N

N

Optimizing Service Protection with Model Driven
Security@run.time
Francis Wendpanga, Frédérique Biennier, Philippe Merle

» To cite this version:

Francis Wendpanga, Frédérique Biennier, Philippe Merle. Optimizing Service Protection with Model
Driven Security@run.time. 9th International IEEE Symposium on Service-Oriented System Engineer-
ing - IEEE SOSE 2015, Mar 2015, Redwood City, United States. pp.50-58. hal-01109967

HAL Id: hal-01109967
https://hal.science/hal-01109967
Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01109967
https://hal.archives-ouvertes.fr

Optimizing Service Protection with Model Driven
Security @run.time

Wendpanga Francis Ouedraogo
Université de Lyon, CNRS INSA-Lyon,
LIRIS UMR 5205,

20 avenue Albert Einstein,

69621 Villeurbanne Cedex, France
wendpanga-francis.ouedraogo @liris.cnrsf.fr

Abstract—Enterprises are more and more involved in collabo-
rative business. This leads to open and outsourcing all or part of
their information system (IS) to create collaborative processes by
composing business services picked in each partner IS and to take
advantage of Cloud computing. Business services outsourcing and
their dynamic collaboration context can bring lost of control on IS
and new security risks can occur. This leads to inconsistent protec-
tion allowing competitors to access to unauthorized information.
To address this issue, systematic security service invocations may
be added, without paying attention to the business context leading
to costly over protection. To address this issue, an adaptive
security service model deployment is required to provide a
business service consistent protection by taking into account the
collaboration context (business service data criticity, partners
involved in the collaboration, etc.), and the cloud deployment
and execution environment. In this paper, we propose an adaptive
security model based on MDS @run.time, the marriage of Model
Driven Security (MDS) and Models @run.time approaches, allow-
ing to select at runtime the appropriate security components to
apply. The MDS approach is used to generate security policies,
which are interpreted at runtime and load appropriate security
mechanisms depending on the context (which takes advantage of
the Models @run.time approach) ensuring business process end to
end protection. A proof of concept prototype is built on top of the
OW2 FraSCAti middleware, validating our proposition efficiency.
Our experiments and simulations show that MDS@run.time
improves the system efficiency when the over-protection risk rate
increases.

I. INTRODUCTION

Today Web 2.0 development calls for a new and distributed
IT infrastructure to fit the cloud models to allow an efficient
and distributed execution across the Web. As data and services
hosted in a cloud are let out by their owner, new security
requirements emerge in order to support a long-life due usage
control. This trend is reinforced due to the lack of trust on
such cloud organisation [1] and the rather poor adaptability
level of the current security policies are often seen as braking
forces to such XaaS developments.

Unfortunately, information system security economics have
mostly been designed for well-perimetrised systems. Such
security strategy is based on identifying threats and vulner-
abilities and implementing counter-measures to reduce these
risks. Different methods and tools (EBIOS, CERT/Octave,

Frédérique Biennier
Université de Lyon, CNRS INSA-Lyon,
LIRIS UMR 5205,

20 avenue Albert Einstein,

69621 Villeurbanne Cedex, France
frederique.biennier @liris.cnrsf.fr

Philippe Merle
Inria Lille - Nord Europe,
Parc Scientifique de la Haute Borne,
40 avenue Halley,
59650 Villeneuve d’Ascq, France
philippe.merle @inria.fr

SNA, Safe/CISCO)! are available to implement this secu-
rity strategy vision, i.e., facing identified vulnerabilities and
reducing costs of security risks in a well-perimetrised and
rather static environment. This static and perimetrised vision
does not fit the multi-contextual execution environment in-
volved by the service paradigm as a service can be invoked
in different contexts. This may lead to inconsistent security
deployment, under-protecting core information/process while
running services in a new risky context or to an inefficient over-
protection, locking the corporate information system access.
Focusing on the service field, security has received a special
attention over the last years [2]. Older works [3] focus on key
technologies to support basic interoperable and standardised
security services (mostly regarding transport security, message
integrity and confidentiality, and even federation management
to support cross authentication, etc.). The OASIS service
reference model [4] takes advantage of the policy specification
to trust management, authentication, authorisation and other
security functions in the service model description but it does
not allow to link these security features nor the security threats
to the dynamic execution context of a service. This may lead
to systematic and costly over protection when even useless
security services are deployed or to risky under protection
when useful security services are omitted.

Two other trends are interesting. Firstly, Model Driven Se-
curity (MDS) proposes to capture security policies as first-class
models. MDS has already successfully applied to industrial
systems [5], process-oriented systems [6], complex distributed
systems [7], and multi-cloud context [8]. Nevertheless, MDS
can not take into account runtime contexts because security
policy models are only considered as design/development time
entities. Secondly, Security as a Service (SecaaS) [9] considers
security mechanisms as reusable runtime entities. Unfortunatly,
the SecaaS approach is rarely implemented in a service-
oriented way.

To overcome these limits, we propose a Model Driven
Security @run.time approach that considers security policies
as models interpreted at runtime [10] and that identifies the
security requirements fitting the execution context. Plugged
on the middleware used to implement the service system, our
MDS @run.time component outsources the security manage-
ment from the business service and provides an ad-hoc security

Uhttps://www.enisa.europa.eu/activities/risk-management/current-risk/risk-
management-inventory/rm-isms

mediation, i.e., select, compose and orchestrate security ser-
vices (SecaaS) according to the execution context. A proof of
concept has been developed on the OW2 FraSCAti middleware
and used to evaluate our proposal. Our experiments and
simulations show that MDS@run.time improves the system
efficiency when the over-protection risk rate increases.

After presenting the context and state of the art (Sec-
tion II), we introduce a motivating example (Section III) before
presenting our MDS @run.time architecture (Section IV) and
evaluating it (Section V) before presenting futher works (Sec-
tion VI).

