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Hemodynamic simulations in the cerebral venous network: a
study on the influence of different modeling assumptions

Vincent Chabannes ∗ Mourad Ismail † Christophe Prud’homme ‡ Marcela Szopos §

Abstract

Blood flow computations in complex geometries are of major interest in various cardio-vascular applications. However,
deriving an appropriate computational model is still an open issue and a central question is how to incorporate and quantify
uncertainties due to different modeling assumptions. The present work is intended as a first step in this direction, in the
particular case of blood flow in the cerebral venous system. After a careful evaluation of the influence of the computational
methodology, the study investigates the impact on the velocity field and the wall shear stress of three inflow boundary
conditions, two strategies for treating the outflow boundary condition and two different viscosity models. The results
demonstrate that the effect of setting the inflow boundary condition on the forces created by blood flow, is likely greater
than for other modeling assumptions, the other important factor being the blood viscosity model, especially in wall shear
stress computations. They suggest that improvements on the one hand on the mathematical and computational approach,
and on the other hand on available data for their treatment are needed.

Keywords: Mathematical Modeling, Blood Flow Simulations, Cerebrovenous Hemodynamics, Finite Element Method,
High Performance Computing.

MSC: 92C35 (Physiological flow), 76Z05 (Physiological flows).

1 Introduction
In recent years, significant progress has been performed in blood flow simulations within geometrical models of vessels
(see, for instance [12] and references therein for a sound monograph on this topic). However, several open issues still exist,
in particular related to an accurate analysis of these complex multi-physics, multi-scale phenomena in complex geometries.

Moreover, although there is a vast literature assessing blood flow in the arterial network, to the best of our knowledge
there are only a few studies exploring the venous part. There are several difficulties to tackle in modeling cerebral venous
flow, such as: the asymmetric and considerably more various pattern of the venous network compared to the arterial one, the
highly individual variations of the venous outflow [21], the compliant or even collapsible behavior of the venous wall etc.
In addition, clinical measures provide only scarce and highly variable data in the cerebral venous tree, as illustrated by the
values gathered hereafter: cross-sectional velocity, jugular vein: (10–11)× 10−2 m · s−1 [14], (8.5–11.3)× 10−2 m · s−1

[18], (30–50)× 10−2 m · s−1 [21]; cross-sectional velocity, superior sagittal sinus: 15× 10−2 m · s−1 [21]; venous mean
cerebral blood flow 6.65±2.383× 10−6 m3 · s−1 for the right jugular vein, 2.683±2.5× 10−6 m3 · s−1 for the left jugular
vein [23].

Nevertheless, some recent studies attempt to interpret blood flow in the cerebral venous network by means of a com-
putational model, however mostly using a reduced order description in terms of geometric complexity. In this direction,
we mention the recent cerebral venous one-dimensional flow model built on an anatomical geometry of the venous system
proposed in Ref. [14], the closed-loop one-dimensional model for the human circulation, including a detailed description of
the cerebral venous system developed in Ref. [17] and the 3D description of blood flow in rigid jugular veins coupled with
a reduced one-dimensional model for major intracranial veins in Ref. [3].

In the present work, our aim is twofold: (i) provide a contribution to the modeling and simulation of blood flow in the
venous compartment of the cerebral network, based on a full three-dimensional description of the geometry, reconstructed
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from medical imaging [16]; (ii) investigate by means of a systematic numerical exploration the effects of different modeling
assumptions on flow conditions.

To accomplish the above objectives, we consider the Navier-Stokes system of PDEs, valid in large and medium-sized
cerebral veins [15], under the following standard assumptions: (i) the blood density is constant; (ii) the flow is incompress-
ible and isothermal; (iii) a Newtonian or a Generalized Newtonian model is used for blood flow. More details are given in
Section 2. Blood flow in rigid veins is then computed, on the basis of the methodology previously developed in [4] and
using adequate values of the flow governing parameters and boundary conditions. The computational framework builds
upon FEEL++, Finite Element Embedded Language in C++, [19], a flexible generic library which allows for arbitrary order
continuous and discontinuous Galerkin methods in 1D, 2D and 3D, seamlessly in parallel. We describe the numerical and
computational strategy, the sensitivity analysis framework and a detailed study of the influence of the numerical methods
in Section 3. In Section 4 we present several numerical illustrations of large scale simulations of blood flow in complex
geometries, and quantify the impact of variable modeling choices on the hemodynamic quantities of interest (velocity and
wall shear stress). Finally, in Section 5 we discuss the significance of the obtained results and draw some perspectives,
giving insight into the difficulties related to a deeper understanding of the clinical relevance of the solutions and into some
potential solutions.

