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§1. INTRODUCTION. We begin by stating the following theorem due to G.H.HARDY

and J.E.LITTLEWOOD (see Theorem 4.11 of [ECT]).

THEOREM 1. We have

ζ(s) =
∑

n≤x

n−s − x1−s

1− s
+ O(x−σ) (1)

uniformly for σ ≥ σ0 > 0, |t| ≤ πxC−1 which C > 1 is any given constant.

REMARK. We call (1) as the first approximation theorem of HARDY and LITTLEWOOD.

In [RB, KR]1 we proved (1) with the conditions t > 2 and x > (1
2

+ δ)t, where δ > 0 is any

constant.

The object of the present note (which is an addendum to [RB, KR]1) is to make a few

remarks on the results of [RB, KR]1 and prove the following theorem.

THEOREM 2. We define (quasi L-functions) by

L(s, χ) =
∞∑

n=1

χ(n)(n + α)−sF (n + α) (2)

where χ(n) is any periodic sequence of complex numbers (not all zero) whose sum over any

period is zero. α > 0 is any constant and F (X) is any complex valued function of X which

is infinitely often continuously differentiable in X ≥ 1 with F (k)(X) = O(X−k+ε) for every

k ≥ 0 and every ε > 0. As usual s = σ + it, σ ≥ σ0 > 0. Then L(s, χ) defined above is

uniformly convergent in any compact sub-set. Moreover L(s, χ) can be continued as an entire
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function and

L(s, χ) =
∑

n≤x

χ(n)(n + α)−sF (n + α) + E (3)

where

|E| ≤ Cεx
−σ+ε, σ ≥ −K, (4)

provided only that x ≥ x0 = Dε(|t| + 2)1+ε, Dε > 0 being a certain constant depending on

K(> 0) and ε (and of course on constants depending upon the quasi L function). In (4)Cε > 0

depends only on ε(> 0) and K which are arbitrary.

REMARK 1. In (2) and (3) we have written F (n + α) for some convenience. Certainly

we can write F (n) instead.

REMARK 2. The proof that certain functions are entire (see [RB, KR]2) is a special case

of theorem 2 obtained by treating
∑∞

n=1(−1)n
∫ 1
0 f ′(n + x)dx.

REMARK 3. Examples of F (n) are exp(
√

log n) and so on.

§2. PROOF OF THEOREM 2. We begin by stating Theorem 2 of [RB, KR]1 as a

lemma.

LEMMA. Let a and b integers with a < b, k a non-negative integer and f(x), a function of

x which is k−times continuously differentiable in a ≤ x ≤ b− 1 + k. Then

∑

a≤n<b

f(n) =
∫ b

a
f(x)dx +

{
−1

2

∫ 1

0

∫ 1

0
(f(b + u1 ν

1
2
1 )− f(a + u1ν

1
2
1 ))du1dν1

+
1

22

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(f ′(b + u1ν

1
2
1 + u2 ν

1
2
2 )− f ′(a + u1ν

1
2
1 + u2ν

1
2
2 ))du1dν1du2dν2

. . . +
(−1)k−1

2k−1

∫ 1

0
. . .

∫ 1

0
(f (k−2)(b + u1ν

1
2
1 + . . . + uk−1 ν

1
2
k−1)

−f (k−2)(a + u1ν
1
2
1 + . . . + uk−1ν

1
2
k−1))du1dν1 . . . duk−1dνk−1

}

+
(−1)k

2k

∫ 1

0
. . .

∫ 1

0

∑

a≤n<b

f (k)(n + u1 ν
1
2
1 + . . . + uk ν

1
2
k )du1dν1 . . . dukdνk.

REMARK 1. The terms in the curly brackets are absent if k = 1.

REMARK 2. We have corrected the following. In Theorem 2 of [RB, KR]1 a < n ≤ b is

not correct. It should read a ≤ n < b.
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REMARK 3. Actually the proof of the lemma is simple and runs as follows.

∑

a≤n<b

f(n) =
∑

a≤n<b

(f(n)−
∫ n+1

n
f(u)du) +

∫ b

a
f(u)du

and here the first term on the RHS is

∑

a≤n<b

∫ 1

0
(f(n)− f(n + u))du = − ∑

a≤n<b

∫ 1

0

∫ u

0
f ′(n + v)dvdu

= − ∑

a≤n<b

∫ 1

0

∫ 1

0
uf ′(n + uv)dudv

= −1

2

∑

a≤n<b

∫ 1

0

∫ 1

0
f ′(n + uv

1
2 )dudv

(by a change of variable). This gives the case k = 1 of the lemma. The lemma follows by a

k-fold application of this case.