II. CONTEXT AND STATE OF THE ART

Taking advantage of both the agility provided by the
service selection/composition/orchestration mechanisms and of
the interoperability provided by the systematic use of Web
services related standards, collaborative business processes can
be designed as a composition of different business services
picked from the partner’s own information system, challenging
for a consistent protection fitting each partner own security
requirements.

To this end, some security annotations on UML diagrams
(such as the multi-purpose UMLSec [11] or the rather access
control oriented SecureUML [12] domain specific languages)
or BPMN diagrams [13] can be specified while designing a
collaborative business process. As far as service-based business
process implementation is concerned, these works have led to
different frameworks such as OpenPMF [14] or SECTET [15]
that take advantage of the Model Driven Security engineer-
ing [16] to generate security policies depending on the re-
quirements associated to the business process model. Never-
theless, none of them support the full transformation process:
While BPSec [17] is focused on the requirement engineering
part, including CIM (Computation Independent Model) and
PIM (Platform Independent Model) models, SECTET and
OpenPMF provide PIM, PSM (Platform Specific Model) and
code generation features. Moreover, the generation process is
achieved according to a static environment vision (perimetrised
process and well-known deployment platform), leading to de-
fine different policies depending on the business context. This
complexifies the policy management and limits a consistent
protection evolution as modifications are achieved locally.

To overcome this limit and provide a consistent protection
fitting the different service invocation contexts, we believe
that a service should not be duplicated and that its protection
should be outsourced from the service body, i.e., defined as an
associated protection policy enriched according to the different
execution contexts. Such an approach involves to structure
security policies depending on the protection services that must
be fulfilled.

To this end, one can use the security service organisation
proposed by OASIS in its service reference architecture [18]
that allows to outsource security management from the busi-
ness service implementation. As presented in TABLE II, the
different protection services are split according to three imple-
mentation layers:

e The network layer refers to the communication in-
frastructure security risks mitigation (such as deny of
service attacks).

e The transport layer refers to the communication chan-
nel used to exchange messages between services.

e The application layer is deployed on the top and
includes access control, safe storage, data integrity,
and non repudiation.

TABLE 1. PROTECTION SERVICES ACCORDING TO THE
IMPLEMENTATION LAYERS
Security Implementation| Security Goal Security Standard
Constraint Layer
Confidentiality| Network secure network infras- | IPsec for VPN
tructure
Transport secure communi- TLS/SSL
cation channel, i.e.
encrypt information
Application Secure storage, and | WS-Security:
message exchanged | XML-Encyption
based encryption
Integrity Application signed data stored and WS-Security:
exchanged XML-Signature
Availability Network DoS protection via
Firewall, IDS
Application Management of QoS BSLA (Business
Service Level
Agreement)

III. MOTIVATING EXAMPLE

The reusing ability provided by Web services, that can
be selected, composed, and orchestrated in different contexts,
challenges a strict deployment of security services to provide
the convenient level of protection. This can lead to a costly
over-protection. A motivating example could be provided by
a service used to check mechanical specifications of a new
product, as shown in Fig. 1. As data produced and acceded by
this service have a high patrimonial value for the enterprise,
then different protections can be deployed:

e Strong authentication to support specification trace-
ability, i.e., knowing who has achieved/worked on the
specifications.

e Restricted access control to allow only people from the
enterprise or some authenticated partners to accede to
this service.

e Cryptographic algorithm to protect exchanged data.

This service can be invoked in different workflows, as
shown in Fig. 1:

e The corporate Computer Aid Design CAD (CAD)
modelling system can invoke this service to check the
intermediate specification consistency (75% of all the
invocations),

e The Product Lifecycle Management (PLM) system
can invoke this service to check the product infor-
mation before integrating these data in its data base
(10% of all the invocations),

e Other CAD modelling systems used by partners to
exchange new requirements can also invoke this ser-
vice to check the ordered specifications involved
in a collaborative engineering project (15% of all the
invocations).

Of course, depending on the invocation context of this service,
some security constraints could be relaxed:

o =

e For internal validation achieved via an invocation by
the CAD modelling system, no traceability is needed.

e When the validation service is invoked via the PDM
system, the operation must be logged.

e The corporate network is protected so data can be
exchanged safely.

e External access to the corporate network is provided
to employees and protected via a VPN.

e When a collaboration is set with a partner, this spec-

ification validation service can be invoked from the
partner CAD modeller to check the requirements. In
this case, the different actions must be logged. All
the actions achieved via the service and restricting the
access to only authorised persons.

Mechanical
s

Corporate network

\\

Context 2 :PLM Service

-

Context 3:
Partner Network

Service

Rs
G

=
PLM System

—~
Internal

Network

o
~

Context 1: CAD Service

-

&
CAD System

P

s

Fig. 1.

Motivating example

These protection requirements lead to identify execution
contexts for the specification validation service, as shown in
Fig. 1:

e Context 1: Internal checking invoked by enterprise
study board, thanks to their CAD Modelling System

is a safe environment, no protection is required.

Context 2: Certified requirement checking invoked by
members of the enterprise from the PLM service to
store checked specification. Authentication and non
repudiation are required.

Context 3: Collaboration specification checking in-
voked by a partner are from its CAD system to validate
the order specification. Due to business constraints,
authentication, authorization, and non repudiation are
necessary whereas the opened execution platform re-
quires data encryption.