2 A 3D model for blood flow in large cerebral veins
The mathematical equations that govern blood flow dynamics in medium and large vessels are the homogeneous, incom-
pressible, unsteady Navier-Stokes equations, which read in conservative form: find (u, p) such that

ρ

(
∂u

∂t
+ (u · ∇)u

)
− div(−pI + 2µD(u)) = 0,

div(u) = 0,

(1)

in Ω × I , supplemented with initial and boundary conditions. The set Ω ⊂ R3 represents the spatial domain (the lumen
of the vessels), I = (0, T ) is the time interval (one or several cardiac cycles), u and p are the velocity and pressure of the
fluid, D(u) = 1

2 (∇u + ∇uT ) is the strain rate tensor and ρ and µ are the density and the dynamic viscosity of the fluid,
respectively.

The viscosity is taken either to be constant, when adopting a Newtonian constitutive model, or as a function of the shear
rate:

γ̇ =

√
2tr
(
D (u)

2
)
, (2)

when using a Generalized Newtonian model. In the present work, we focus on the comparison between the Newtonian
model, and the Carreau and Carreau-Yasuda Generalized Newtonian constitutive models for blood [12, Chap. 6], that return
the viscosity as a function of the shear rate by the following equation:

µ(γ̇)− µ∞
µ0 − µ∞

= (1 + (λγ̇)
a
)

n−1
2 , (3)

where λ is a time constant, a and n are dimensionless parameters used to differentiate between the two models , and µ0 and
µ∞ are the viscosities at zero and infinite shear rate, respectively (see also 4.2).

We define the Cauchy stress tensor
σ(u, p) = −pI + 2µD(u), (4)

and the wall shear stress τ as being the magnitude of the surface traction vector:

T(u, p) = σ(u, p)n− ((σ(u, p)n) · n)n, (5)

where n indicates the outward normal to ∂Ω.
Furthermore, in order to prescribe the initial status of the fluid velocity, we impose:

u(t = 0,x) = u0(x), for x ∈ Ω, (6)

where u0 is a given quantity such that div(u0) = 0.
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To specify the boundary conditions, we denote by Γwall the lateral boundary (the vessel wall) and by Γin / Γout the
upstream / downstream boundaries. At the inflow of the cerebrovenous network, blood comes from the microcirculation,
modeled by a quasi-steady / steady Stokes flow, hence we impose a constant profile of small magnitude on Γin. The vessel
wall is considered to be rigid, hence u = 0 on Γwall, which is an acceptable hypothesis when studying intracranial arterial
blood flow [22]. However, extracranial veins are less stiff than the intracranial ones [23], but as a first approximation, we
also consider the jugulars as being rigid; the extension to the compliant case is postponed to future work. At the outflow,
boundary conditions are prescribed either by using a traction-free condition largely employed in blood flow simulations:

σ(u, p)n = 0 on Γout, (7)

or by introducing the coupling with a three-element Windkessel model [12, Chap. 10], in order to take into account the
downstream vasculature. In the latter case, the condition reads:

σ(u, p)n = −Pln on Γout, (8)

where Pl (the proximal pressure) is obtained by solving



Cd,l

dπl
dt

+
πl
Rd,l

= Ql

Pl = Rp,lQl + πl.

(9)

for a given value of the flux on the outletQl =
∫

Γout
u·n dx. Further details supporting the present choices for the boundary

conditions can be found in [15]. It should be noted that more involved models, as for instance a 3D - 1D coupled system,
could be developed in the sequel, in order to better take into account the downstream, possibly compliant, vasculature.

3 Numerical method and computational framework

3.1 Numerical Method
We now turn to the discretization of the mathematical models presented in the previous section. We start with the space-
time discretization of the incompressible Navier-Stokes equations: we use a fully implicit time discretization using BDFη
scheme including for the Non-Newtonian models with non-linear solves handled by a Newton method. The equations (1)
time discretized read

ρ

(∑η
k=0 αku

n+1−k

∆t
+ un+1 · ∇un+1

)

−div(−pn+1I + 2µD(un+1)) = 0,

div(un+1) = 0.

