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Abstract—Defining and modeling the relation of inclusion
between continuous belief function may be considered as an
important operation in order to study their behaviors. Within
this paper we will propose and present two forms of inclusion:
The strict and the partial one. In order to develop this relation, we
will study the case of consonant belief function. To do so, we will
simulate normal distributions allowing us to model and analyze
these relations. Based on that, we will determine the parameters
influencing and characterizing the two forms of inclusion.

I. INTRODUCTION

The theory of belief functions (also called Evidential Theory

or The Dempster-Shafer Theory) is a well known framework

for reasoning under uncertainty [1]. It is widely used to model

imperfect information. We can distinguish the imprecision

(lack of accuracy), the uncertainty (lack of compliance com-

paring to the real world, due to the source of information) and

even the inconstancy where is characterized by a high level of

conflict.

The discrete case of belief functions, knowning a large

succes, have been applied to several research fields, medical,

military, risk management, information fusion [2], [3], [4], etc.

Otherwise, Smets in [5], defined the basic notions of con-

tinuous belief functions to describe them in the extended set

of reals. Recently Attiaoui et al. [6] proposed a similarity

measure for continuous belief functions based on Smets’

formalism using the distance of Jousselme [7].

Our work in this paper will consider the notion of inclusion

and how two continuous belief functions can be included

in each other. This operation will help us later to take into

account this specific characteristic during the information

fusion and the measurement of the conflit. Thus, we will define

two forms: the strict inclusion and the partial one. To do so,

we will present a measure called a degree of inclusion of an

interval (the focal element of a continuous belief function) in

the second one. This work presents a new way to determine

the relation of inclusion by considering a new vision for the

continuous case within the theory of belief functions.

II. THEORY OF BELIEF FUNCTIONS: AN OVERVIEW

This section recalls the necessary background related to

the evidential theory. It has been developed by Dempster in

his work on upper and lower probabilities [1]. Based on that,

he was able to represent more precisely the observed data.

Later, in his book ”A mathematical Theory of evidence” [8],

Shafer, presented that, any information defined by an expert

characterized by basic belief assignments has two functions:

a credibility and a plausibility function corresponding

respectively to the lower and upper probabilities of Dempster.

The theory was further developed by Smets in [9], [10]

who proposed the Transferable Belief Model (TBM). This

model presents a pignistic probability induced by a belief

function which is built by defining a uniform probability from

each positive mass. Moreover, in terms of upper and lower

probabilities, it can be considered as the center of gravity of

the set of probabilities dominating the belief functions. He

also introduced new tools for information fusion and decision

making according to [11].

The objective of the evidential theory is to represent the

information which is transmitted by a source concerning an

event. A belief function must take in consideration all the

possible events on which a source can describe a belief.

Based on that, we can define the frame of discernment.

The frame of discernment is a finite set of disjoint elements

noted Ω where Ω = {ω1, ..., ωn}. This theory allows us to

affect a mass on a set of hypotheses not only a singleton

like in the probabilistic theory. Thus, we are able to represent

ignorance, imprecision and uncertainty.

m : 2Ω 7→ [0, 1]. (1)



∑

X⊆Ω

m(X) = 1. (2)

The principle functions in the belief functions theory are:

The credibility function (bel): this function measures the

strength of the evidence in favor of a set of propositions for

all X ∈ 2Ω:

bel(X) =
∑

Y⊆X,Y 6=∅

m(Y ). (3)

The credibility is interpreted as a degree of justified support

given to proposition X by the available evidence.

The plausibility function (pl): expresses the maximum

amount of specific support that could be given to a proposition

X ∈ 2Ω. pl(X) is then obtained by summing the bba′s given

to the subsets Y such that Y ∩X 6= ∅ :

pl(X) =
∑

Y ∈2Ω,Y ∩X 6=∅

m(Y ). (4)

It measures the degree of belief committed to the propositions

compatible with X.

The commonality function (q): this function measures the

set of bbas affected to the focal elements included in the

studied set, for all X ∈ 2Ω:

q(X) =
∑

Y⊇X

m(Y ). (5)

A. Inclusion as a conflict measure for discrete belief functions

Recently Martin in [12] defined a degree of inclusion as

involved in the measurement made in order to determine

the conflict during the combination of two discrete belief

functions.