<policies>
<policy id="1” resource="/mechanical/validateSpec/” type="Authentication”
0.25™>
<policyRule>
<context type="uid/service” value="!{CADService}” />
<pattern name="LoginPWD” metric="0.25">
<setting key="userRegistry” value="data/UserRegistry.xml”/>
</pattern>
</policyRule>
</policy>
<policy id="2" resource="/mechanical/validateSpec/” type="NonRepudiation™
<policyRule>
<context type="uid/service”
<pattern name="log™>
<setting key="file”

metric="

value="!{ CADService}" />

value="data/log.log” />

AU B W —

</pattern>
</policyRule>
</policy>
<policy id="3" resource="/mechanical/validateSpec/” type="Authorization™
<policyRule>
<context type="user/service” value="!{CADService ,PDMService}” />
<context type="Network/IP” value="![193.48.219.5,193.48.219.25]"/>
<context type="Network/DNS” ”1{mechanicalCompany .com}” />
<pattern name="ACL™>
<setting key="policyFile” value="acl/AccessControlList.xml”/>
</pattern>
</policyRule>
</policy>
<policy id="4" resource="/mechanical/validateSpec/” type="Confidentiality” metric=
70.757>
<policyRule>
<context type="user/service” value="!{CADService ,_.PDMService}” />
<context type="Network/IP” value="![193.48.219.5,193.48.219.25]"
<context type="Network/DNS” value="!{mechanicalCompany.com}” />
<pattern name="Encryption_AES_128" metric="0.75">
<setting key="EncryptionMethod” value="http://www.w3.0rg/2001/04/xmlenc#
aes128—cbe” />
<setting key="part” value="body” />
</pattern>
</policyRule>
</policy>
<policies>

value=

>

Listing 1. Security policies associated to the validateSpec resource

Focusing on the mechanical validation specification service
attached to the mechanical application, a global security policy
can be set to define the different protection means to be
deployed (see Listing 1) and their implementation context. This
service includes an operation named ValidationSpec, which is
considered as a resource (Line 2 in Listing 1). Its protection
requires an authentication (Lines 2-9) if the caller service
is not CADService (Line 4) using a simple login/password
process (Line 5) refering to a checking file defined in Line
6. Besides authentication, it requires non repudiation feature
(Lines 10-17) according to the service invoking it. Line 12
defines that except the interaction with CADService all services
calling the ValidateSpec service have to be logged to ensure the
traceability (Line 13). Besides non repudiation, according to
the interaction with other services (Line 20), and to corporate
internal network (Line 21) or the network domain (Line 22),
access control rules have to be performed (Lines 18-27). ACL
(Line 23) is the access control mechanism, which should be
applied to this resource. Listing 2 describes the content of
the authorization file allowing only Servicel and OtherService
to access the resource when the access is from an external
network. Moreover the confidentiality (Lines 28-38) is required
when the access to the resource is performed since an external
network and the service invoking the resource is different from
both corporate CADService and PLMService. In this context,
the AES encryption (Lines 33-36) has to be applied during the
exchanges with the resource.

<acl xsi:noNamespaceSchemaLocation="AccessListSchema.xsd”>
<resource name="/mechanical/validateSpec/”>
<grant user="OtherService” >/grant>
<grant user="Servicel ></grant>
</resource>
</acl>

Listing 2. AccessControlList.xml authorization file

As this business service can be invoked dynamically by
ad-hoc collaborative workflows, protection services must be
deployed according to the execution context paying attention
on both organisational (i.e., which partner, trusted or not,
invokes the service) and technical (which kind of cloud hosts
the collaborative workflow, which kind of transport service
is provided, etc.) environments. The protection requirements
are defined globally in the security policies attached to the
different business services (see Listing 3, Line 3). These
security policies are seen as security models at runtime that

W

REXUES

10
11
12

will be used at runtime by the security mediator to select,
compose and orchestrate the security services depending on
the execution context.

<wsdl:binding name="mechanicalServiceSoapBinding” type="
tns:mechanicalServicePortType ™
<soap:binding style="document” transport="http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name="validateSpec” mds:policyRef="data/policies.xml” xmlns:mds="
http: //mds. org™>
<soap:operation soapAction="" style="document”/>
<wsdl:input name="validateSpec™
<soap:body use="literal”/>
</wsdl:input>
<wsdl:output name="validateSpecResponse™
<soap:body use="literal”/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

Listing 3. Link the security policy with the ValidateSpec operation of the
Mechanical system service

In our example, the ValidationSpec service and the related
information must be protected in the different contexts. The
confidentiality requirement impacts both application layer,
which is in charge of the access control, traceability, and
transport layer (see Listing 1). The systematic composition of
the authorization, traceability and confidentiality services may
be costly. Table II shows a comparison of service execution
time according to the context (Network Internal/External used
to interact with the service, and the services attended to the
collaboration). Here CADService invokes ValidateSpec without
any security implementation. PLMService can invoke the Val-
idateSpec service with the tracability requirement. For other
services, in addition to the tracability requirement, both autho-
rization and encryption are required to invoke ValidateSpec.
Testing conditions and environment are detailed in Section V.

TABLE II. SERVICE EXECUTION TIME INCLUDING CONTEXT
IDENTIFICATION

Context Security services involvedValidateSpec Execution

time (ms)
Context 1 No security mechanism is required 64
Context 2 Authentication and Non Repudiation 80
Context 3 Context 2 security services + Authorization and 86

Confidentiality

To avoid this costly over protection or risky under protec-
tion depending on the runtime environment vulnerability, we
propose to turn these security policies as Models @run.time so
that they can be analysed to select, compose and orchestrate
the most convenient security services depending on the exact
runtime environment. This requires a new architecture to
outsource the security management as a new high-level service
that can be plugged on the hosting middleware.

IV. MODEL DRIVEN SECURITY @RUN.TIME

Context-aware security management has lead to different
works for more than the decade from the early adaptation
of access control rules [19] to SLA and policy orchestration
integration in cloud [20]. Nevertheless, these works do not fit
the service dynamic reusing abilities and different policies are
attached to each execution context. To overcome this limit,
we propose to extend the Model Driven Security approach to
a MDS@run.time strategy in order to capture the execution
context while deploying the security services. This execution
context integrates the business process related context defined
by OASIS and information related to the execution platform.
By this way, a single security policy gathers all the protection
requirements and deployment can be outsourced from the

business service and managed in a context-aware security
strategy. We first present our context model before detailing
our architecture.

