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ABSTRACT: This paper deals with the application of component mode synthesis on thick and thin plate finite element
model, built with a Reissner mixed formulation. The Reissner mixed formulation is a structural mechanical formulation
mostly used in plate problems that uses both displacement and generalized stress variables. Thus, the access to the
stress in the plate is easier than with a primal method. The Mindlin theory for thick plates, permits to take into
consideration shearing phenomenon inside the plate, whereas the Kirchoff-Love for thin plates only deals with bending
and twisting phenomenons. The Reissner-mixed and primal models show the exact same results, both for Mindlin and
Kirchoff-Love theory. Nevertheless, the Kirchoff-Love mixed model shows a much better convergence than the Mindlin
mixed model for thick plates.
The inconvenience of a mixed model, whatever the chosen plate theory is, is the numerical size of the finite element
model that is much bigger. That’s the reason why we use modal synthesis to reduce our model. The idea is to build
our model with both primal and mixed formulation at the same time. Then we reduce the mixed model using a sub-
structuring method and bases composed of ”fixed interface modes” obtained from a Craig & Bampton method applied
on the primal model. That method also shows a good convergence and permits us to reduce significantly the numerical
size of our model on a certain frequency band, keeping the advantages of the Reissner mixed model.

KEY WORDS: Reissner, Mindlin, Kirchoff-Love, plate, mixed formulation, finite element, sub-structuring, vibrations.

1 INTRODUCTION

Most of the finite element plate models used in industry are
based on a dynamic primal formulation. They are fast and
efficient, but they need an extra calculation and integration
to get the strains and thus the constrains. Another point
of view developed by Reissner [1] aims at defining a new
Lagrangian using both displacement fields, and generalized
stress fields, called Reissner mixed function. Thus, devel-
oping this function and discretising the displacements and
generalized stress fields, we obtaine a Reissner mixed finite
element formulation with displacement and stress fields
parameters. That method has already been used for static
problems [2] [3] and more rarely for dynamic problems [4].
Most of the time, the Reissner mixed formulation is used
for Mindlin thick plate theory. In this paper, we develop
a Reissner mixed formulation both for thick Mindlin plate
and thin Kirchoff-Love plate.

An inconvenient of the mixed formulation is the numer-
ical size of the problems, due to the addition of generalized
stress fields parameters to the displacements fields param-
eters of the primal method. Many sub-structuring method
exist to reduce primal finite element such as ”fixed inter-
face mode” method (Craig & Bampton method [5]), free
mode method (Mac Neal method [6]) and boundary mode
method (Balmes method [7]). In this paper, the idea is to
use those methods applied on the primal model to build a
new reduced base for the sub-structured mixed model.

First of all, the article talks about a Reissner mixed
variational dynamic formulation of finite element for
Mindlin thick plates and set the conditions of the following

finite element model. Then a Reissner-Kirchoff-Love model
is also studied. Afterwards, we study the convergence of
the two mixed models. In the fifth part, we deal with
the application of component mode synthesis on the finite
element mixed model, based on ”fixed interface modes”,
obtained through a Craig & Bampton method applied on
the primal plate problem. In the last part, we show the
convergence of our problem on a simple example and the
main results.

2 VARIATIONAL FORMULATION OF REISSNER
MIXED FINITE ELEMENT BASED ON THICK
MINDLIN PLATE

2.1 The Reissner mixed formulation

The Reissner mixed function is given by:

ΠRD =

∫∫∫

V

−σijeij +
1

2
σijSijklσkl + biui +

1

2
ρu̇i

2 dV

(1)
considering σij the generalized stress, eij the strain, ui the
displacement, bi the body force, ρ the volumic mass and
Sijkl the elastic compliance matrix. We consider 3 main
fields in the function:

• Mixed strain energy: σijeij − 1
2σijSijklσkl

• Body force work: biui

• Kinetic energy: 1
2ρu̇i

2
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2.2 Definition of the Mindlin theory

The displacement is given by:

ui =

{

w
θx
θy

}

(2)

considering w the transverse displacement, θx and θy the
normal rotation around the -x and -y axis. The three dis-
placement fields are independent in the Mindlin thick plate
theory whilst the rotations depend on the transverse dis-
placement in the Kirchoff-Love theory. Thus, the shearing
phenomenon doesn’t exist in that theory which simplify a
lot our system and gives us smaller matrix sizes and so re-
duce the computational time.