The author presented an index of inclusion having binary

values where Inc(X1, Y2) = 1 if X1 ⊆ Y2 and 0 otherwise

with X1, Y2 being respectively the focal elements of m1 and

m2. This index is then used to measure the degree of inclusion

of the two mass functions and defined as:

dinc =
1

|F1||F2|

∑

X1∈F1

∑

Y2∈F1

Inc(X1, Y2) (6)

σinc(m1,m2) = max(dinc(m1,m2), dinc(m2,m1)) (7)

Where dinc is the degree of inclusion of m1 in m2 and

inversely.

This inclusion is used as a conflict measure for two mass

functions, using it like presented:

Conf(m1,m2) = 1− σinc(m1,m2)d(m1,m2) (8)

where d(m1,m2), is the distance of Jousselme:

d(m1,m2) =

√

1

2
(m1 −m2)TD(m1 −m2); (9)

where D is a matrix based on the dissimilarity of Jaccard

expressed by D(A,B) = 1 if A = B = ∅ otherwise,

D(A,B) = |A∩B|
|A∪B| if ∀A,B ∈ 2Ω

III. CONTINUOUS BELIEF FUNCTIONS

In the previous sections, we have presented different spec-

ifications of discrete belief functions. Unfortunately, these

functions do not allow us to manipulate continuous data that

can be provided by sensors in different areas like: search and

rescue problems [13], classification issues, information fusion,

etc.

Some researches were interested in representing belief func-

tions in continuous frame of discernment like Strat in [14],

and Smets in [5].

In following sections, we will present the several proposals

that allows us to describe continuous belief functions. First,

we explain how to extend these functions on the real numbers.

To do so, we will focus on Smets’ approach to represent con-

tinuous belief functions by using probability densities. Later,

we will remember the other approaches for the continuous

case of the theory of belief functions.

A. Continuous belief functions on IR

Smets based on the TBM’s background, used the same

representation than Strat, and proposed the belief functions in

the extended set of reals noted IR = IR ∪ {−∞,+∞}.

However, using the belief function framework to model

information in a continuous frame is not an easy task mainly

to the complex nature of the focal elements. Comparing to

the discrete domain, on real numbers, in (Smets 2005) bba

becomes basic belief densities (bbd) defined on an interval

[a, b] of IR.

1) Basic belief densities: A generalization of the classical

bba into a basic belief density (bbd) denoted mI on the interval

I. He defined the bbd where all focal elements are closed

intervals or ∅.

Given a normalized bbd mI, Smets defined another function f

on IR2, where:

{

f(a, b) = mI([a, b]), a ≤ b,

f(a, b) = 0, a > b.
(10)

f is called a probability density function (pdf ) on IR2.

B. Continuous belief functions induced by probability density

functions

Let’s consider several belief functions characterizing a

unique source of information (the source is subjective and

evidential). Smets proposed a pignistic transformation of the

belief functions (representing the knowledge of the source)

in order to obtain probabilities. The probabilities are used

to ease the decision making. Pignistic probabilities are noted



BetP having densities also noted betf . For each probability

density, we have a set of belief functions with which they are

compatible. This set is called an Isopignitic. The main issue

is to choose one belief function from this set. To do so, we

consider the principle of least commitment proposed in [15],

[16]. This principle supports the idea of choosing the belief

function that involves the least an expert. It can be considered

as a natural approach to select the less committed bba from a

subset. A particular type of belief functions describes the best

this principle which are the consonant belief functions where

focal elements are nested [17].

C. Continuous belief functions: other representations

Some other approaches have been proposed in order to

describe continuous belief functions. [18] introduced in the

notions of a source constituted by a probability space and

a multivalued mapping which is able to define the lower

probability defined by a Γ function.

This function can hold at the same time two notions: on

one hand, it defines both of the lower and upper probability,

on the other hand, it considers random sets. We can say that

Γ as a multivalued mapping is measurable with respect to the

spaces that it characterizes.

Moreover, he supposes that Γ is a measurable mapping, then

it is a random set by specifying its probability distribution.

Thus the probability distribution of a random set Γ is precisely

the basic probability assignment.

We say that there is a correspondence established between

belief functions on a source S and the probability distribution

of random sets. This relation can be expressed by its density

on P (S).