A. Execution context specification

The execution context is defined as a set of functional, or-
ganisational and technological specifications, which determine
the choice of security measures to perform. The functional
specification allows knowing the types of information (strate-
gic, personal, financial, etc.) used or handled by each service
and the information sensitive level (top secret, secret, confiden-
tial, restricted, unclassified). This specification aims to know
which protection and level of protection are required in terms
of confidentiality and/or integrity. Organizational specification
focused on access control and other security criteria such as
availability and non-repudiation. It allows to answer to the
questions: Who can access and interact with process resources?
By using which means, such as networks, devices, etc.? From
which locality and at which time? Moreover this organization
specification allows defining both obligation and restriction
constraints in terms of access control. Based on these risk-
analysis specification, a consistent security policy can be
defined for each service gathering the different protection
services. As show in TABLE II, this can be rather costly. As a
consequence, we integrate contextual information to motivate
the use of the different security assertions depending of the
context. To this end, our formal context model is defined by
different parameters:

e Who: Refer to the business service invoking the pro-
tected service.

e For who: Specify the user for whom the service is
invoked.

e From where: Specify the network specification.

o When: Define time depending of the protection man-
agement.

Thanks to this extended context specification, one can select
the security assertion to be composed and deployed at runtime.

B. MDS@run.time architecture

To deploy our adaptive security model [21], we take
advantages of the SOA distributed implementation. Here an
SOA middleware plays an intermediary role between the
client and the service provider. It is a software component,
which is located between the operating system and business
applications, and offers a high level abstraction for building
distributed applications. It allows business service integration
and management, and provides access to various external
services. It is an integration solution, which implements a fully
distributed architecture deployed on multiple nodes, providing
services such as data processing or Content Based Routing
(CBR), and a higher level of interoperability by systematically
using standards such as XML, WS-* specifications [3].

Our outsourced context-aware security architecture [22] is
plugged on the middleware capturing the service invocation
(see Fig. 2). A middleware specific interceptor intercepts the
service invocation (Step 1) and routes this request to the
MDS @run.time component (Step 2). Based on the request, the

Software as a Service

£ Business
Service "\
‘ 0

Spagflc

Middleware
Interceptor

Security

:Serviﬁs
5)

(6)

characteristics

oF

Fig. 2. MDS@run.time architecture

losting cloud platform

MDS @run.time component retrieves all the policies associated
to the invoked business service. Thanks to the environment
characteristics (cloud platform, devices and network used, etc.)
(Steps 3 and 4), only the security policies matching the current
context are selected and composed to implement the required
protection. Then the MDS @run.time component orchestrates
the security service invocations (Steps 5 and 6) by using
the security as a service component, which implements the
security mechanisms defined in each policy (Steps 5 and 6). If
succeeded, the invoker is granted and security mechanisms are
applied, the MDS @run.time component routes back the busi-
ness service/middleware (Steps 7 and 8). But in unsuccessful
case, the business service is not invoked and an error message

is returned to the invoker.
X{W\
.

/

MDS@run.time
Policy Manager

/ H

i

3 _ContextManager i

Component || !

=

i
i /
i J

f E ," wthorization
HE /' /T Component
H L
4 { /
7 Encryption
/ /Compunent
o
B Integrity
o Component
Availability
===2__ Component

NonRepudiation
[

Interceptor

/
H /
v
Intent service 27
Component

service
Component

>

Secaa$

Fig. 3. MDS@run.time components

The MDS@run.time architecture is composed of three
components as illustrated in Fig. 3: Interceptor,
MDS@run.time, and Security as a Service. This
design allows us to clearly separate concerns: specific mid-
dleware interception, MDS @run.time mediation, and security
services. Moreover, this design provides portability of both
MDS@run.time and Security as a Service compo-
nents across different middleware platforms.

The specific middleware interceptor is defined to capture
and route the interactions between the business service and
the middleware to our MDS @run.time component. But as how
request interception is done is specific to each middleware, this
component must be specifically implemented for each middle-
ware, see Section V-A for details on how this component is
implemented for the OW2 FraSCAti middleware.

The MDS @run.time component is the core element of our
context-aware architecture [22] and is in charge of identifying
the assertion to implement, composing and orchestrating the
security services accordingly. It includes three components as
illustrated in Fig. 3:

e The security mediator is the entry point of this
component. It analyses the interaction received from
the interceptor that defines the invoked service and the
execution environment context information identifying
some context parameters as:

o Who, i.e, the service invoking the business
service.
o When, i.e., capture the invocation time.
o From where, i.e, capture the geographic loca-
tion of the calling service.
Then, it invokes the policy manager to extract the pol-
icy associated to the invoked service and the context
manager, which will compose and deploy the security
services depending on the context.

e The PolicyManager component manages the se-
curity policies. It receives from the Mediator the
resource or service reference requested and the link
to the policy file. It returns to the Mediator the list
of security policies to apply.

e The ContextManager component analyses secu-
rity policies associated to services and identifies the
different policies to be applied according to the user
context, the execution environment and security poli-
cies associated to the client and service provider. It
also provides to the Mediator component informa-
tion such as policies and policy rules related to the
execution context. These policy rules are used by the
Mediator component to call the technical security
services.