The strain is given by:

eij =


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where D is the following operator:
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(4)

The generalized stress field is given by:

σij =


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(5)

where {Mx,My,Mxy}
T
represents the bending and twist-

ing moments and {Qx, Qy}
T
represents the transverse shear

force.

The elastic compliance matrix is given by:

Sijkl =


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(6)
where E is the Young Modulus, t is the thickness of the
plate element and ν is the Poisson ratio.

The positive directions of the generalized stress field are
shown in Figure 1.

2.3 Interpolation of nodal displacement in element

We assume that w, θx and θy, for a 4-node quadrilateral
element, are interpolated in terms of nodal displacements

Figure 1. Bending and twisting moment and transverse
shear force

{wi θxi θyi} (i = 1,2,3,4), as follows:

w(x, y) =

4
∑

i=1

Ni(x, y)wi (7)

θx(x, y) =

4
∑

i=1

Ni(x, y)θxi (8)

θy(x, y) =
4

∑

i=1

Ni(x, y)θyi (9)

Which gives us:

ui =

{

w
θx
θy

}

= NU (10)

Chosing a 4-node quadrilateral element, the shape func-
tions have 4 conditions and thus can be quadratic as fol-
lows:

Ni(x, y) = ai + bix+ ciy + dixy (11)

That condition is essential to observe shearing phenomenon.

2.4 Interpolation of stress

We assume that each field of the generalized stress is in-
terpolated with linear function but does not depend on
the nodal values, which gives a large choice of possibilities
when choosing the functions. Thus, each generalized stress
is interpolated with 3 parameters β, as follows:

σij =


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(12)

Those choices give us a total of 27 parameters per element
matrix, as we have 12 displacement paremeters U and 15
generalized stress parameters β.



2.5 Variational function and mixed finite element formu-
lation

ΠRD =

∫∫∫

V

−σijeij +
1

2
σijSijklσkl + biui +

1

2
ρu̇i

2 dV

ΠRD =

∫∫

S

1

2
(NU̇)Tm(NU̇)− (PU)T (DNU)

+
1

2
(Pβ)TS(Pβ) dS +

∫∫

V

biUdS

(13)

where

m = ρ







t 0 0

0 t3

12 0

0 0 t3

12







(14)

and ρ is the density.
The matrix development gives us:

ΠRD =
1

2
U̇

T
MU̇ − βT

GU − βT
Hβ + F T

U (15)

where

M =

∫∫

S

N
T
mNdS (16)

G =

∫∫

S

P
T
DNdS (17)

H =

∫∫

S

−P
T
SPdS (18)

and F is the force vector applied to the mesh nodes.
Then we have:

{

M 0

0 0

}{

Ü

β̈

}

+

{

0 G
T

G H

}{

U
β

}

=

{

F
0

}

(19)

3 VARIATIONAL FORMULATION OF REISSNER
MIXED FINITE ELEMENT BASED ON THIN
KIRCHOFF-LOVE PLATE

3.1 The Reissner mixed formulation

The Reissner mixed function is still given by:

ΠRD =

∫∫∫

V

−σijeij +
1

2
σijSijklσkl + biui +

1

2
ρu̇i

2 dV

(20)
considering σij the generalized stress, eij the strain, ui the
displacement, bi the body force, ρ the volumic mass and
Sijkl the elastic compliance matrix.