Doré et al. in [19], proposed a similar approach founded

on an index function that can be assumed as Γ. This function

can describe the set of focal elements of a continuous belief

function. In this case, every index has its own probability

measure where there is an allocated weight to a set of focal

elements using a credal measure. Every set is described

according to its index and its probability density.

The formalism of Smets takes into consideration only to

closed intervals, in [13], the author extended classical con-

tinuous belief functions by proposing belief functions where

focal elements are not represented by intervals. He uses αcuts

to measure to area of the portions of multimodal distributions.

D. Similarity measure within continuous belief functions

Attiaoui et al. in [6] proposed a similarity measure based

on the distance of Jousselme using Smets’ formalism. This

distance uses a scalar product as a scalar product is defined

on IR by:

〈f, g〉 =

∫ +∞

x=−∞

∫ +∞

y=−∞

f([x, y])g([x, y])dxdy (11)

Here, the authors presented a new method to measure the

similarity founded on the properties of belief functions on real

numbers, they were able to define a distance between two

densities in an interval I.

〈f1, f2〉 =

∫ +∞

−∞

∫ +∞

yi=xi

∫ +∞

−∞

∫ yj=+∞

yj=xj

(12)

f1(xi, yi)f2(xj , yj)δ(xi, xj , yi, yj)dyjdxjdyidxi

The scalar product of the two basic belief densities is noted:

〈f1, f2〉 with a function δ defined as δ : IR −→ [0, 1]

δ(xi, xj , yi, yj) =
λ(Jmax(xi, xj),min(yi, yj)K)

λ(Jmax(yi, yj),min(xi, xj)K)
(13)

where λ represents the Lebesgue measure used for the in-

terval’s length and δ(xi, xj , yi, yj) is an extension of the

dissimilarity of Jaccard applied for the intervals in the case

of continuous belief functions.

Ja, bK =

{

∅, if a > b

[a,b], otherwise.
(14)

Therefore, the distance between two basic belief densities

is defined by the following equation:

d(f1, f2) =

√

1

2
(‖f1‖2 + ‖f2‖2 − 2〈f1, f2〉) (15)

We noticed that the standard deviation is influencing this

measure. As long as the difference between the distributions

grows, the more the distance is rising. This representation

proposed a natural approach that allows us to manipulate and

also study the behavior of continuous belief functions induced

by normal and exponential distributions.

IV. INCLUSION WITHIN CONTINUOUS BELIEF FUNCTIONS

Within this section, we will consider two forms of inclusion:

a strict and a partial inclusion. We will present their mathe-

matical expressions, and explain how do we build them. But

first, we enumerate several properties that must be satisfied by

the relation of inclusion.

A. Properties of the inclusion

The inclusion defined between two intervals [xi, yi] and

[xj , yj ] in a set I satisfies the following requirements:

Property 1: Non-negativity

Inc(fi, fj) ≥ 0.

Namely, the inclusion of the first interval in the second one

must never be negative.

Property 2: asymmetry

Inc(fi, fj) 6= Inc(fj , fi), ∀fi 6= fj .



No need for the relation of inclusion to be symmetric.

Property 3: Upper bound

Inc(fi, fj) = 1.

This property implies a total inclusion of the first interval

in the second one other.

Property 4: Lower bound

Inc(fi, fj) = 0.

This property implies the absence of any intersection or

inclusion of the first interval in the second one.

B. Strict inclusion

Here, we will define the strict inclusion between two

continuous belief functions represented by two basic belief

densities bbd.

First, we use these distributions to deduce a degree of inclusion

between the bbds and then we can be able to measure the value

inclusion between our continuous belief functions.

Let’s consider two continuous pdfs: f1 and f2. If one distri-

butions is included in the second one, then the strict inclusion

is expressed by the following equation:

IncStr(f1, f2) =

∫ +∞

−∞

∫ +∞

yi=xi

∫ xi=+∞

xj=−∞

∫ yj=+∞

yj=xj

(16)

δIncStr(xi, yi, xj , yj)f1(xi, yi)f2(xj , yj)dyjdxjdyidxi

Where [xi, yi], [xj , yj ] are the considered intervals and

δIncStr(xi, yi, xj , yj) is the degree of strict inclusion that

will allow us to measure the value related to the inclusion of

the first interval in the second one.