To support a fully outsourced security strategy, this archi-
tecture is enriched with a Security as a Service (SecaaS)
component, which gathers implementations of the different
security services based on standards such as:

e The Authentication component is used to prove
the user identity (of human or other service). This
component receives from the SecaaS component the
policy rule to apply, extracts information about the
security pattern and invokes the security mechanism
to be applied. It can be a weak authentication mecha-
nism such as login/password or strong authentication
such as One Time Password (OTP) or two factors
authentication. This Authentication component
includes subcomponents such as the SSORegistry
(Single Sign On Registry) component used to store
information about authentication of sessions and to
allow to retrieve user information without restarting
authentication.

e The Authorization component manages access
to resources and services, and allows grant or deny
the user access to them. As the Authentication
component, it receives the security policy rule and in-
vokes the authorization mechanism to be applied. This
mechanism can be based on an authorization by role

(RBAC) implemented by the XACML authorization
protocol or a simple Access Control List (ACL).

e The Encryption component provides data and
messages encryption/decryption mechanisms. It also
provides secure protocols using secure communication
(SSL).

e The Integrity component ensures the integrity
of exchanged data and messages by using message
signatures or hash functions.

e The NonRepudiation component is responsible
for recording user actions (authentication, access to
data or service, data modification/destruction, etc.).
This information can then be used for auditing and
monitoring.

e The Availability component is responsible for
the services’ availability providing access to the ser-
vice or a clone (redundant service) thereof if the
original target service is unavailable. This component
also provides backup mechanism to restore system
data and services after disaster.

The Encryption, Integrity and NonRepudia-
tion components can use security protocols such as WS-
Security XML Encryption and XML Signature, which provide
encryption and signing exchanged message mechanisms.

V. EVALUATION

Our MDS @run.time architecture is designed to support an
outsourced security deployment. As presented in Fig. 2, it is
designed in a non intrusive way for both services and middle-
ware. To evaluate our proposal, we present in the following
sub-sections a Proof of Concept prototype plugged on the
OW?2 FraSCAti middleware before evaluating its performance
level on the motivating example presented in Section III,
and comparing the results with other approaches to manage
security in collaborative processes.

A. Organisation of the Proof of Concept prototype

FraSCAti? [23] is an open source middleware framework
to build, develop, deploy, execute, and manage adaptable
service-oriented business applications. FraSCAti is based on
the OASIS Service Component Architecture (SCA) standard?.
FraSCAUi applications can be deployed in different clouds such
as Amazon EC2, Appfog, CloudBees, DELL KACE, dotCloud,
Eucalyptus, Jelastic, Heroku, OpenShift, Windows Azure, as
discussed in [24], [25], [26]. The adaptability at design time
is based on the fact that the FraSCAti platform was designed
as a plugin-based architecture to adapt it to different execution
environments and to select on demand the required application
functionalities composing a FraSCAti instance [27]. The adapt-
ability at execution time is based on the FraSCAti reflective
features, which encompass introspection and reconfiguration of
applications at runtime [28]. For dealing with web services and
REST, FraSCAti embeds Apache CXF*, a well-known open
source services framework. To ensure the business process

Zhttp://frascati.ow2.org
3http://www.oasis-opencsa.org/sca
“http://cxf.apache.org

security deployed on cloud infrastructures, we propose a
MDS @run.time framework based on SCA components, which
can be plugged to the FraSCAti platform. Our prototype
takes advantage of Aspect Oriented Programming (AOP [29])
features and of the SCA model, both provided by FraSCAti,
to deploy the three Interceptor, MDS@run.time and
Security as a Service components shown in Fig. 3.

SCA provides the notion of intent, which is an abstraction
for designating a non-functional property such as security,
transaction, logging, etc. With FraSCAti, SCA intents are
implemented as SCA components, then both business and non-
functional concerns are designed then implemented in the same
framework, aka SCA.

The Intent component is responsible for detecting and
intercepting business services invoked by clients. This compo-
nent uses AOP techniques provided by FraSCAti to perform
actions before, during and after each business service invo-
cation. These techniques use the Apache CXF interception
mechanism. The Intent component creates a Request
object, which plays the intermediary role between the FraS-
CAti middleware and security services. This object provides
a bidirectional interface that allows the Intent compo-
nent to formalize the interaction messages received from
Apache CXF and also to specify orders towards Apache CXF.
The Request object ensures a total independence between
our MDS@run.time component and the underlying service-
oriented middleware, allowing on one hand the security ser-
vices to be able to deploy and run on any other middleware
and on another hand to deploy on a specific platform just the
required security services.

In our MDS @run.time prototype, we reused and enhanced
the Enterprise Java XACML framework>. The data encryption
function is AES 128-bit. Authentification by login/pwd and
non-repudiation by logs are implemented in an ad hoc way.
For authentification, unique tokens are generated to avoid
to manually re-authentifying when accessing other services
(S8SO). As the thread model of Apache CXF is to affect a
thread to each incoming request, then potentially concurrent
threads can execute our security services. The MDS @run.time
security services must then be protected against concurrent
accesses via critical sections like Java monitors.

B. Performance evaluation

Our performance evaluation is based on the use case
presented in Section III, focusing on the mechanical sys-
tem ValidationSpec operation. This operation is implemented
thanks to a service associated to a security policy including non
repudiation (see Listing 1, Lines 2-9), access control (Lines
10-17) using ACL (Lines 23-25) and confidentiality (Lines
28-38). As far as the collaborative service is concerned, the
business service is encapsulated in a MechanicalService, which
is associated to the convenient security policy and refers to the
MDS@run.time composite (Listing 4, Line 4). By this way,
the business service can be intercepted and MDS @run.time is
invoked before invoking the business service itself.

1 <composite name="Mechanical”™ >
2 <service name="Mechanical” promote="MechanicalComponent/Converter™
3 <interface.java interface="mechanical.api.mechanicalService”/>

Shttps://code.google.com/p/enterprise-java-xacml/

4 <binding .ws requires="MDSatRuntime” uri="/mechanical—ws—mds” wsdlElement="
http: //api.mechanical /#wsdl. port (mechanicalService/
mechanicalSpecServicePort)” wsdli:wsdlLocation="wsdl/mechanical . wsdl”/>

5 <frascati:binding.rest requires="MDSatRuntime” uri="/mechanical—rest—mds”/>

6 </service>
7 </composite>

Listing 4. Link the Mechanical component with MDS @run.time

To evaluate the impact of our MDS@run.time with FraS-
CAri prototype on the service execution time, we set a
benchmarking environment using FraSCAti version 1.6 with
Oracle Java Virtual Machine 1.7.0_51 on Microsoft Windows
7 Professional (32 bit) using a 2,54GHz processor Intel(R)
Core(TM)2 Duo CPU with 4Go of memory.

