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Abstract

This paper describes the LORIA first participation at the SPMRL Shared Task. The focus of

this work is on exploring several options to take advantage of the unlabeled data to improve the

performances of a baseline dependency parser, which has neither be tuned to the specificities of

the shared task nor evaluation languages. The semi-supervised approaches investigated include

LDA word classes and super-tags predicted by a linear classifier trained with self-training. None

of these options resulted in increased parsing accuracy.

1 Introduction

This paper describes my first participation in the series of SPMRL syntactic parsing shared tasks (Sed-

dah et al., 2014). This is the result of about 3 weeks of personal work on this task, starting from vanilla

versions of parsers available on the Web. For the shared task, I provided results on all languages, in-

cluding Korean (Choi et al., 1994; Choi, 2013), Hungarian (Vincze et al., 2010a; Csendes et al., 2005a),

German (Brants et al., 2002; Seeker and Kuhn, 2012), Basque (Aduriz et al., 2003), French (Abeillé et

al., 2003), Polish (Świdziński and Woliński, 2010a) and Swedish (Nivre et al., 2006). I also used the

shared task Hebrew data set (Sima’an et al., 2001; Tsarfaty, 2013; Goldberg, 2011) and the Arabic data

set, originally provided by the LDC (Maamouri et al., 2004), specifically its SPMRL 2014 dependency

instance, derived from the Columbia Catib Treebank (Habash and Roth, 2009; Habash et al., 2009).

The objective of this work is to implement and test some basic solutions to exploit a large unlabeled

corpus in addition to the standard labeled training dataset used in supervised parsing. The unlabeled

data provided in the 2014 SPMRL shared task edition is a very interesting testbed to investigate such

approaches.

The proposed system follows the next guidelines:

• The parser is not tuned to any language; this implies to consider every CoNLL input file as orig-

inating from an unknown language, and thus not using any specific knowledge, nor POS-tagger,

tokenizer, segmenter. This also implies to only use the baseline set of features as configured in the

baseline parser, and not to tune this basic set of features.

• Exploit the unlabeled corpus provided in each language to explore a few options to try and improve

parsing performances.

2 Baseline system

The system I used to report the results on the test set is based on the MATE parser version 3.61 (Bohnet,

2010). I also used the Malt parser version 1.8 (Nivre et al., 2007) to explore different options for exploit-

ing the unlabeled corpus, because the Malt parser is faster than MATE although its accuracy is not as

good. As mentioned in the introduction, I used the default set of features for both parsers. Segmentation,
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tokenization, lemmas and part-of-speech (POS) tags are provided within the CoNLL file and used as is in

the following experiments. Because of the conversion from the CoNLL06 to the CoNLL09 formats, the

choice between one of the two (broad and detailed) POS-tag columns has to be made, and following the

suggestions from (Björkelund et al., 2013), I used the broad POS-tags (column 4) for BASQUE and KO-

REAN, and the fine POS-tags (column 5) for all other languages. Furthermore, because of a very large

number (416) of different dependency labels in HUNGARIAN, which caused memory failures with the

MATE parser, I only kept the 50 most frequent labels in the full training corpus. For the other labels, I

split their name based on the hyphen symbols and mapped them to their first sub-name. Hence, ROOT-

VAN-ATT-VAN-PRED becomes ROOT, and COORD-ELL-COORD-ELL-COORD-ELL-ATT becomes

COORD.

The respective performance of these baseline systems is given in Table 1.

Language MATE Malt

BASQUE 83.1 77.1

FRENCH 84.2 78.0

GERMAN 91.0 82.4

HEBREW 75.8 71.1

HUNGARIAN 82.9 75.3

KOREAN 82.4 82.8

POLISH 85.9 79.5

SWEDISH 76.7 70.5

ARABIC 84.7 81.3

Table 1: Baseline LAS performances on the DEV corpus (full training, pred)

3 Final submission system

3.1 System description

This Section describes the system that has been used to submit the official results to the SPMRL2014

evaluation campaign. This system is the baseline MATE parser described in Section 2 with one addi-

tional feature, which encodes word classes computed on the first 10 million words extracted from each

unlabeled corpus.