We will consider that δIncStr(xi, yi, xj , yj) is having binary

values where:

δIncStr(xi, yi, xj , yj) =

{

1, if [xi, yi] ⊆ [xj , yj ]
0, otherwise.

(17)

If we are in presence of two distributions that do touch

each other, there is an intersection between them. The

δIncStr(xi, yi, xj , yj) will have the value 1, and the strict

inclusion will be weighted by the masses of our continuous

belief functions. Otherwise δIncStr(xi, yi, xj , yj) will be null.

C. Partial inclusion

Considering two bbds represented by two intervals [xi, yi]
and [xj , yj ]: We say that [xi, yi] is partially included in [xj , yj ]
or inversely, if and only if their intersection is different of ∅.

To represent the partial inclusion we define:

pdf 1 2 3 4

µ 0 0 4 4

σ 1 0.5 1 0.5

TABLE I
PROBABILITY DENSITY DISTRIBUTIONS

Fig. 1. Modeling probalility distribution functions.

IncPar(f1, f2) =

∫ +∞

−∞

∫ +∞

yi=xi

∫ x=+∞

xi=−∞

∫ yi=+∞

yj=xj

(18)

δIncPar(xi, yi, xj , yj)f1(xi, yi)f2(xj , yj)dyjdxjdyidxi

with δIncPar(xi, yi, xj , yj) is the degree of partial inclu-

sion:

δIncPar(xi, yi,xj , yj)=
max(0,min(yj , yi)−max(xi, xj))

yi − xi

(19)

The degree δIncPar(xi, yi, xj , yj) represents the length of

the intersection of the two probability density functions f1 and

f2 on the length of f1 if we are measuring IncPar(f1, f2) and

the length of f2 if we have to calculate the partial inclusion

of f2 in f1: IncPar(f2, f1)

V. ASYMMETRY WITHIN THE INCLUSION

Let us consider four probability density functions defined by

their means µ, and their standard deviations σ, like presented

in table I and described in figure 1.

Once we apply the mathematical formula proposed in

equation (15), we obtain the following table II strict inclusion.

IncStr pdf1 pdf2 pdf3 pdf4
pdf1 0.5032 0.1437 0.009 0

pdf2 0.8586 0.5032 0.053 0

pdf3 0.009 0 0.5032 0.143

pdf4 0.537 0 0.8586 0.5032

TABLE II
STRICT INCLUSION AND ASYMMETRY.



IncPar pdf1 pdf2 pdf3 pdf4
pdf1 0.8183 0.5498 0.0253 0.0013

pdf2 0.9595 0.8183 0.0041 0.0017

pdf3 0.0253 0.8247 0.8183 0.9595

pdf4 0.0041 0.0017 0.5498 0.8183

TABLE III
PARTIAL INCLUSION AND ASYMMETRY.

Otherwise, applying the partial inclusion expressed in equa-

tion (17), we obtain table III.

The property of asymmetry between two continuous belief

functions can be confirmed when we observe the measures of

inclusion in the table II and table III .

We witness for strict and partial inclusion that

IncStr(pdf2, pdf1) = IncStr(pdf3, pdf4) = 0.8586 and

IncPar(pdf2, pdf1) = IncPar(pdf3, pdf4) = 0.9595 do

always have the highest values on both cases. These primary

results confirm the distributions presented in Figure 1,

Meanwhile, for the case of inclusion of pdf1 in pdf4 and

pdf4 in pdf1, where the difference between the means is very

important we are dealing with very small values of inclusion.

Knowing that σ1 = σ3 and σ2 = σ4, when computing

these partial inclusions, the difference between the standard

deviations is maximal, generates a considerable value.

For the strict inclusion we have some values where there is

no intersection between the distributions and then we naturally

obtain a null value, like for IncStr(pdf1, pdf4).
According to the data in table II and table III, the primary re-

sults obtained using both of the strict and the partial inclusion,

our proposed relation responds to all the properties previously

announced (non negativity, asymmetry, upper-bound < 1).

A. Average of inclusion

Let us consider n distributions, and αf a set of bbds.We

can measure the average of inclusion of a bbd fi in αf .

To do so, we present the following equations the first one

related to the strict inclusion and the second one to the partial.