3.2 Definition of the Kirchoff-Love theory

The displacement is given by:

ui =

{

w
θx
θy

}

=







w
∂w
∂y

−∂w
∂x







(21)

considering w the transverse displacement, θx and θy the
normal rotation around the -x and -y axis. The theory of

Kirchoff-Love assume that the 2 rotations θx and θy de-
pend on the transverse displacement w.

The strain is given by:

eij =

{

ǫxx
ǫyy
γxy

}

= Dui (22)

where D is the operator

D =
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∂
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(23)

The generalized stress field is given by:

σij =

{

Mx

My

Mxy

}

(24)

where {Mx,My,Mxy}
T
represents the bending and twist-

ing moments. The transverse shearing force is not taken
into consideration using the Kirchoff-Love theory.

The elastic compliance matrix is given by:

Sijkl =







12
Et3

− 12ν
Et3

0
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Et3
12
Et3

0

0 0 24(1+ν)
Et3







(25)

3.3 Interpolation of nodal displacement in element

We assume that w, θx and θy, for a 3-node triangular el-
ement, are interpolated in terms of nodal displacements
{wi θxi θyi} (i = 1,2,3), as follows:

w(x, y) =

3
∑

i=1

Ni(x, y)wi (26)

θx(x, y) =

3
∑

i=1

∂Ni(x, y)

∂y
θxi (27)

θy(x, y) =

3
∑

i=1

−
∂Ni(x, y)

∂x
θyi (28)

Which gives us:

ui =

{
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}
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U

(29)

Chosing a 3-node triangular element, the shape func-
tions have 9 conditions each and thus are 3rd order poly-
nomials as follows:

Ni(x, y) = ai+bix+ciy+dixy+eix
2+fiy

2+gix
3+hiy

3+iixy
2

(30)



3.4 Interpolation of stress

As the Mindlin theory, we assume that each field of the
generalized stress is interpolated with linear function and
does not depend on the nodal values. Each generalized
stress is interpolated with 3 parameters β, as follows:

σij =
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}

= Pβ
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(31)

Those choices give us a total of 18 parameters per ele-
ment matrix, as we have 9 displacement paremeters U and
9 generalized stress parameters β.

3.5 Variational function and mixed finite element formu-
lation

As the Reissner-Mindlin theory, the matrix development of
the Reissner-Kirchoff-Love theory gives us the same result
as equation 19:

{

M 0

0 0

}{

Ü

β̈

}

+

{

0 G
T

G H

}{

U
β

}

=

{

F
0

}

(32)

4 CONVERGENCE STUDY OF THE MIXED MODEL

4.1 Mindlin theory

The example we study in this part is a rectangular thick
plate built with Reissner-Mindlin mixed quadrangular fi-
nite elements described in the the section 2. The plate is
clamped on one edge, and free on the three other edges. It
is made of steel (see characteristics 1) and the thickness t
of the plate is a variable of the different simulation. That
example is shown in figure 2.

Table 1. Steel characteristics

Young Modulus (Pa) 2.1× 1011

Poisson ratio 0.33

Density (kg.m−3) 7.5× 103

The numerical simulations we make shows the exact
same convergence for the Reissner-Mindlin mixed model
and the Mindlin primal model. Nevertheless, the results
obtained with the Mindlin theory for various thickness of
the plate (Table 2 and Table 3) show that the convergence
of the model needs a high number of elements. It appears
that the characteristic size of the element needs to be at
least equal or even smaller than the thickness of the plate
to get acceptable results, which means that the smaller the

Figure 2. Rectangular thick plate built with
Reissner-Mindlin quad elements

Table 2. Relative error for the first eigenfrequencies for
the example 1 with t = 0.05m and Reissner Mindlin

mixed model

Element size (cm)
9.5 4.8 3.2 2.4 1.9

P
P
P
P
P
PP

Mode
Elt

100 400 900 1600 2500

1 44.3 12.7 5.7 3.2 0.01
2 15.5 1.9 0.6 0.16 0.00
3 46.2 12.9 5.9 3.2 0.02
4 12.0 3.2 1.4 0.7 0.00
5 19.0 13.5 6.0 3.3 0.002
6 15.21 5.9 2.5 1.4 0.01
7 26.3 14.9 9.0 0.13 0.00
8 29.5 5.3 1.7 0.9 0.00
9 34.0 8.6 3.7 2.0 0.01
10 16.50 2.4 1.0 0.48 0.00