(10)

where (αk)k=0,η are the BDFη coefficients for the time derivative of u and the subscript η refers to the order of the
scheme. In the sequel, we adopt the BDF1 (η = 1) and BDF2 (η = 2) schemes for the time approximation. The spatial
discretization is handled via a inf-sup stable finite element (Taylor-Hood) P2 − P1, see e.g. [20]. The weak formulation
associated to (10) reads: find (uh, ph) such that for all (vh, qh)

∫

Ω

ρ

(
un+1
h · vh

∆t
+ un+1

h · ∇un+1
h · vh

)
dx

+

∫

Ω

2µD(un+1
h ) : D(vh) + pn+1

h ∇ · vh + qh∇ · un+1 dx

+

∫

∂Ω

(
−pn+1

h n + 2µD(un+1
h )n

)
· vh dx

= −
∫

Ω

∑η
k=1 αku

n+1−k · vh
∆t

dx (11)

The boundary integral in (11) is handled through the boundary conditions on Γin,Γout and Γwall presented in Section 2.
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From an algebraic point of view, at each non-linear iteration, the following classical saddle point system is inverted
(
A BT

B 0

)(
U
P

)
=

(
F
0

)
(12)

where A corresponds to the velocity block and B, BT to the velocity/pressure coupling. This system is solved with GMRES
using the SIMPLE preconditioner, see [20].

In the case of the 3D-0D implicit coupling, the following system is inverted


A BT D
B 0 0
C 0 E





U
P
Λ


 =



F
0
G


 (13)

where Λ is the vector (πl, Pl), the blocks C and D correspond to the coupling between velocity and the 0D variables and
the blocks E and G the 0D variables block and data respectively. This system is solved in two embedded steps: (i) a block
GAUSS-SEIDEL preconditioner is first applied to the 3D-0D blocks (velocity and pressure are aggregated in the 3D block)
then (ii) the SIMPLE preconditioner is applied to the 3D block only, i.e. on the velocity/pressure saddle-point problem.
This strategy needs however to be refined in further work as it is currently more expensive than the traction-free model
(approximatively 5 Gauss-Seidel iterations are necessary to achieve convergence, hence about 5 times slower).

As to time discretization, the 0D time scheme has the same accuracy as the time discretization scheme used for the
Navier-Stokes equations. Note that an explicit scheme is also available and has been compared with the implicit one
described above, see Section 3.4.5.

3.2 Computational framework
The analysis hereafter used the Finite Element Embedded Library in C++ (Feel++). Feel++ allows to use a very wide range
of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three
fields methods, fictitious domain methods or certified reduced basis. The ingredients include a very expressive embedded
language, seamless interpolation, mesh adaption and seamless parallelization. It has been used in various contexts including
the development and/or numerical verification of (new) mathematical methods or the development of large multi-physics
applications [4]. The range of users span from mechanical engineers in industry, physicists in complex fluids, computer
scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded
language hiding linear algebra and computer science complexities.

Feel++ provides a mathematical kernel for solving partial differential equation using arbitrary order Galerkin methods
(FEM, SEM, CG, DG, CRB) in 1D, 2D, 3D and manifolds using simplices and hypercubes meshes [19] : (i) a polyno-
mial library allowing for a wide range polynomial expansions including Hdiv and Hcurl elements, (ii) a light interface to
BOOST.UBLAS, EIGEN3 and PETSC/SLEPC as well as a scalable in-house solution strategy (iii) a language for Galerkin
methods starting with fundamental concepts such as function spaces, forms, operators, functionals and integrals, (iv) a
framework that allows user codes to scale seamlessly from single core computation to thousands of cores and enables
hybrid computing.

Feel++ takes advantage of the newest C++ standard (C++11) such as type inference and the Boost C++ Libraries such
as the BOOST.PARAMETER, BOOST.FUSION or BOOST.MPL and many more. These language enhancements and libraries
allow for very concise, robust and expressive C++ codes. The current paper illustrates the capabilities of this framework in
terms of modeling as well as high performance computing.

The analyses presented in the next sections were partly performed on SuperMUC at LRZ in Munich, Germany, which
provides 155.000 cores and a peak performance of 3 Pflop · s−1, the MesoCenters (Tier-2) in Strasbourg and Grenoble offer-
ing about 70 Tflop · s−1 and 45 Tflop · s−1 as peak performance respectively. The computations including post-processing
analysis were distributed from 64 to 512 cores depending on the cost of the study. The simulations ran from 10 to 15 h and
the post-processing from 5 to 20 h.

3.3 Sensitivity analysis setup
The sensitivity analysis framework in the present paper stems from [10], where the author defines two metrics, one for the
velocity and one for the wall shear stress in order not only to visually compare snapshots of solutions, but also to assess
the differences between two solutions in a more quantitative manner. Both metrics require to define a computed reference
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solution (see Sec. 3.3.1) and then the computation of the time evolution of the average on the entire mesh of some specific
quantities (see Sec. 3.3.2 and 3.3.3) which reflect pointwise differences between velocities and the wall shear stresses,
respectively. This approach has in addition the advantage of assessing the time evolution of the these differences, whereas
comparisons of snapshots are only showing spacial differences at some selected instants.

