AH-06

Analysis of the intrinsic field sensitivity and noise of magnetoimpedance sensors.

L. Melo¹, D. Menard², A. Yelon², B. Dufay³, O. Mareschal³, S. Saez³, C. Dolabdjian³ 1. Electrical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada; 2. Engineering Physics, Ecole Polytechnique de Montreal, Montreal, QC, Canada; 3. GREYC, ENSICAEN and University of Caen, Caen, France

The giant magnetoimpedance (GMI) effect is observed when the impedance of a magnetically soft conductor is measured as a function of frequency of the drive current and the applied external dc field.¹ Technological applications of the GMI effect such as magnetic, current and stress sensors¹ primarily require high impedance variation, high intrinsic sensitivity to dc and ac fields and low intrinsic magnetic noise. The magnitude of the effect, ΔZ , is commonly given by the change of impedance relative to the impedance at saturation. The sensitivity, *S* (in units of %/Oe or %/T), is proportional to the derivative of ΔZ with respect to the applied dc field. The magnetic noise, *MN* (in units of T/ \sqrt{Hz}), which is a quantity proportional to the voltage-noise-to-sensitivity ratio, defines the minimum measurable field in 1Hz bandwidth and dictates sensor performance. In this work, the experimental and theoretical behaviour of *S* and *MN* are analyzed as a function of frequency and applied fields, including the effect of a dc bias current, for a Co-based magnetic conductor. A procedure to obtain the external parameters yielding the highest *S* and minimum *MN* is outlined.

We have recently proposed a simple model to evaluate the GMI *MN* and *S* in the MHz regime of anisotropic magnetic wires.² The model accounts for a biasing dc circumferential field, H_{bias} , which is included in the internal field of a single domain cylindrical magnetic conductor. For given frequency, H_{bias} and easy axis direction, *S* is evaluated as a function of the external axial dc field, H_{ext} . The field yielding the maximum sensitivity (S^{max}), H_{ext}^{max} , is determined, defining the sensor working point. The *MN* is then evaluated at H_{ext}^{max} . For helical magnetic structures having the easy magnetization axis close to circumferential, calculations show that both S^{max} and *MN* (at H_{ext}^{max}) decrease for increasing H_{bias} .² The field H_{bias} essentially increases the internal field, which effectively makes the wire magnetically harder and hence, less sensitive to the driving signal when H_{ext} is applied.

Calculated normalized sensitivity, Λ , as a function of H_{ext} and H_{bias} at 10MHz for a 35µm diameter is presented in Fig. 1. The quantity Λ is given by $\Lambda = H_k S$, where H_k is the anisotropy field of the wire and $S = d\eta/dH_{\text{ext}}$. $\eta = (\xi \mu_t^{1/2} - 1)\cos^2\theta$, ξ is a function of the wave vectors and material parameters,² μ_t is the transverse permeability and θ is the angle between the static magnetization direction and the direction of H_{ext} . The permeability depends on frequency, internal field and magnetic damping. The parameter values used in the calculations are typical for Co-rich amorphous wires. Also, we have used $H_k=1.4$ Oe and an easy axis angle of 72° (relative to the axial direction) in the calculations. We observe in Fig. 1 that for this frequency and easy axis angle, S broadens with S^{max} (black points) decreasing when H_{bias} is applied (see also broken lines A and B), as a consequence of the increase of the internal field.

This may not be the case for a wire with an axial easy axis. Figure 2 shows experimental results of $\Delta Z/R_{dc}$ and S from the measurement of the impedance of an as-cast Co-based wire as a function of H_{ext} , when the wire was submitted to a dc bias current, i_{bias} . The impedance was measured in a HP 8753B Network Analyzer (NA). For the i_{bias} , injected into the device, we used the bias input of the NA. The experimental sensitivity shown in Fig. 2 was then obtained from the numerical derivative of the impedance versus field curve. In Fig. 2a, $\Delta Z/R_{dc}$ and S vs. H_{ext} at f=10MHz and 100MHz for i_{bias} =20mA are shown. This value of i_{bias} is equivalent to a H_{bias} ~20e at the surface of the wire,

which is close to the H_k of this sample. Figure 2b shows S vs. H_{ext} at f=100MHz for $i_{bias}=40$ mA, 20mA and 4mA. These results show that there are optimal frequency and dc bias conditions to maximize the sensitivity. The high S^{max} for a non-zero H_{bias} opens the possibility for the observation of very low values of MN predicted by the theory.²

In this work, the behavior of *S* and *MN* are analysed and compared with experiment at frequencies up to 500MHz on Co-based amorphous wires.

[1] M. Knobel, M. Vazquez and L. Kraus, in Handbook of Magnetic Materials 15, K.H.J. Buschow, ed., Elsevier (2003).

[2] L.G.C. Melo et al., IEEE Trans. Magn., 43, 2992 (2007), and L.G.C. Melo et al., J. Appl. Phys., accepted, Nov. 2007.

Figure 1. Normalized sensitivity as a function of applied fields at 10MHz for a wire with (almost) circumferential easy axis angle.

Figure 2. Experimental results for an as-cast amorphous microwire $(R_{dc}=20\Omega)$. *a*) $\Delta Z/R_{dc}$ and *S* for $i_{bias}=20$ mA and f=10MHz and 100MHz. *b*) *S* for f=100MHz and $i_{bias}=40$ mA, 20mA and 4mA.

View publication stats