Table 3. Relative error for the first eigenfrequencies for
the example 1 with t = 0.01m and Reissner Mindlin

mixed model

Element size (cm)
2.4 1.9 1.6 1.35 1.19

P
P
P
P
P
PP

Mode
Elt

1600 2500 3600 4900 6400

1 64.2 43.7 32.4 24.2 19.1
2 8.1 5.6 4.0 2.9 2.3
3 100 44.5 32.4 32.4 19.3
4 24.9 10.3 7.3 7.3 4.2
5 100 44.2 32.2 32 19.0
6 44.5 18.06 12.7 12.8 7.4
7 35.8 20.4 17.2 17.2 13.2
8 45.6 33.9 19.3 19.3 8.7
9 46.9 26.0 8.5 5.5 3.0
10 59.6 25.3 18.0 18.0 10.4



thickness is, the smaller the elements need to be, which
can cause a lot of numerical problems (mass and stiffness
matrix with big numerical sizes, especially with the mixed
model).

4.2 Kirchoff-Love theory

The example we study in this part is a rectangular thick
plate built with Reissner-Kirchoff-Love mixed triangular fi-
nite elements described in the the section 3. The plate is
clamped on one edge, and free on the three other edges.
It is made of steel (see characteristics in Table 1) and the
thickness t of the plate is a variable of the different simu-
lation. That example is shown in figure 3.

Figure 3. Rectangular thin plate built with
Reissner-Kirchoff-Love triangular elements

Table 4. Relative error for the first eigenfrequencies for
the example 1 with t = 0.01m and Reissner Kirchoff-Love

mixed model

Element size (cm)
47.5 23.8 32.9 5.9

P
P
P
P
P
PP

Mode
Elt

16 64 256 1024

1 2.94 1.47 0.53 0.21
2 8.13 1.90 0.42 0.10
3 6.80 1.19 0.40 0.13
4 - 7.58 1.63 0.33
5 - 2.87 0.24 0.06
6 - 11.59 2.28 0.41
7 - 1.72 0.01 0.01
8 - 4.90 0.27 0.00
9 - 3.35 0.06 0.00
10 - 20.35 3.29 0.43

The numerical simulations we make also shows the ex-
act same convergence for the Reissner-Kirchoff-Love mixed
model and the Kirchoff primal model. Nevertheless, the
results obtained with the Kirchoff-Love theory for various
thickness of the plate (Table 4 and Table 5) show a sig-
nificantly higher convergence than the Mindlin theory. It
appears that the characteristic size of the element doesn’t
influence the convergence of the model, as long as we stay
in small thickness, as the Kirchoff-Love theory defines.

5 MODAL REDUCTION

As described in the first sections, the numerical sizes of the
Reissner-Mindlin thin plate mixed model and the Reissner-

Table 5. Relative error for the first eigenfrequencies for
the example 1 with t = 0.001m and Reissner

Kirchoff-Love mixed model

Element size (cm)
47.5 23.8 32.9 5.9

P
P

P
P
P
PP

Mode
Elt

16 64 256 1024

1 3.16 2.11 1.05 0.00
2 8.14 1.67 0.42 0.00
3 6.68 1.17 0.33 0.00
4 43.16 7.55 1.63 0.32
5 24.84 2.86 0.24 0.18
6 - 11.56 2.26 0.38
7 - 1.77 0.01 0.00
8 - 4.85 0.26 0.00
9 - 3.60 0.29 0.06
10 - 20.36 3.72 0.41

Kirchoff-Love thick plate mixed model are significantly higher
than primal models using the same theories. The idea of
this part is to reduce the numerical size of the model with
a sub-structuring method, using ”fixed interface modes”
method obtained with a primal model (considering the
same characcteristics and meshes). We describe this modal
reduction in the following section.