3.3.1 Computed reference solution

We consider the cerebrovenous network obtained from [16], see Figure 1, with 29 inlets with blood coming from the
microcirculation and 2 outlets corresponding to the jugulars.

Figure 1: Visualization of the flow patterns: instantaneous streamlines, colored with velocity magnitude (in mm · s−1).

The computed reference solution for the sensitivity analysis is obtained as follows: (i) we consider blood to be a
Newtonian fluid with viscosity µ =3.4815× 10−3 Pa · s and density ρ =1.055× 103 kg ·m−3 modeled by the unsteady
incompressible Navier-Stokes equations, with constant inflow velocity vin (physiological range) over Γin, rigid walls for
Γwall, traction-free outflow on Γout ; (ii) a fully implicit time discretization using a BDF2 scheme with a constant time
step ∆t = 10−3 s and the final time T = 1 s ; (iii) a stable Taylor-Hood spatial discretization P2 − P1 using a fine grid
accounting for about 10 millions degrees of freedom, see Table 1 for a list of meshes.

The reference solutions may vary with respect to the inflow velocity vin within the set {10× 10−3, 20× 10−3, 30× 10−3}m · s−1.
Unless notified, the default value is vin =10× 10−3 m · s−1.

3.3.2 Velocity metric

This metric measures the difference between the computed solution (uC) and the computed reference solution (uR). To this
end, [10] defines the spatial metric for each time step

SuR
(uC) = 1− βe−a − γe−m, (14)

where

a =
1

π
cos−1

(
uR · uC
‖uC‖‖uC‖

)
, 0 ≤ a ≤ 1, (15)

m =
‖uR − uC‖
‖uR‖

, 0 ≤ m and β = γ =
1

2
. (16)

5



The value a corresponds to the scaled angle between the two vectors and the value m to relative difference in their order of
magnitude. The spatial average is then computed by:

Du =
1

V

∫

Ω

SuR
(uC) dx, where V =

∫

Ω

1 dx. (17)

3.3.3 Wall shear stress metric

This metric measures the difference between the computed reference solution of the wall shear stress τR and another
numerical solution of the wall shear stress τC . To this end, [10] defines the spatial metric for each time step as

TτR(τC) = 1− e−t, t =

∣∣∣∣
τR − τC
τR

∣∣∣∣ (18)

and its spatial average

Dτ =
1

S

∫

∂Ω

TτR(τC) dx, where S =

∫

∂Ω

1 dx. (19)

3.3.4 Metric computations

We discuss here some details regarding the metric computations. Once the simulations for a given study are done, the
analysis follows Algorithm 1. The function LoadVelocityAndWSS loads the parallel data containing the velocity uC and
wall shear stress τC associated to the time t of a given simulation as well as the corresponding reference solution uR and
τR. We next compute the metrics Du and Dτ for each time step.

Algorithm 1 Metric computation
T is the final time set to 1 s
for all t in 0:∆t:T do

[(uC , τC), (uR, τR)] = LoadVelocityAndWSS(t)
Compute Du

Compute Dτ

end for

We first note that division by zero can occur in both metrics and it needs to be handled by adding safeguards in the
integral computations to discard these cases. As to the volume and surface integrals, they are computed using quadratures
that integrate exactly up to order 6 polynomials in 3D since the integrands are non-trivial expressions including the afore-
mentioned safeguards. Thus Algorithm 1 requires very intensive parallel computation to obtain the metrics (the studies used
from 64 to 512 cores and ranged from 1 Million to about 10 Millions degrees of freedom). In our case they were almost as
expensive as some of the actual numerical simulations, see Section 3.2.

3.4 Influence of the numerical strategy
Before investigating the impact of several modeling assumptions, our objective in the present section is to assess the impact
of the numerical strategy in use. We ensure that our sensitivity analysis is performed in a controlled numerical environment
within the open-source developed and validated software library Feel++, see section 3.2, and in [5, 6, 9, 8, 4]. Our numerical
strategy is in line with [24] as we execute high resolution simulations and not normal resolution simulations: both the spacial
and the temporal discretization methods are second-order schemes and a small time step (∆t = 10−3 s) was chosen, in
order to adequately resolve the complex flow features. In the following sections, we apply the sensitivity analysis to various
numerical choices namely space time discretization, handling of the non-linearity and 3D-0D coupling.