Firstly, we measured the execution time of each com-
ponent: The business service without invoking our security
architecture (Measure 1 in TABLE III), the FraSCALti service
interception (Measure 2), the mediator component (Measure
3), the authentication service (Measure 4), the non repudiation
service (Measure 5), the authorization service (Measure 6),
and the confidentiality service (Measure 7). We manage a
benchmark loop to compute an average execution time on
1000 client requests, so that extra factor impacts, such as
bootstrapping effects, Just-In-Time compilation, etc., can be
smoothed.

TABLE III. EXECUTION TIME OF MDS @RUN.TIME COMPONENTS
No | Component Average Systema{ Context | Context | Context
execution tic 1 2 3
time (ms) protec-
tion
1 FraSCAt + | 58 58 58 58 58
Apache CXF +
Business service
2 FraSCAti Inter- 2 2 2 2
ceptor
3 MDS @run.time 4 4 4 4
4 Authentication 4 4 4 4
5 NonRepudiation 12 12 12 12
6 Authorization 2 2 2
7 Confidentiality 4 4 4
Total 80 64 80 86

The execution meantime for a systematic protection,
ie., all security services are invoked but without our
MDS @run.time components, is 80 milliseconds (Column 4 in
Table III). The execution meantime for Context 1, involving
our MDS @run.time components but no security services, is
64 milliseconds, i.e., the business service execution time plus
the MDS@run.time overhead. The execution meantime for
Context 2, involving MDS @run.time plus authentification and
non-repudiation services, is 80 milliseconds. The execution
time of Context 3, involving all security services, is 86
milliseconds.

So, the first result is that the interception and mediation
process (Measure 2 plus 3 in Table III) represents only 6 mil-
liseconds, i.e., around 7% of the total execution time of Con-
text 3. This overhead could certainly reduced within an indus-
trial implementation of MDS @run.time by for instance merg-
ing/moving the implementation code of both MDS@run.time
and Security as a Service components into the in-
terceptor. But then we will lose the portability of these
components on different middleware platforms. Then this is an
implementation trade-off between performance and portability.
However this demonstrates that our MDS @run.time approach,
i.e., interpretation of security policies at runtime, introduces a

small overhead compared to a systematic deployment of the
different security services.

Table IV reports the unitary execution time and the total
execution time split according to the three contexts paying
attention of the occurrence rate of each context (see Section
ID). It shows that our security adjustment allows to reduce the
total execution time for about 14% compared to the systematic
protection (over-protection) scenario.

TABLE IV. EXECUTION TIMES EVALUATION
With our approach Systematic
protection
Context 1 Context 2 Context 3

Execution time for one 64 80 86 80
invocation (ms)
Rate of 1000 invocations 75% 10% 15% 100%
Total execution of each 48 000 8 000 12 900 80 000
context
Total of execution time 68 900 80 000
for 1000 invocation
(ms)

We extend this benchmark to integrate business services
that request longer or smaller computation times (see Table
V) to compare the cost of context analysis and of the dynamic
security composition and orchestration at runtime. Our simula-
tion uses several business services whose execution times vary
from 10 ms to 100 ms. We set 2 reference execution contexts,
one required no security deployment (Context 1) whereas
the other requires the maximum protection (i.e systematic
protection required in Context 3 associated to our motivating
example). Measures are achieved using different rates for
Context 1 (from 10% to 100%). The results show that the
MDS @run.time maximum cost varies from 18,75% of the
smaller service execution time to 4,9% for the bigger one
when a systematic protection is required. On the opposite,
MDS @run.time exhibits a benefit of 13% to 50% of the
execution time when no protection is required. These results
show that the overhead involved by our MDS @run.time archi-
tecture can be rather neglected compared to the large overhead
introduced by the systematic invocation of (often) useless
security services provided that the no protection rate is greater
than 30% as shown in Fig. 4.

an .

B o

30 Lo

o L .
20 e . .

10 - " .

0 o .

et m
o an
b7 185 200 30% 40% 50% 0% T0% B0 S0 00%
10 L v
.

0 e

-30
asegges S1(10ms) - 55 (50ms) S10(100 ms)

Fig. 4. Variation of MDS @run.time execution cost according to three business
services
C. Comparison with other related works

As stated in Section II, different works on Model Driven
Security [16] have been conducted to integrate security annota-

TABLE V. EXECUTION TIMES FOR A PANEL OF 1000 INVOCATIONS OF BUSINESS SERVICES WHERE THE NO PROTECTION RATE EVOLVES FROM 0% TO
100%
Systematic | 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
protection
S1 (10ms) 32000 38000 35800 33600 31400 29200 27000 24800 22600 20400 18200 16000
S2 (20ms) 42000 48000 45800 43600 41400 39200 37000 34800 32600 30400 28200 26000
S3 (30ms) 52000 58000 55800 53600 51400 49200 47000 44800 42600 40400 38200 36000
S4 (40ms) 62000 68000 65800 63600 61400 59200 57000 54800 52600 50400 48200 46000
S5 (50ms) 72000 78000 75800 73600 71400 69200 67000 64800 62600 60400 58200 56000
S6 (60ms) 82000 88000 85800 83600 81400 79200 77000 74800 72600 70400 68200 66000
S7 (70ms) 92000 98000 95800 93600 91400 89200 87000 84800 82600 80400 78200 76000
S8 (80ms) 102000 108000 | 105800| 103600| 101400| 99200 97000 94800 92600 90400 88200 86000
S9 (90ms) 112000 118000 | 115800| 113600| 111400| 109200| 107000| 104800 102600| 100400| 98200 96000
S10(100ms) 122000 128000 | 125800 123600| 121400| 119200| 117000| 114800| 112600| 110400| 108200| 106000
TABLE VI. VARIATION OF MDS @RUN.TIME EXECUTION COST COMPARED TO BUSINESS SERVICES EXECUTION TIMES DEPENDING ON ”THE NO