These word classes are computed in a similar way as in (Chrupala, 2011), but using a syntactic context

instead of a left-right context. So the procedure to compute these word classes is as follows:

1. Extract the first sentences from the unlabeled corpus, up to 10 million words;

2. Parse these sentences with the baseline Malt parser described in Section 2;

3. Extract the set H(w) of all governors (word forms) for each word w;

4. Build one “document” per word in the vocabulary, where each document is composed of the set of

tokens H(w), i.e., the set of all governors that have been observed for this word;

5. Train a standard Latent Dirichlet Allocation (LDA) topic model on this set of documents, with

parameters arbitrarily set to 100 topics and 1000 iterations. The software used to train the LDA

model is Mallet (McCallum, 2002).

6. Compute for each document, i.e. each word in the vocabulary, the most probable topic

t̂ = argmax
t

P (t|w)

and assign the word w to the word class t̂.



7. Add this word class into the FEATS column in the CoNLL train and test files, and retrain the MATE

parser with this additional feature.

A number of previous works in the semi-supervised litterature suggest word classes as a potentially

powerful approach to exploit a large unlabeled corpus within an otherwise standard supervised existing

parser (Koo et al., 2008), which motivates the approach chosen here. Classically, Brown clustering is

used to compute the word classes, but (Chrupala, 2011) recently showed that LDA clustering may provide

as good clusters as with Brown clustering, but at a lower computational cost. In his work, G. Chrupala

exploits a traditional left-right context in order to compare fairly with Brown clustering. In the proposed

system, I rather opted for a syntactic context, which may be more relevant for the parsing task.

3.2 System results and discussion

The results obtained on the DEV set with this final system are reported in Table 2.

Language DEV baseline DEV with LDA word class Official TEST results

BASQUE 83.1 83.1 83.2

FRENCH 84.2 84.3 84.1

GERMAN 91.0 91.1 88.0

HEBREW 75.8 75.7 75.6

HUNGARIAN 82.9 82.6 83.8

KOREAN 82.4 82.5 81.9

POLISH 85.9 85.4 80.1

SWEDISH 76.7 77.0 80.0

ARABIC 84.7 84.8 84.0

Table 2: Baseline vs. final LAS performances on the DEV corpus (full training, pred) with LDA syntactic

word classes. The final column shows the official results on the TEST corpus with LDA word classes.

We can observe that the impact of LDA word classes is null, at least with this configuration. It is

however not possible to draw any definitive conclusion with regard to the usefulness of LDA clustering

in this context, because of the limited set of experiments realized in this work. In particular, there are

more alternative options than the chosen one that should have been tested, would I had enough time to do

so: isn’t the part of the unlabeled corpus used too small ? Shouldn’t rare words or stop words be filtered-

out ? Shouldn’t low-confidence dependency arcs be removed ? Shouldn’t a wider syntactic context, with

grand-parents and children, be used ? etc.

Additional experiments are described in the next Section.

4 Additional experiments

4.1 With LDA classes

Here is a short list of some additional experiements that I have realized with LDA classes. I briefly

summarize them to better explain the context in which the final results have been submitted:

• convergence of LDA: Because the Mallet implementation of LDA relies on random sampling, two

runs of the same system with a fixed number of iterations may produce different results, because

Gibbs sampling may not have converged precisely enough. I have made a few quick tests to estimate

how much iterations would be required to limit this effect, and obtained a variability in LAS of about

±0.5% with 1000 iterations, ±0.3% with 2000 iterations and ±0.1% with 5000 iterations.

• linear vs. syntactic context: I have also used the classical left-right context to compute LDA word

classes instead of the proposed syntactic context, just like in (Chrupala, 2011), but obtained similar

results.



• richer LDA features: I have tested with two features: the two best topics per word, instead of just

the best topic given by LDA, but again with similar results.

• back-off for rare words: I have tested by replacing all word forms that occur less than 100 times

by their POS-tag to train LDA, but this does not give really more convincing results.

• Brown classes: In order to compare LDA vs. Brown classes, I have also tried Liang’s implemen-

tation of Brown clustering (Liang, 2005), but only obtained slight degradation of LAS. It also ran

into complexity issues, as shown in Table 3, which shows the required computation time of Brown

clustering on my machine.