IncS(fi, αf) =
1

n− 1

n
∑

j=1,i 6=j

IncStr(fi, fj) (20)

IncP (fi, αf) =
1

n− 1

n
∑

j=1,i 6=j

IncPar(fi, fj) (21)

To model the measurement of the average of inclusion, we

will apply the equations (19) and (20) to obtain respectively

table IV and table V

VI. ILLUSTRATION OF THE STRICT AND PARTIAL

INCLUSIONS

In this section we will present our experimental phase to

illustrate both of the strict and partial inclusion between two

continuous belief functions.

IncS Value

IncS(f1, fj) 0.0509

IncS(f2, fj) 0.3038

IncS(f3, fj) 0.0506

IncS(f4, fj) 0.4653

TABLE IV
AVERAGE OF STRICT INCLUSION.

IncP Value

IncP (f1, fj) 0.1921

IncP (f2, fj) 0.3217

IncP (f3, fj) 0.60317

IncP (f4, fj) 0.1852

TABLE V
AVERAGE OF THE PARTIAL INCLUSION.

To illustrate both of the strict and partial inclusion between

two continuous belief functions induced using a normal dis-

tribution. We decided to fix the value of the first distribution

pdf1, where, it is characterized by its mean µ1 = 0 and its

standard deviation σ1 = 1. For the second distribution pdf2,

we will vary the values of µ2 in [0, 10] and σ2 in [0, 5].
Here, our purpose is to see the behavior of the inclusion when

we modify one of the pdfs, and the parameters that infer in

the obtained results.

A. Strict inclusion between belief densities induced by normal

distributions

This strict inclusion is a natural approach, that allows

us to perceive if there exists any intersection between two

distributions, how they behave and the parameters that

interfere during this process. In this case, when a degree of

inclusion has binary values of 0 and 1, we will study this

property between two continuous belief functions.

The more the value of the second standard deviation grows,

the more difference between σ1 and σ2 develops. Here, the

Fig. 2. Strict inclusion of pdf1 in pdf2.



Fig. 3. Partial inclusion of pdf1 in pdf2

strict inclusion between the two distributions, which generates

a growth in the behavior of the obtained curve. We are then,

in the presence of a growth of the strict inclusion of pdf1 in

pdf2 due to the variation of the second distribution.

Otherwise, we notice in Figure 2, relative to the strict inclu-

sion, that it is not the gap between the means µ1 and µ2

that generates this growth. It is the difference between the

two standard deviations, that is in the origin of this growing

phenomenon of inclusion. As shown when σ1 > σ2 and µ2

having its maximal value with µ2 = 5, the strict inclusion

is null. This value is due to the fact that the degree of strict

inclusion δIncStr(xi, yi, xj , yj) = 0, which can be explained

by the non-existence of any intersection between pdf1 and

pdf2.

The part of the curve where the difference between the two

standard deviations is low and at the same time the difference

between the means is high. We have a small growing strict

inclusion for example when µ2 = 3 and σ2 = 1.5, the strict

inclusion IncStr(f1, f2) = 0.1. At the meantime, even when

µ1 = µ2 = 0 σ1 = σ2 = 1, there is an intersection between

the two distributions and IncStr(f1, f2) > 0. Moreover, when

the gap between σ1 and σ2 gets higher, the curve increases,

generating a bigger strict inclusion between pdf1 and pdf2,

until rising its maximal value where IncStr(f1, f2) = 1, with

δIncStr(xi, yi, xj , yj) = 1. In this specific case, we are in

presence of a total inclusion of the first distribution pdf1 in

the second one pdf2.

We also witness a phenomenonin which µ2 gets a high

value, the strict inclusion drops considerably. Here we can state

that the mean also has an impact on the generated inclusion.

B. Partial inclusion between belief densities induced by nor-

mal distributions

The partial inclusion is defined in order to give us the

proportion of the intersection between two pdfs.

1) Partial inclusion of pdf1 in pdf2: During this ex-

perimentation, we keep the same values used for the strict

Fig. 4. Partial inclusion of pdf2 in pdf1

inclusion and we obtain Figure 3 We notice that, when we

are dealing with similar distribution where µ1 = µ2 = 0 and

σ1 = σ2 = 1, the value of the partial inclusion is greater than

zero. It is possible to state that when we are in presence of two

distributions having the same values, there is not necessarily

any total inclusion between them. We also take note, that as

the difference between σ1 and σ2 rises, due to the of pdf2, the

figure obtained grows faster, and reaches its maximal value

IncPar(f1, f2) = 1, generating a curve more arched than the

strict inclusion.