We now resume the proof of theorem 2. We define χ(0) to be χ(p) where p is the length

of the period. Let X be any positive integer. We have

∑

n≥Xp

χ(n)(n + α)−s F (n + α)

=
p−1∑

ν=0

χ(ν)
∑

n≡ν(mod p),n≥Xp

(n + α)−s F (n + α)

=
p−1∑

ν=0

χ(ν)





∑

n≡ν(mod p),n≥Xp

(n + α)−sF (n + α)− ∑

n≡0(mod p),n≥Xp

(n + α)−sF (n + α)





=
p−1∑

ν=0

χ(ν)





∑

lp+ν≥Xp

(lp + ν + α)−sF (lp + ν + α)− ∑

l≥X

(lp + α)−sF (lp + α)





=
p−1∑

ν=0

χ(ν)





∑

l≥X

(lp + ν + α)−sF (lp + ν + α)− ∑

l≥X

(lp + α)−sF (lp + α)





=
p−1∑

ν=0

χ(ν)
[{∫ ∞

X
(xp + ν + α)−sF (xp + ν + α)dx−

∫ ∞

X
(xp + α)−sF (xp + α)dx

}

+
1

2

d

dx

(
(xp + ν + α)−sF (xp + ν + α)− (xp + α)−sF (xp + α)

)
x=X

− 1

22

d2

dx2

(
(xp + ν + α)−s F (xp + ν + α)− (xp + α)−sF (xp + α)

)
x=X

+ . . .
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−(−1)k−2

2k−2

d(k−2)

dxk−2

(
(xp + ν + α)−s F (xp + ν + α)− (xp + α)−sF (xp + α)

)
x=X

+
(−)k

2k

∫ 1

0
. . .

∫ 1

0





dk

dxk


∑

n≥1

((X + x + n + α + y + ν)−sF (X + x + n + α + y + ν))

−∑

n≥1

((
X + x + n + α + y)−sF (X + x + n + α + y)

))




x=0

du1dν1 . . . dukdνk


 (5)

where y = u1ν
1
2
1 + . . . + uk ν

1
2
k .

This follows by choosing f(x) (in the lemma) suitably and letting b → ∞ (provided

σ ≥ 2). Thus we get analytic continuation in σ > 0. By choosing k = 1, 2, 3, . . . , [K] + 10

(successively) we see that L(s, χ) is entire (since K is arbitrary). We have

∫ ∞

X
(xp + ν + α)−sF (xp + ν + α)dx =

∫ ∞

Xp+ν+α
W−sF (W )

dW

p

(by putting xp + ν + α = W ) and

∫ ∞

X
(xp + α)−s F (xp + α)dx =

∫ ∞

Xp+α
W−sF (W )

dW

p
.

Hence their difference is entire and is O(X−σ+ε).

In (5) all terms except the last are entire and are O(X−σ+ε). We give some details.

For k ≥ l ≥ 0 and x ≥ A ≥ 10 and β(> 0) bounded above by B we have

dl

dxl

(
(x + β)−sf(x)

) (
= O(x−σ+ε) if l = 0

)

and if l ≥ 1 it is

= O

( |s|(|s|+ 1) . . . (|s|+ l − 1)

xσ+l
|f(x)|+ l

|s|(|s|+ 1) . . . (|s|+ l − 2)

xσ+l−1
|f ′(x)|

+
l(l − 1)

2!

|s|(|s|+ 1) . . . (|s|+ l − 3)

xσ+l−2
|f ′′(x)|+ . . . to l + 1 terms)

= O

(
2l(l + 1) max1≤j≤l+1

|s|(s) + 1) . . . (|s|+ l − j)

xσ+l−j+1
|f (j−1)(x)|

)

= O

(
2l(l + 1) max1≤j≤l+1

{
(|s|+ l − j + 1)l−j+1

xl−j+1
x−σ x−(j−1)+ε

})

= O

(
2l(l + 1) max1≤j≤l+1

{
(|σ|+ |t|+ k)l

xl
x−σ+ε

})
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= O(x−σ+ε) if x ≥ 4(|σ|+ |t|+ k).

On the other hand the last but one inequality shows us that the last multiple integral in (5)

is

O


∑

n≥1

2k(k + 1) max
1≤j≤k+1

{
(|σ|+ |t|+ k)k

(X + n)k
(X + n)−σ+ε

}


= O


2k(k + 1)

( |σ|+ |t|+ k

X

)k

X−σ+ε+1




= O
(
X−σ+ε

)

provided k + σ ≥ 3 and X ≥ (|σ|+ |t|+ k + 200)1+ε and also k =
[

100
ε

]
. This completes the

proof of Theorem 2.
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