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§1. INTRODUCTION. We begin by stating the following theorem due to G.H-HARDY
and J.E.LITTLEWOOD (see Theorem 4.11 of [ECT]).

THEOREM 1. We have
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1—s
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n<x

+0(z7) (1)

uniformly for o > og > 0, [t| < 7zC~ which C' > 1 is any given constant.

REMARK. We call (1) as the first approximation theorem of HARDY and LITTLEWOOD.
In [RB, KR]; we proved (1) with the conditions ¢ > 2 and z > (3 + )¢, where § > 0 is any

constant.

The object of the present note (which is an addendum to [RB, KR];) is to make a few

remarks on the results of [RB, KR]; and prove the following theorem.

THEOREM 2. We define (quasi L-functions) by
L(s,x) =Y x(n)(n+a) " F(n+a) (2)
n=1

where x(n) is any periodic sequence of complex numbers (not all zero) whose sum over any
period is zero. a > 0 is any constant and F(X) is any complex valued function of X which
is infinitely often continuously differentiable in X > 1 with F®)(X) = O(X*+¢) for every
k>0 and every e > 0. As usual s = o +it, 0 > oo > 0. Then L(s,x) defined above is

uniformly convergent in any compact sub-set. Moreover L(s,x) can be continued as an entire
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function and

L(s,x) = Zx(n)(n+a)_sF(n+oz) + F (3)
n<x
where
|E| < Cax™ 7" 0 > —K, (4)

provided only that x > xoy = D.(|t| + 2)'™, D, > 0 being a certain constant depending on
K (> 0) and € (and of course on constants depending upon the quasi L function). In (4)Ce >0
depends only on (> 0) and K which are arbitrary.

REMARK 1. In (2) and (3) we have written F(n + «) for some convenience. Certainly

we can write F'(n) instead.

REMARK 2. The proof that certain functions are entire (see [RB, KR],) is a special case
of theorem 2 obtained by treating >°° (=1)" [} f'(n + z)dz.

REMARK 3. Examples of F'(n) are exp(y/logn) and so on.

§2. PROOF OF THEOREM 2. We begin by stating Theorem 2 of [RB, KR]; as a

lemma.

LEMMA. Let a and b integers with a < b, k a non-negative integer and f(z), a function of
x which is k—times continuously differentiable in a <z <b— 1+ k. Then

Z f(n) = / x)dx + {—/ / flb+uy 1/1%) — f(a+u11/1%))du1dy1

a<n<b

1 1
22/ / / / b+u1V1 + Uz VQ) f'(a+uvi + ugrd))duydvydusdys

1
..—|— 2k1 / / b+u11/1 + .o ug V)

f(k 2)(a + ulyl + o u 11/k ))duydyy ... duk_lduk_l}

( / / Z f (n+wuy vE +...+ukVk%)duldul...dukduk.

a<n<b
REMARK 1. The terms in the curly brackets are absent if k£ = 1.

REMARK 2. We have corrected the following. In Theorem 2 of [RB, KR]; a <n < bis

not correct. It should read a < n < b.
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REMARK 3. Actually the proof of the lemma is simple and runs as follows.

> S = X ()~ [ fwd)+ [ fu)du

a<n<b a<n<b

and here the first term on the RHS is

Z /0 fn+w)) Z / / f'(n +v)dvdu

a<n<b a<n<b

=— > / /uf (n + wv)dudv
a<n<b

=3 Z // n+uv2 )dudv
a<n<b

(by a change of variable). This gives the case k = 1 of the lemma. The lemma follows by a
k-fold application of this case.

We now resume the proof of theorem 2. We define x(0) to be x(p) where p is the length
of the period. Let X be any positive integer. We have

> x(n)(n+a)™® F(n+a)

n>Xp

- pz_%x(y) > (n+a)™® Fn+a)

n=v(mod p),n>Xp

ZPZOX(V){ > ta)Fhta)- Y <"+O‘>_SF<H+Q)}

n=v(mod p),n>Xp n=0(mod p),n>Xp

ZPZ X(v) { Z (lp‘i‘V‘i‘Oé)_sF(lp—i-V—l-Oé)—Z(lp+oz)_sF(lp+a)}

Ip+v>Xp I>X

—ZX {Z lp—l—u—i—oz)_sF(lp—l—V—i-oz)—Z(lp+oz)_sF(lp+oz)}

I>X I>X

{/XOO (xp+v+a)*Flep+ v+ a)de — /Xoo(xp ) F(ap + a)dx}

= E:%x(V)

1 d —s —s
. ((xp+u+a) Flap+v+a)— (zp+ «) F(a:p—l—a))x:X

2
1
27 =X

d? s —s
_ 2@((xp+y+a) Flap+v+a)— (zp+ a) F(prra))

+...
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(_1)k—2 d(k—Z) B B
— o s (@t v+a)” Flap+v+a) = (ap+a) Flep+a))

=X

{dxk ( (X+oz+nt+at+y+v) FX+z+n+a+ty+v))

_Z((X—I—x—i—n+a+y)_5F(X+x—|—n+a+y)>)} duldyl...dukdl/k] (5)

n>1
1

1
where y = wivf + ...+ u, V.

This follows by choosing f(z) (in the lemma) suitably and letting b — oo (provided
o > 2). Thus we get analytic continuation in ¢ > 0. By choosing k = 1,2,3,...,[K] + 10

(successively) we see that L(s, x) is entire (since K is arbitrary). We have

o0 o0 d
/ (a:p+u+oz)*sF(xp+u+oz)dx:/ W=*F(W) aw
X Xp+v+a P
(by putting xp + v + o = W) and
o0 o0 d
/ (xp 4+ «)™° F(zp+ a)dx = / W’SF(W)—W.
X Xpta p

Hence their difference is entire and is O(X ~77).

In (5) all terms except the last are entire and are O(X7%¢). We give some details.
For k> 1> 0and z > A > 10 and B(> 0) bounded above by B we have

l

L@+ r@) (=06 i 1=0)
and if [ > 1 it is

Is|(|s| +1)...(|s| +1—2)

Is|(|s| +1)...(]s| +1—1)
- O( o+ @)+ zoti=l F'@)

—1 1)... —
n l<l ) Is|(ls| +1) +l(’28|+l 3) |/ ()] +...to L+ 1 terms)

o
sl(s)+1)...(|s|+1—7 i
_ O<21 N (C) ><| | ) |40 1>(x>|>
s|+1—j+1)=+

_ O<2l l+1 max1§j§l+1 {(| ’ xl;]j+1 ) % ¢ G-+ })

l
- O<2l (+1) max1§j§l+l{(|01+!t\+k) x_a+e}>

!
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= Oz~ %) if z > 4(|o] + [t] + k).

On the other hand the last but one inequality shows us that the last multiple integral in (5)

18

O (Z 2F(k 4+ 1) max {(‘Ul i+ B (X +n)_”+€})

=i 1<j<k+1 (X +n)k
k
X
= 0 (x )

provided k + o > 3 and X > (|o| + [¢| + k + 200)'*¢ and also k = {%} . This completes the
proof of Theorem 2.
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P.S. Sharper results are known for ((s) and L(s, x) (x —a character mod k). See the booklet
'RIEMANN ZETA-FUNCTION’ published by Ramanujan Institute, Chennai (1979).