3.4.1 Mesh convergence

We start with the mesh convergence which has been done on three meshes M0, M1 and M2 described in Table 1 applied to
the computed reference solution described in section 3.3.1 with inlet velocity vin = 10× 10−3 m · s−1 and the computed
solution with inlet velocity vin = 30× 10−3 m · s−1. The results are displayed in Figure 2. We expect that the sensitivity
with respect to vin tends to the same profile as the mesh is refined. Indeed the results show that (i) the numerical simulations
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are quite sensitive to the inlet velocity value vin; (ii) the coarser mesh M0 provides already good results when compared
with finer meshes; and (iii) the curves for M1 and M2 are superimposed, showing that mesh independence is achieved with
the second level of refinement. Similar results are obtained with vin = 20× 10−3 m · s−1.

h Nelt Ndof

M0 0.03 322 013 1 640 236
M1 0.02 985 484 4 717 123
M2 0.015 2 008 757 9 171 904

Table 1: Mesh convergence tests; h: characteristic element size, Nelt: number of tetrahedra, Ndof : number of degrees of
freedom.
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Figure 2: Sensitivity indices for the different grids M0, M1 and M2 with inlet velocity vin = 30× 10−3 m · s−1 and with respect to the reference
solution vin = 10× 10−3 m · s−1.

3.4.2 Initial condition

We look now at the choices for the initial solution: (i) fluid at rest, (ii) Stokes solution. The results are displayed in Figure 3
where the reference solution for each inlet velocity is the Navier-Stokes Newtonian model with initial solution at rest, i.e.
(u = 0, p = 0) and the same inlet velocity. The sensitivity to the initial condition choice decreases significantly over 1 s
and can be discarded afterwards.
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Figure 3: Initial condition sensitivity.

3.4.3 Time-discretization order

We are now interested in the effect of the time step scheme for Navier-Stokes with vin = 30× 10−3 m · s−1. The reference
solution is computed with BDF1 with the same time step ∆t = 10−3 s. A comparaison with the second order scheme
BDF2 is displayed in Figure 4 and shows that the results are relatively insensitive to the time discretization order.
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Figure 4: BDF1 vs. BDF2, ∆t = 10−3 s, inlet velocity vin = 30× 10−3 m · s−1.

3.4.4 Fully implicit versus semi-implicit

We consider here the sensitivity to the choice between a fully implicit and semi implicit (Oseen) scheme to handle the
Navier-Stokes equations. The analysis was conducted with a reference computed solution with the highest inlet velocity
vin = 30× 10−3 m · s−1. The results are displayed in Figure 5 and from the very small values for both the velocity and the
wall shear stress metrics we infer that that in this case the computed solution is insensitive to the scheme choice.
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Figure 5: Fully implicit vs. Semi-implicit (Oseen) scheme, ∆t = 10−3 s, inlet velocity vin = 30× 10−3 m · s−1.

3.4.5 Implicit versus explicit 3D-0D coupling

Finally we analyze the sensitivity to the implicit versus explicit treatment of the 3D-0D coupling. It was conducted with a
reference computed solution with the highest inlet velocity vin = 30× 10−3 m · s−1. The results are displayed in Figure 6
and they show that they are sensitive to this choice, the indices decrease over 1 s and seem to stagnate towards the end of
the simulation. It should be noted that the explicit scheme is stable in our case, thanks probably to the small time-step, but
this is not always the case, see [2].
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Figure 6: 3D-0D coupling, implicit vs. explicit scheme, inlet velocity vin = 30× 10−3 m · s−1.
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4 Application: a study of the hemodynamics under variable modeling choices
The mathematical and numerically sound framework developed in the previous sections is now applied in order to assess
the influence of various modeling choices on the velocity and wall shear stress fields. We focus the study on the impact
of setting boundary conditions, both at the inflow and the outflow, and on the rheological model for blood. Other possible
sources of uncertainties, as for instance geometrical factors are briefly discussed in Section 5. For the sake of clarity and
coherence, the numerical data reported in the sequel are presented in appropriate SI units.

4.1 Influence of the outflow boundary condition
The aim of this section is twofold: first, compare the solution obtained using a traction-free condition for the outflow
boundaries with the solution of the coupled 3D-0D model; next, refine the analysis of the influence of the 3D-0D coupling
on the solution, for different values of the parameters featuring the three-elements Windkessel model.