5.1 Projection of displacements: Craig & Bampton Method

The Craig & Bampton Method is a sub-structuring primal
method that separates, for each sub-structure a, boundary
DOF’s Ua

j and internal DOF’s Ua
i . It projects the initial

DOF’s of the sub-structure a on a new smaller base com-
posed of the same boundary DOF’s Ua

j (we also call them
”physical DOF’s”) and truncated modal DOF’s ηa

eU (which
will be DOF’s only for the displacements), as follows:

{

Ua
i

Ua
j

}

=

{

Φ
a
eU Ψ

a
ij

0 I

}{

ηa
eU

Ua
j

}

(33)

where Φ
a
eU is a truncated base composed of eigenmodes

of the structure a assuming that the boundary nodes are
held fixed (concerning the displacement fields), Ψa

ij is the

attachment modes matrix Ψ
a
ij = −K

a
ii(K

a
ij)

−1.

5.2 Projection of generalized stress field: Craig & Bamp-
ton Method on the stress

For each sub-structure a, in order to access to the gener-
alized stress field parameters, we use the relation between
βa and Ua: βa = −(Ha)−1

G
aUa. We also use a Craig

& Bampton method to access to the displacement fields
Ua corresponding to the generalized stress fields βa, as
follows:

βa =

{

P
a

{

Φ
a
eU

0

}

P
a

{

Ψ
a
ij

I

}}

.

{

ηa
eβ

Ua
j

}

(34)

where P
a = −(Ha)−1

G
a, ηa

eβ are the modal DOF’s for
the generalized stress fields and Φ

a
eβ is a truncated base

composed of eigenmodes of the structure a assuming that



the boundary nodes are held fixed and concerning the gen-
eralized stress fields.

5.3 Reduction of a sub-structure

Considering the sections 5.1 and 5.2, the reduction of the
whole sub-structure a is given by:
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(35)

5.4 Assembly

We assemble two the sub-structures a and b considering
Ua

j = U b
j = U i, which gives us the following form:
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where
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6 CONVERGENCE STUDY OF THE REDUCTION

6.1 Example

This section focus on the convergence of the Reissner mixed
model using the method described in section 5 with the the-
ory of Kirchoff-Love, depending on the number of modes
”fixed interface modes” kept in the truncation both for dis-
placement fields and generalized stress fields. The exam-
ple used in this part is composed of two different plates,
meshed with Reissner-Kirchoff-Love triangular mixed ele-
ments described in section 3. It is made of steel (see char-
acteristics in table 1) and we choose a thickness of 1e−3m.
That example is shown in figure 4.
The first plate is clamped on one edge (102 DOF’s clamped)
and composed of 414 elements and 5064 DOF’s (of which
1338 are displacement parameters and 3726 stress parame-
ters), whereas the second plate is composed of 510 elements
and 6294 DOF’s (of which 1722 are displacement parame-
ters and 4572 stress parameters). The jonction is composed
of 102 boundary DOF’s.

Figure 4. Rectangular thick plate built with
Reissner-Mindlin quad elements

6.2 Results

The results are shown in figure 5. We calculate the FRF of
the test structure with different modal synthesis applied on
each sub-structure. In each case, the number of displace-
ment field modes and generalized stress field modes are the
same for the sub-structure 1 and the sub-structure 2. The
results show a good convergence, even with a low number
of modes.
It appears that choosing 20 displacement field modes and
20 generalized stress field modes permits a good conver-
gence of the model until 100Hz (27 first modes observable),
whereas choosing 10 modes both for displacement field and
generalized stress field give good results until 70Hz (20
first modes observable) and 5 modes until 35Hz (12 first
modes observable). Those results confirm the choice of us-
ing the ”Craig & Bampton method” both for displacement
field and generalized stress field, and permit to greatly de-
crease the numerical size of the mixed model (see table 6).
The figure 6 shows the Von Mises stress distribution in the
plate for the 12th mode (f = 331Hz) and the shape of the
mode for our example, obtained with a modal synthesis
with 20 displacement field modes and 20 generalized stress
field modes.