# unlabeled sentences # topics Required computation time in seconds

1k 100 6

1k 200 14

1k 400 32

10k 100 49

100k 100 264

1000k 100 1265

Table 3: Computation time required to compute Brown clusters on a standard PC

4.2 With self-training

Another traditional way to exploit unlabeled data is to perform self-training. I have tested a basic self-

training scheme, but it impacts negatively the performances of the MATE parser, which is consistent

with previous published works that also concluded that it is very hard to obtain reliable improvement

with self-training for parsing. I have also trained a linear classifier to discriminate between incorrectly

and correctly predicted dependency arc, in order to use this classifier as a confidence measure to filter-out

the most likely erroneous sentences from the unlabeled corpus, but this did not help much.

4.3 With predicted label

Because self-training of a structured model may be too difficult, I rather tried using an unstructured

classifier on which it may be easier to apply self-training. This classifier outputs a new feature that is

then added into the CoNLL training and test files of the parser. The feature used here is the predicted

label of the dependency arc. Two-stage parsers traditionally predict first the unlabeled structure, and then

the labels on this arc. Conversely, the system proposed here consists in first predicting the label without

knowing the structure, and then predicting the structure given the label. This approach is motivated by a

small experiment, which uses oracle labels as input features into the MATE parser. Then, the resulting

LAS increases from 83% up to 94% for BASQUE, and from 86% up to 95% for POLISH.

This proves that such a feature may be very useful, although it is obviously very challenging to predict

this label without knowing the structure. Nevertheless, the rationale behind this proposal is that it may be

easier to apply self-training on the first unstructured classifier and thus benefit from the unlabeled corpus

at least in this first unstructured stage.

The proposed linear model to predict dependency labels is trained with the LIBLINEAR software (Fan

et al., 2008) with the default configuration, and exploits the linear-context of each word as features: 7-

gram POS-tags and 3-gram word forms. All the following experiments are realized on the French corpus.

The proposed linear classifier obtains a label predicting accuracy of 77.6%. This linear model is then

trained with 10-fold cross-validation on the French training corpus, and its predicted labels are added into

the training and test CoNLL files. The Malt parser is then retrained on this new corpus and its predicted

LAS slightly increases from 78.0% up to 78.7%.

In order to improve its accuracy, the unstructured linear classifier is self-trained on part of the French

unlabeled corpus as follows:



1. Predict the label on the first million sentences extracted from the unlabeled corpus.

2. Removes all low-confidence words from this predicted corpus. Low-confidence words correspond

to words for which the score margin, i.e., the score of the winning label minus the score of the

second best label, is smaller than 5.

3. Add the remaining words into the training set of the linear classifier and retrain it.

4. A single iteration was performed in this experiment.

This self-training set-up indeed improves the accuracy of the linear classifier up to 83%, but this increase

does not translate into a better Malt parsing model, which LAS remains at 78.7%. I have also observed

that the use of the confidence measure is very important, because adding too many unreliable instances

into the training corpus dramatically reduces the accuracy of the linear classifier.

The conclusions that can be drawn from these preliminary experiments are thus that:

• Predicting first the label and then the dependency structure may be useful.

• It is indeed easier to apply self-training on an unstructured classifer than directly on the parser.

• Very small improvement can be observed on the Malt parser LAS, but not on the MATE parser.

Additional thoroughly experiments would be interesting to realize to better explore this research track.

5 Conclusion

This paper describes some of the experiments realized at LORIA to try and exploit unlabeled data to

improve dependency parsing. Note that the baseline system may not be very accurate, as compared to

the competing systems, because I simply used a state-of-the-art parser as it is, and did not tune it in any

way to improve its accuracy on any of the target language. I also did not use any specific processing for

any language: the proposed system was only focused on trying to exploit the unlabeled corpus in a semi-

supervised way, which turned out to be not very effective, at least in the settings explored in this work

and in a constrained time frame. Despite these negative results, I believe at least two conclusions can be

drawn from these experiments: (i) LDA clustering always performed better than Brown clustering in my

experiments, and exploring such topic models may be interesting, not only for unsupervised parsing, as

it has already been done many times, but rather for semi-supervised parsing with an already large labeled

training corpus available. (ii) Self-training of unstructured classifier being easier to achieve, it may be

interesting to pre-process the data with a discriminative classifier that predicts the dependency labels,

or some other syntactically-related feature, and thus exploit the unlabeled corpus without inferring any

structure.
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Alina Wróblewska. 2012. Polish Dependency Bank. Linguistic Issues in Language Technology, 7(1):1–15.