We start from the classical approximation assuming that for a Poisseuille flow, in a cylindrical vessel with length l of
constant circular section of radius r0, the resistance and compliance can be estimated respectively by:

R =
8µl

πr4
0

(20)

and

Cd,l =
3πr3

0l

2Eh0
, (21)

where h0 is the wall thickness and E is Young modulus of the elastic vessel wall. In our computations, we set the proximal
resistance Rp,l to the following value indirectly derived from measurements for the internal jugular vein in supine position
[7]:

Rp,l = 0.13± 0.07× 10−3 mmHg ·min · cm−3 (22)

and then derive Rd,l (the distal resistance) and Cd,l (the distal compliance) accordingly. More precisely, we take E =
0.5× 106 Pa (Young modulus for the cerebral venous tree from [14]), h0 as being 25% of the radius (acceptable approxi-
mation for cerebral vessels, according to [1]), and compute approximated values for the radius of the right and left internal
jugular veins (denoted RIJV and LIJV in the sequel), using the formula r0 =

√
A0/π, where A0 is the area of the vessel.

The values obtained are r0(RIJV ) = 2.59× 10−3 m and r0(LIJV ) = 2.34× 10−3 m; we summarize the remaining
parameters in Table 2 and Table 3, the entries of the first column of Table 2 being inferred from the range of values given in
(22) for Rp,l. The last column in both tables is used to label in an explicit manner the three sets of parameters (correspond-
ing to each raw) that will be subsequently used in the 3D-0D simulations. To these labels, we add the notation 3DFREE for
the model using a traction-free condition at the outlet.

Rp,l Rp,l Rd,l LABEL
mmHg ·min · cm−3 Pa · s ·m−3 Pa · s ·m−3

0.13× 10−3 1.039 911 6×106 1.039 911 6×108 3DW1
0.20× 10−3 1.599 86×106 1.599 86×108 3DW2
0.06× 10−3 0.479 959×106 0.479 959×108 3DW3

Table 2: Resistances values in the three-element Windkessel model.

We first show in Figure 7 a comparison between the solution obtained when coupling the three-dimensional simulation
with a lumped-parameter model, and the solution obtained with a standard traction-free outflow condition. The parameters
used in the three-element Windkessel model correspond to the first raw of Tables 2 and 3. Dissimilarities are more
noticeable at the beginning of the simulation, but the metrics tend to stabilize afterwards, towards relatively small values for
the velocity and slightly higher for the wall shear stress.

The impact of the parameters involved in the three-element Windkessel model is illustrated in Figure 8. At the beginning
of the simulation, the metrics reach a small peak value, but quite rapidly both indicators decrease and are stabilized around
an even smaller value. Therefore, the analysis carried out in the present case shows that using a coupled 3D-0D model might
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Cd,l (RIJV) Cd,l (LIJV) LABEL
m3 · Pa−1 m3 · Pa−1

13.6534× 10−11 6.542 86× 10−11 3DW1
21.0052× 10−11 10.0659× 10−11 3DW2
6.301 57× 10−11 3.019 78× 10−11 3DW3

Table 3: Compliance values in the three-element Windkessel model.
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Figure 7: Effects of the outlet boundary condition: traction-free vs. 3D-0D coupling

be significant when a detailed analysis of the wall shear stress is relevant, but the choice of parameters is less influential, at
least whilst kept in a physiological range described in the literature.
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Figure 8: Influence of parameters.

In order to compare the results of the present simulations with some referenced data in the clinical literature, we extend
the analysis to the values of flow rates and mean velocities at the level of the two outlets, corresponding to the left and right
jugular veins, respectively. The results are displayed in Figure 9. In the left panel, we first focus on the results corresponding
to the 3DFREE model: we checked that the sum of the flow rates corresponding to the represented outlets is the same as the
flow at the inlet, thus ensuring mass conservation. The same property is respected when the 3D-0D models 3DW1, 3DW2
and 3DW3 are used, but flow rates tend to balance in these simulations, with the best fit in the case of the highest resistance
3DW2, as expected. The right panel illustrates the evolution of the mean velocity, with the most relevant unbalance between
the two jugulars in the case of the 3DFREE model; the values tend to equilibrate when using a 3D-0D model, especially in
the case 3DW2, when the outflow resistance is the highest. All the obtained values are in the physiological range described
in the literature, but since available data sets are not very rich and quite heterogeneous, further acquisitions and comparisons
are needed in order to have more insightful information.
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Figure 9: Flow rate and mean velocity measured at each outlet (vin = 30× 10−3 m · s−1)

4.2 Non-Newtonian characteristics of blood flow
In this section, we aim at studying the effect on the hemodynamical quantities when using two different Generalized non-
Newtonian models, in comparison with the classical Newtonian one. The parameters involved in the description of these
models are the viscosities at zero and infinite shear rate [12, Chap. 6]:

µ0 = lim
γ̇→0

µ(γ̇) = 56× 10−3 Pa · s, (23)

µ∞ = lim
γ̇→∞

µ(γ̇) = 3.45× 10−3 Pa · s, (24)

supplemented with material constants depending on the model, that correspond for the Carreau model to the values

λ = 3.313 s, a = 2, n = 0.3568, (25)

and for the Carreau-Yasuda model to the values

λ = 1.902 s, a = 1.25, n = 0.22, (26)

respectively.
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Figure 10: Effects of the generalized Newtonian Carreau and Carreau-Yasuda model for several input velocities. The
reference solution for each curve is the Navier-Stokes Newtonian model, with the same inlet velocity.