PROTECTION” CONTEXT RATE

Business 0% 10% 20% 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
services
ST (10ms) | -18,75% | -11,88% | -5.00% 1,88% | 8.75% | 15,63%| 22.50%| 29,38%| 36,25%]| 43,13%| 50,00%
S2 20ms) | -1429% | 9,05% | -3,81% 143% | 6,67% | 11,90%| 17,14%| 22,38%| 27,62%| 32.86%| 38,10%
S3 (30ms) | -11,54% | -731% | -3,08% 1,15% | 538% | 9.62% | 13.85%| 18,08%| 22,31%| 26,54%| 30,77%
S4 0ms) | 9.68% | -6,13% | -2,58% | 097% | 452% | 8,06% | 1161%| 1516%| 18,71%| 22,26%| 2581%
S5 (50ms) | -833% | -528% | -222% | 0,83% | 3.89% | 694% | 10,00%| 13,06%| 16,11%| 19,17%| 22,22%
S6 (60ms) | -732% | -4,63% | -195% | 0,73% | 341% | 6,10% | 878% | 11,46%| 14,15%| 16,83%| 19,51%
S7 (70ms) | -652% | -413% | -1,74% | 0,65% | 3.04% | 543% | 7.83% | 10,22%| 12,61%| 15,00%| 17,39%
S8 (80ms) | -5.88% | -3,73% | -1,57% | 059% | 2,75% | 490% | 7,06% | 9.22% | 11,37%| 13,53%| 15,69%
S9 (90ms) | -536% | -339% | -143% | 054% | 2,50% | 446% | 643% | 839% | 10,36%| 12,32%| 14,29%
S10(100ms) | -492% | -3,11% | -131% | 049% | 230% | 4,10% | 590% | 7,70% | 9,51% | 11,31%| 13,11%
tions in the process model specification. Nevertheless, none of and organisational execution context.
them support the full transformation process nor the integration
e The security architecture is designed in a non-intrusive

of multiple and dynamic contexts. This can lead to inconsistent
protection as each security policy is generated separately. Table
VII gives a detailed comparison between three state-of-the-art
MDS frameworks and our MDS @run.time framework.

TABLE VIIL COMPARISON BETWEEN MDS FRAMEWORKS FOR
SERVICE-ORIENTED SYSTEMS

MDS OpenPMF | SECTET | BPSec MDS@
Framework [14] [15] [17] run.time
Abstraction level
CIM No No Yes Yes
PIM Yes Yes Yes Yes
PSM-code Yes Yes No Yes
Support of
Authentification Yes Yes No Yes
Authorisation Yes Yes Yes Yes
Integrity No Yes No Yes
Encryption No Yes No Yes
Non repudiation Yes Yes Yes Yes
Availability No No No Yes
Privacy No No Yes Yes
Support of
SAML No Yes No Yes
XACML Yes Yes No Yes
WS-Policy No Yes No Yes
WS-Security No No No Yes
Consideration of
infrastructure No No No Yes
runtime context No No No Yes
SecaaS No Yes No Yes
MDS @run.time No No No Yes

Our MDS @run.time vision overcomes these limits as:

e All requirements are gathered in a single protection
policy attached to the business service, which policy
is generated thanks to a fully automatised generation
process.

e Security deployment is outsourced from the business

process orchestration process as the security policy is
analysed dynamically according to the technological

way and can fit multi-cloud deployment as it is
plugged on the service middleware.

Moreover, our context definition enriches the context model
proposed in the OASIS reference architecture with technical
context information picked from the different cloud security
models. So services can be secured on the fly. Thanks to the
execution platform information, collected by the mediator
component, security services are selected, composed and or-
chestrated in a transparent and consistent way, avoiding the
costly over-protection and the risky under protection.

VI. CONCLUSION

Securing collaborative business processes deployed on
cloud systems require paying attention on both organisational
and platform-related vulnerabilities. Taking advantage of the
intrinsic flexibility provided by the association of security poli-
cies to services, we propose to use them as Models @run.time
to select, compose and orchestrate security services depending
on the required protection and on the execution context. To
this end, a MDS @run.time component is plugged on the mid-
dleware, intercepting service invocation and capturing context
information. The experiment reported in this paper shows how
our MDS @run.time architecture can be plugged on the OW2
FraSCAti middleware and reduce the execution time compared
to a systematic over-protection approach. Further works will
focus on the integration of more detailed platform models and
on vulnerability monitoring loops so that our coarse-grained
vision of the execution context will be refined to increase the
protection efficiency.

REFERENCES
(1]

H. Jay and M. Nicolett, “Assessing the security risks of cloud comput-
ing,” Gartner Report, 2008.

[2]

[3]

[4]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

L. Martino and E. Bertino, “Security for Web Services: Standards and
Research Issues,” Int. J. Web Service Res., vol. 6, no. 4, pp. 48-74,
2009. [Online]. Available: http://dx.doi.org/10.4018/jwsr.2009071303

IBM and Microsoft Corp, “Security in a Web Services World : a
proposed architecture and roadmap,” 2002. [Online]. Available: ftp:
/Iwww6.software.ibm.com/software/developer/library/ws-secmap.pdf

Organization for the Advancement of Structured Information
Standards (OASIS), “Reference Architecture Foundation for Service
Oriented Architecture @ ONLINE,” pp. 96-102, october 2009. [Online].
Available: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

M. Clavel, V. Silva, C. Braga, and M. Egea, “Model-Driven Security
in Practice: An Industrial Experience,” in 4th European Conference on
Model Driven Architecture: Foundations and Applications (CMDA-FA
08), 2008, pp. 326-337.