When the difference between µ1 and µ2 increases because

of the variation of pdf2, the partial inclusion reaches a value

of IncPar(f1, f2) = 0.85, which becomes lower when the

gap between two standard deviations is the highest (σ2 =
3), we obtain the maximal value for the partial inclusion:

IncPar(f1, f2) = 1 like presented in Figure 3.

In this specific case, we witness a full and total inclusion

of pdf1 in pdf2. This is similar to what we have presented

regarding the strict inclusion. Here we have non-negative

inclusions, that respect the lower and upper bounds where the

values are [0, 1]. Besides, the property of asymmetry is also

respected because, the inclusion (what ever is strict or partial)

of a distribution in the other does not necessarily involve the

inverse case with the same value.

When IncPar = 1, we have a total inclusion of the first

distribution pdf1 in the second one pdf2, this situation is

considered as a strict inclusion where, pdf1 is fully included

in pdf2.

2) Partial inclusion of pdf2 in pdf1: For this case, we have

chosen to measure the partial inclusion of pdf2 in pdf1, saving

the same values for both distributions. Otherwise, the equation

18 becomes:

δIncPar(xi, yi,xj , yj)=
max(0,min(yi, yj)max(xj , xi))

yj − xj

(22)

We obtain the Figure 4. In this case, we notice a different



phenomenon comparing to Figure 3. Here, we witness than

when the two distributions are totally similar, the value of

the partial inclusion equals 0.8183. This value is the maximal

one that is expressed in this, and as stated before, two similar

distributions can not be fully included in each other. We also

observe in this figure, that as long as tha values of the second

distribution µ2, and σ2 rise, the value of the partial inclusion

of pdf2 in pdf1 drops. More the two distributions are getting

different from each other, more the partial inclusion decreases.

Both parameters; the mean and the standard deviation have

considerable impacts in this measure. This is proved by the

behavior of the partial inclusion.

The difference between the Figure 3 and Figure 4 is very

obvious considering the behaviors of the two curves. This is

due to the nature of the focal elements of continuous belief

functions which are expressed by intervals. Specially with the

case of the inclusion where each time we measure the inclusion

of the intervals of a normal distribution with those of a second

normal distribution.

VII. STRICT INCLUSION VS PARTIAL INCLUSION

Comparing the results obtained in Figure 2 and Figure 3,

where we have the same values for the two distributions, we

notice that the partial inclusion reaches the maximal value

faster that the strict one. Besides, its area is bigger and larger.

Thus, we can state that the partial inclusion is dominating.

In Figure 2 and Figure 3, it seems that we have the same

phenomena between the two types of inclusion. This can be

explained by the fact that we are working with consonant

belief functions (where focal intervals are nested). We can

imagine that in presence in other nature of belief functions

(categorical, or Bayesian belief functions) we can obtain

different behaviors between the strict and the partial inclusion.

We notice the same phenomena that we have seen for

the strict, when the values of parameters characterizing the

second distribution grow, generating a big difference between

the means, and the standard deviations, the partial inclusion

decreases significantly and comparing when we are dealing

with smaller values of µ2.

Thus, we can say that, both of the mean and the standard

deviation do have a real impact on the measurement of

the partial inclusion, having the same situation as the strict

inclusion.

In the case of two distributions getting more and more

different and especially when considering only the standard

deviation, the phenomena of inclusion gets bigger. However,

if the mean of one distribution is having non similar value than

the other we can state than the inclusion has smaller values.

VIII. CONCLUSION

In this paper, we have emphasized the evaluation of the

relation of inclusion between continuous belief functions in-

duced by a normal distribution. We have defined two forms

of inclusions: the strict and the partial one. Before that, we

have detailed all preliminary background that will allow us to

experiment this kind of relation. We have also provided the

approach on which the evaluation of the inclusions will be

based.

We have presented a relation of inclusion having normalized

values that takes into account the nature of continuous belief

functions described using intervals as focal elements. These

two forms of inclusion respond to all the properties that must

be satisfied. We also have shown that both of the mean and the

standard deviation have different impacts in this phenomena

each one with its specific output.
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