Influence of the constitutive model for blood is showed in Figure 10. We compare the solution of three Newtonian
simulations (vin ∈{10× 10−3, 20× 10−3, 30× 10−3}m · s−1) with non-Newtonian models using the same inlet velocity.
First, there are relevant differences between the results of the non-Newtonian model, compared to the values obtained from
3D-0D model, in particular for wall shear stresses. According to the employed metrics, the use of a variable viscosity in
the blood model has an important effect on the numerical predictions. There is a similar behavior between Carreau and
Carreau-Yasuda models for both metrics, with a comparable impact (slightly less important for Carreau-Yasuda). Then,
with respect to the velocity metric, we can see that the influence obtained from Carreau and Carreau-Yasuda models is
similar, independently of the inlet velocity imposed. However, this is not the case with wall shear stress metric, where
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the influence of the non-Newtonian model changes significantly with the variability of the inlet velocity. We conclude that
models for blood can have an important impact, particularly on the measure of wall shear stresses and directly related to the
inlet boundary condition.
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Figure 11: Flow rate measured at RIJV outlet (left) and LIJV outlet (right). Each result has been obtained with vin =
30× 10−3 m · s−1 and free-traction outflow condition.

Another comparison between the Newtonian and the non-Newtonian model is showed in Figure 11, displaying the flow
rate measured at each outlet for several configurations. We can notice small differences between each model, compared to
the previous analysis, see Section 4.1. However, Carreau-Yasuda model seems to have a flow rate with a more important
evolution, compared to the other ones, that remain quasi-constant.

In order to localize the influence of the non-Newtonian model, we have exported fields associated to the metric velocity
SuR

(uC) and wall shear stress metric TτR(τC). Figures 12 and 13 illustrate an example of these visualization fields, in
the case of the Carreau model. For the velocity metric, we see that major high sensitivity zones are localized mainly at
bifurcations and recirculation zones. For the wall shear stress, the dissimilarities are slightly more global, but maximum
quantities stay local and at same place than the velocity metric. It should be noted that, in order to visualize the velocity
metric (see Figure 12), we had to remove a layer of tetrahedra close to the boundary because the metric has null values on
the surface. Consequently, the geometry is not smooth anymore and some discontinuities appear in the small branches of
the venous network.

Figure 12: Visualization of the velocity metric (Carreau model vin = 30× 10−3 m · s−1); only elements with threshold
greater than 10−15 are plotted.

Finally, we present two visualizations of the viscosity field computed with the Carreau model. We start with Figure 14,
obtained with same threshold geometry we previously described in the case of the velocity metric. This screenshot highlights
a localization relation between the maximum values of viscosity and the velocity metric. Figure 15 also shows the viscosity
field, but represented on the boundary surface. Furthermore, we have applied a threshold value in the scale visualization, in
order to get a better illustration of the viscosity variability with respect to the wall shear stress metric.
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Figure 13: Visualization of the wall shear stress metric (Carreau model vin = 30× 10−3 m · s−1).

Figure 14: Visualization of the viscosity (Carreau model vin = 30× 10−3 m · s−1).

4.3 Influence of the inflow boundary condition
We now present a sensitivity analysis with respect to the inlet velocity magnitude imposed at each inflow. The simulations
were performed for several models (Newtonian 3D, non-Newtonian 3D and Newtonian 3D-0D). In each case, we take the
reference solution with an inlet velocity magnitude equal to 10× 10−3 m · s−1. Then, we compute the influence of each
model by taking vin ∈{20× 10−3 and 30× 10−3}m · s−1.

The results are displayed in Figure 16, where a grid refinement study is reported, and in Figure 17, where different
models are compared. Both metrics are persistently higher in comparison with the previous cases analyzed in Sections 4.2
and 4.1, with a significant non-linear increase in the case of the wall shear stress metric. This should be compared to a
Poisseuille approximation, frequently used in blood flow modeling, that predicts a linear increase of the wall shear stress
when the velocity increases linearly. In the present case, where blood flow dynamics is complex and the geometry is also
very complicated, this approximation is no more valid. It can also be noted that Newtonian 3D and Newtonian 3D-0D
models present the same sensitivity for both velocity and wall shear stress metric; the same behavior can be found when
comparing the two non-Newtonian models. Moreover, we can see in these figures that the non-Newtonian models have less
influence compared to the Newtonian models. This effect is more significant in wall shear stress metric, but it is also visible
in the velocity metric.