Table 6. Maximum frequency of convergence and number
of observable modes in function of the number of modes

chosen for the truncation

DOF’s
Displacement & Maximum Observed
stress modes frequencies (Hz) modes

11256 Non-reduced model

502 200 & 200 1700 >200
182 20 & 20 100 27
142 10 & 10 70 20
122 5 & 5 35 12

6.3 Prospects

Even though the convergence of our mixed reduced model
appears to be quite good, others modal synthesis have
been studied to decrease the number of DOF’s such as free
modes method [6] and interface modes method [7]. We can
also change the truncation in function of the displacements
or generalized stress fields and change the types of synthe-
sis (fixed interface modes or free modes).
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(a) 20 displacement modes & 20 stress modes for each
sub-structure (black: reference / grey: reduced)
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(b) 10 displacement modes & 10 stress modes for each
sub-structure (black: reference / grey: reduced)
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(c) 5 displacement modes & 5 stress modes for each sub-structure
(black: reference / grey: reduced)

Figure 5. FRF of the test structure calculated with modal
synthesis on the mixed model in function of the

truncation

7 CONCLUSIONS

This article deals with a new Reissner mixed finite element
plate model applied to a thick plate model (Mindlin theory)
and a thin plate model (Kirchoff-Love theory). First of all,
the mixed and the primal model show exactly the same
convergence with the same amount of elements. Then,
if we focus on the difference between thin plates theories
(which considers only bending and twisting moments) and
thick plates theory (which also considers transverse shear
forces), the calculations we make with our code on sim-
ple examples show a significantly different convergence be-

1 2 3

x 10
9

Figure 6. Von Mises stress distribution in the 2 plates for
the 12th mode (f = 331Hz) obtained with the β
parameters of the model with reduction figure 5a

tween the 2 theories. The Kirchoff-Love Reissner mixed
model for thin plate shows a quite good convergence as it
needs about 250 elements for a thickness of t = 0.01m to
get a good convergence (ǫ < 3%), and those results doesn’t
depend on the thickness. Nevertheless, the Mindlin Reiss-
ner mixed model for thick plate shows a much worse con-
vergence as it needs about 1600 elements for a thickness
of t = 0.05m to get good results. Furthermore, the results
with the Mindlin theory look dependent on the thickness:
in fact, the smaller the thickness is, the smaller the element
have to be. As a results, the same example with a thickness
of t = 0.01m needs more than 6400 elements to converge.
As the Kirchoff-Love mixed model shows a much better
convergence, even for a 0.01m thickness which is quite high
for a plate model, we decide to choose it for the rest of the
study.

The inconvenience of a mixed model, be it for Kirchoff-
Love or Mindlin theory, is the numerical size of the finite
element model that is much bigger as it uses parameters
for the generalized stress fields and the elementary mass
and stiffness matrix are bigger. That’s the reason why we
try use modal synthesis to reduce our model. The reduc-
tion we make aims at using modes obtained with a primal
model of the same meshes and same theory, which means
we build both primal and Reissner mixed assemblage at
the same time for each examples. We reduce the mixed
model using a sub-structuring method and bases composed
of ”fixed interface modes” obtained from a Craig & Bamp-
ton method. That modal synthesis, both applied on dis-
placements and generalized stress fields parameters show a
good convergence with our case (double plate with a thick-
ness t = 1e−3m) as we can reduce the size from about 11
000 DOF’s to about 200 DOF’s and still be able to observe
the 30 first modes. It improves considerably the computa-
tion time and, keeps the advantages of a Reissner mixed
model with access to both the displacements and general-
ized stresses.
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