12] 8.96 4.67 6.18 6.67
F-ECC 6.98 4.19 5.39 5.52

a reasonable time, despite its MRF-based formulation.

B. Real Data

Dal Mutto et al. [18] provide real TOF-stereo data along

with ground truth disparities, shown in Fig. 11. To be con-

sistent with [18], we upsample the depth in a similar way,

using a bilateral filter, which benefits from color segmentation.

This procedure is used to initialize the depth in all fusion

schemes. Table VI shows the mean square error (MSE) of the

disparity estimation for several algorithms. The contribution

of the stereo data in fusion is unquestionable in scenes A and

B, where the depth varies locally. All of the fusion methods

obtain a more accurate map than the initial one. However,

scene C contains only planar objects, and the upsampling

methods provide good results. Although the proposed scheme

does not perform best in all examples, it always improves the

initial estimate, which demonstrates the advantage of adaptive

fusion (very similar numbers are obtained with F-EMCC). As

expected, the use of stereo data only (e.g., [25]) performs well

only with the textured scene B. Our upsamping filter is more

accurate than [34] and less accurate than the filter proposed

by [18]. Note that our implementation of [34] achieves better

results than those reported in [18].

We also assess the performance of the fusion methods

on the HCIbox data-set [17]. The scene shows the interior

of a box that contains some objects (Fig. 12). Note that

there is no texture, apart from some horizontal lines on the

stairs and the ramp, hence stereo methods tend to fail. We

follow the experimental setup of [17], thus evaluating the

depth estimation based on some statistics of the absolute error,

after excluding inter-reflection areas (see Fig. 12). We do

not include the results of [17], since the authors provided a

different inter-reflection mask with larger support area than

the one used in [17].7 Table VII shows the error statistics of

the algorithms. All of the fusion methods start from the same

initial map, obtained by our upsampling method. The proposed

fusion method achieves the lowest mean and median error

(similar results are obtained with F-EMCC). The variance of

F-MRF is increased (a local bias was observed owing to the

global smoothness), while its median remains low. Because

of the depth discontinuities, [34] yields a less accurate result

compared to our upsampling.

We also captured our own challenging TOF-stereo data-set

using a synchronized camera setup, developed in collaboration

with 4D View Solutions8. Two HR (1624 × 1224) color

7Personal communication with R. Nair.
8http://www.4dviews.com

(A) (B) (C)

Fig. 11: The three scenes (cropped) of the dataset used in [18].

Fig. 12: The left image(left) and the mask that excludes inter-

reflections (right) of the HCIbox dataset [17].

cameras and a MESA Imaging SR4000 TOF (range) camera

(176 × 144) are mounted on a rail. The stereo baseline is

50cm approximately while the TOF camera is mounted in

the middle. The algorithm of [19] allows us to transform the

depth-sensor measurements into a very sparse stereo disparity

map (1% sparsity), with an average error of 1.0 pixel. The

sparse map is refined and upsampled as discussed in Sec. IV

(see also Fig.3). For a fully real-time upsampling, we use our

GPU-based implementation of the triangulation-based interpo-

lation [15]. Note that our stereo rectification puts the principal

points in the same position, rather than making the optical

axes parallel; this maximizes the overlap between the images,

given the relatively wide baseline.

Our ‘MIXCAM’ data-set contains challenging cases, e.g.,

periodicities, weakly textured areas, thin objects, depth discon-

tinuities, and so on. The fusion algorithm merges the stereo

and depth data and the outcome is a dense HR disparity map.

We reuse our upsampling filter in a post-processing step to fill

missing disparities. A streak-based method fills any remaining

gaps in all algorithms. The results are shown in Fig. 13.

White areas denote unmatched pixels, while black areas mark

the detected TOF-occlusions. The left column shows the left

image, with the TOF image shown in the bottom-right corner

at the true scale. Next columns show the results of ELAS,

FastAgg, F-MRF (GC) and F-ECC algorithms; the last column

show the disparity maps of F-ECC after post-processing.

ELAS fills local areas, surrounded by textured points,

through an interpolation scheme. We intentionally show the

results of ELAS before the streak-based filling; as opposed

to FastAgg, where missing disparities after the left-right

consistency check are filled. Clearly, a pure stereo algorithm

cannot deal with large untextured areas, and the post-filling

is unreliable. F-MRF provides fully dense results. Note that

TABLE VII: Evaluation on HCIBox dataset et al. [17]

Mean St. D. 1st Quart. Median 3rd Quart.

Kopf et al. [34] 3.23 4.00 0.93 2.15 3.85
Initialization 3.00 4.21 0.84 1.94 3.61
EPC [15] 3.01 4.32 0.90 1.93 3.17
F-MRF [12] 2.95 4.96 0.83 1.85 3.17
F-ECC 2.53 4.25 0.62 1.38 2.64
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Fig. 13: HR images and disparity maps for MIXCAM dataset obtained by (from left to right) ELAS, FastAgg, F-MRF (GC),

F-ECC, and F-ECC after post-processing.

we run F-MRF with half-resolution images (812 × 612), due

to its tremendous memory requirements. Moreover, we set a

fixed value along the disparity range for the data-term of all

TOF-occlusion points, so that the global inference becomes

independent of this area. F-MRF provides artifacts in stereo

occlusions, that are next to TOF-occlusions when the scene

contains large foreground objects. As with [13], the results

of F-MRF scheme verify the lack of an adaptive fusion of

the depth- and stereo-consistency data terms, as opposed to

our methods. However, F-MRF seems to deal better with very

thin objects (e.g. the branch of the plant), as already discussed

above. Note that the biased range measurements of very

slanted surfaces (e.g. the table-top) negatively affect the fusion

schemes, in particular when the table surface lacks texture

(e.g. first example). The proposed scheme provides very good

results on average, especially after the post-processing step,

which fills the gaps and refines the disparities. We obtain very

similar results with the F-EMCC method, while EPC provides

results visually close to ours, but with more gaps. The bilateral

upsampling of [34] provides visually good results, but with

blurred depth discontinuities (see also Fig. 3).

VII. CONCLUSIONS

We have presented a high-resolution stereo matching algo-

rithm that is guided by low-resolution depth data, thus helping

the algorithm to compensate for its difficulty in estimating

disparities over weakly textured areas. We cast the problem

into a MAP formulation whose inference is obtained through

a series of local optimization problems, solved hierarchically

in a seed-growing manner. The latter characteristic yields

an intrinsically efficient solution that allows for near real-

time matching of 2.0MP images. The data-term of the energy

function benefits from a correlation function that is capable of

providing scores at subpixel disparities, from an adaptive cost

aggregation step inside the window based on the depth data,

and from an adaptive fusion of stereo- and depth-consistency

terms based on the scene texture and the camera geometry.

These properties lead to a more selective growing process that

prevents the algorithm from propagating incorrect disparities.

As a result, a low-complexity method builds an accurate high-

resolution disparity map. A quantitative comparison against

pure stereo and stereo-depth fusion algorithms, as well as a

qualitative assessment on real data, has validated the strong

performance of the proposed method. Future research will

include the optimum visiting order for seeds in the growing

framework, as well as an adaptive window size, based on the

local surface orientation.
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