Finally, we plot the flow rate and the mean velocity measured at each outlet for several inlet velocities. The goal
of this study is to show the impact of inlet velocity magnitude at the level of the jugular, where some clinical measures
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Figure 15: Visualization of the viscosity (Carreau model vin = 30× 10−3 m · s−1) with threshold color 1× 10−2.
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Figure 16: Effects of inlet velocity magnitude vin. The reference solution for each level mesh is computed using vin =
10× 10−3 m · s−1. Continuous lines correspond to vin = 20× 10−3 m · s−1 and dashed lines to vin = 30× 10−3 m · s−1.
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Figure 17: Effects of inlet velocity magnitude vin. The reference solution for each model is computed by using vin =
10× 10−3 m · s−1. Continuous lines correspond to vin = 20× 10−3 m · s−1 and dashed lines to vin = 30× 10−3 m · s−1.

are available in the literature and subsequently infer a reasonable range of values for the imposed inlet velocity. A first
report can be found in Figure 18. The simulations were performed with a Newtonian 3D model for three different input
velocities. We notice that the RIJV outlet has a lower flow rate than the LIJV. The range of the mean velocity is {0.7× 10−1

to 2× 10−1}m · s−1 (respectively {0.4× 10−1 to 1× 10−1}m · s−1 for the LIJV (respectively RIJV), which are in the
physiological range description in the clinical literature (see Section 1), with the closest values obtained for an inflow
velocity vin = 30× 10−3 m · s−1. Figure 19 reports similar comparisons, in the case of a 3D-0D Newtonian model. The
interest of the coupled model is that, as already noticed in Section 4.1, in this case we recover a closer balance between both
outlets in terms of the flow rate and mean velocity.
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Figure 18: Flow rate and mean velocity measured at each outlet for several inlet velocities. Each result has been obtained
with a Newtonian model 3DFREE. Continuous lines correspond to RIJV outlet and dashed lines to LIJV outlet.
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Figure 19: Flow rate and mean velocity measured at each outlet. Each result has been obtained with a Newtonian model
3D-0D. Continuous lines correspond to RIJV outlet and dashed lines to LIJV outlet.

5 Conclusions and future directions
The objective of the present work was to construct a sound mathematical, numerical and computational framework relevant
to hemodynamic simulations and to assess within this context the effect of different modeling assumptions on cerebral
venous blood flow dynamics at a macroscopic scale.

In order to guarantee reliable predictions, we first investigated the impact of the numerical strategy, via methodical
grid refinement studies, variable initial condition implementations and different discretization techniques. The current
methodology should be further developed, in particular by (i) improving linear solvers robustness and flexibility in the
choice of temporal and spatial discretization methods; (ii) extending the present 3D - 0D model to a more complex multiscale
framework [12, Chap. 11]; (iii) devising new strategies to compare solutions (as for instance statistical methods in the spirit
of [11]).

The results of the present study showed that for cerebral veins blood flow modeling, the impact of setting the inlet
boundary condition on the forces created by blood flow, is likely greater than for other modeling assumptions. Therefore,
they highlighted the importance of deriving values for these conditions from clinically measured data at some probe loca-
tions, in order to enhance the accuracy of the computed hemodynamical quantities of interest. It was also found that in the
present case, the impact of the rheological model used for blood is important, with a strong emphasis on the computation
of the wall shear stresses. The overview of the results on the whole geometry, when using a Generalized non-Newtonian
model, shows that significant differences are localized especially at zones of maximum viscosity. In view of these findings,
other more complex models should be implemented for comparison, for instance Casson model incorporating the hematocrit
dependence [11]. A reduced impact was found regarding the outflow treatment: the 3D - 0D coupling has the advantage of
equilibrating flow rates and mean velocities at the level of the jugulars, thus allowing to obtain physiological values; how-
ever the influence of the parameters in the three-element Windkessel model was not very significant in the range described
in the clinical literature. Even so, because of the heterogeneous individual venous flow and variable side dominance [23],
and also because of the possible modifications in local resistance and compliance values in pathological cases, a larger range
of values should be tested. Furthermore, work to include the influence of the geometrical approximation is needed, as well
as the study of the impact of the gravity force, which plays a major role in the cerebral venous drainage [13].
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The present work should also be seen as an important step in the construction of a computational model for the whole
cerebral circulation, after coupling with the arterial network and the capillary bed.
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