D. Basin, J. Doser, and T. Lodderstedt, “Model Driven Security for
Process Oriented Systems,” in 8th ACM Symposium on Access Control
Models and Technologies (SACMAT 03). ACM, 2003, pp. 100-109.

U. Lang and R. Schreiner, “Model Driven Security Management:
Making Security Management Manageable in Complex Distributed Sys-
tems,” in Workshop on Modeling Security (MODSECOS) - International
Conference on Model Driven Engineering Languages and Systems
(MODELS), 2009.

W. F. Ouedraogo, F. Biennier, and P. Ghodous, “Model Driven Security
in a Multi-Cloud Context,” International Journal of Electronic Business
Management, vol. 11, no. 3, pp. 178-190, 2013.

Cloud Security Alliance, “Security Guidance for Critical Areas of
Focus in Cloud Computing- CSA Guidance v3,” Jun. 2011. [Online].
Available: http://www.cloudsecurityalliance.org/guidance/csaguide.v3.
0.pdf

G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” Com-
puter, vol. 42, no. 10, pp. 22-27, 2009.

J. Jiirjens, “UMLsec: Extending UML for Secure Systems
Development,” in Proceedings of the 5th International Conference
on the Unified Modeling Language, ser. UML °02. London,
UK, UK: Springer-Verlag, 2002, pp. 412-425. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647246.719625

T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML: A UML-Based
Modeling Language for Model-Driven Security,” in Proceedings of the
Sth International Conference on the Unified Modeling Language, ser.
UML ’02. London, UK, UK: Springer-Verlag, 2002, pp. 426-441.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647246.719477

C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel, “Model-
driven business process security requirement specification,” Journal of
Systems Architecture (JSA), pp. 211-223, 2009.

U. Lang, “OpenPMF SCaaS: Authorization as a Service for Cloud &
SOA Applications,” in 2010 IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom), Nov 2010, pp.
634-643.

M. Alam, M. Hafner, and R. Breu, “Constraint based role based access
control in the SECTET-framework A model-driven approach,” Journal
of Computer Security, pp. 223-260, 2008.

L. Lcio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein, H. Vangheluwe,
and Y. L. Traon, “Chapter 3 - Advances in Model-Driven Security,” in
Advances in Computers, A. Memon, Ed. Elsevier, 2014, vol. 93, pp.
103 — 152. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/B9780128001622000038

A. Rodriguez, E. Fernindez-Medina, and M. Piattini, “A BPMN
Extension for the Modeling of Security Requirements in Business
Processes,” IEICE - Trans. Inf. Syst., vol. E90-D, no. 4, pp. 745-752,
Mar. 2007. [Online]. Available: http://dx.doi.org/10.1093/ietisy/e90-d.
4.745

Organization for the Advancement of Structured Information Standards
(OASIS), “Reference Model for Service Oriented Architecture 1.0:
OASIS Standard@ONLINE,” october 2006. [Online]. Available:
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad,
and G. D. Abowd, “Securing Context-aware Applications Using
Environment Roles,” in Proceedings of the Sixth ACM Symposium
on Access Control Models and Technologies, ser. SACMAT ’0l.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

New York, NY, USA: ACM, 2001, pp. 10-20. [Online]. Available:
http://doi.acm.org/10.1145/373256.373258

M. C. Mont, K. McCorry, N. Papanikolaou, and S. Pearson, “Security
and Privacy Governance in Cloud Computing via SLAs and a Policy
Orchestration Service,” in CLOSER 2012 - Proceedings of the 2nd
International Conference on Cloud Computing and Services Science,
Porto, Portugal, 18 - 21 April, 2012, 2012, pp. 670-674.

W. E. Ouedraogo, F. Biennier, and P. Ghodous, “Adaptive Security
Policy Model to Deploy Business Process in Cloud Infrastructure,”
in 2nd International Conference on Cloud Computing and Services
Science (CLOSER 2012), 2012, pp. 287-290.

W. FE Ouedraogo, F. Biennier, and P. Merle, “Contextualised
security operation deployment through MDSrun.time architecture,”
in ISC 2014 - |Intelligent Service Clouds Workshop at the
12th International Conference on Services Oriented Computing
2014, Paris, France, Nov. 2014, to appear. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01088034

L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and
J.-B. Stefani, “Reconfigurable SCA Applications with the FraSCAti
Platform,” in [EEE International Conference on Services Computing
(SCC’09). IEEE, 2009, pp. 268-275.

P. Merle, R. Rouvoy, and L. Seinturier, “A Reflective Platform for
Highly Adaptive Multi-Cloud Systems,” in International Workshop
on Adaptive and Reflective Middleware (ARM’11) - 12th ACM/I-
FIP/USENIX International Middleware Conference. ACM, 2011, pp.
14-21.

F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, “A Feder-
ated Multi-Cloud PaaS Infrastructure,” in 5th International Conference
on Cloud Computing (CLOUD’12). 1EEE, 2012, pp. 392-399.

F. Paraiso, P. Merle, and L. Seinturier, “soCloud: A service-oriented
component-based PaaS for managing portability, provisioning, elasticity
and high availability across multiple clouds,” Computing, vol. Special
Issue on Cloud Computing, 2014, to appear.

M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire,
“Reverse Engineering Architectural Feature Models,” in Proceeding
of 5th European Conference of Software Architecture, ECSA 2011,
ser. Lecture Notes in Computer Science (LNCS). Essen, Germany:
Springer, Sep. 2011, vol. 6903, pp. 220-235. [Online]. Available:
https://hal.inria.fr/inria-00614984

L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B.
Stefani, “A component-based middleware platform for reconfigurable
service-oriented architectures,” Software: Practice and Experience,
vol. 42, no. 5, pp. 559-583, 2012.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, Aspect-oriented programming. Springer, 1997.

