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Transportation cost-information and concentration

inequalities for bifurcating Markov chains

S. Valère Bitseki Penda∗ Mikael Escobar-Bach †

Arnaud Guillin ‡

January 27, 2015

Abstract

We investigate the transportation cost-information inequalities for
bifurcating Markov chains which are a class of processes indexed by
binary tree. These processes provide models for cell growth when
each individual in one generation gives birth to two offsprings in the
next one. Transportation cost inequalities provide useful concentra-
tion inequalities. We also study deviation inequalities for the empiri-
cal means under relaxed assumptions on the Wasserstein contraction
of the Markov kernels. Applications to bifurcating non linear autore-
gressive processes are considered: deviation inequalities for pointwise
estimates of the non linear leading functions.

Keywords: Transportation cost-information inequalities, Wasserstein distance, bi-

furcating Markov chains, deviation inequalities, geometric ergodicity.

1 Introduction

Roughly speaking, a bifurcating Markov chain is a Markov chain indexed
by a binary regular tree. This class of processes are well adapted for the
study of populations where each individual in one generation gives birth
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to two offsprings in the next one. They were introduced by Guyon [29]
in order to study the Escherichia coli aging process. Namely, when a cell
divides into two offsprings, are the genetical traits identical for the two
daughter cells? Recently, several models of bifurcating Markov chains, or
models using the theory of bifurcating Markov chains, for example under
the form of bifurcating autoregressive processes, have been studied [1, 2, 29,
21, 18], showing that these processes are of great importance to analysis
of cell division. There is now an important literature covering asymptotic
theorems for bifurcating Markov chains such as Law of Large Numbers,
Central Limit Theorems, Moderate Deviation Principle, Law of Iterated
Logarithm, see for example [29, 30, 6, 19, 15, 18, 8] for recent references.
These limit theorems are particularly useful when applied to the statistics
of the bifurcating processes, enabling to provide efficient tests to assert if
the aging of the cell is different for the two offsprings (see [30] for real
case study). Of course, these limit theorems may be considered only in the
”ergodic” case, i.e. when the law of the random lineage chain has an unique
invariant measure.

However, limit theorems are only asymptotical results and one is often
faced to study only datas with a size limited population. It is thus very
natural to control the statistics non asymptotically. Such deviation inequal-
ities (or concentration inequalities) have been recently the subject of many
studies and we refer to the books of Ledoux [31] and Massart [35] for nice
introductions on the subject, developing both i.i.d. case and dependent
case with a wide variety of tools (Laplace controls, functional inequalities,
Efron-Stein,...). It was one of the goal of Bitseki et al. [8] to investigate
deviation inequalities for additive functionals of bifurcating Markov chain.
In their work, one of the main hypothesis is that the Markov chain as-
sociated to a random lineage of the population is uniformly geometrically
ergodic. It is clearly a very strong assumption, nearly reducing interesting
models to the compact case. The purpose of this paper is to considerably
weaken this hypothesis. More specifically, our aim is to obtain deviation
inequalities for bifurcating Markov chain when the auxiliary Markov chains
may satisfy some contraction properties in Wasserstein distance, and some
(uniform) integrabilty property. This will be done with the help of trans-
portation cost-information inequalities and direct Laplace controls. In order
to present our result, we may now define properly the model of bifurcating
Markov chains.
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1.1 Bifurcating Markov chains

First we introduce some useful notations. Let T be a regular binary tree in
which each vertex is seen as a positive integer different from 0. For r ∈ N,
let

Gr =
{
2r, 2r + 1, · · · , 2r+1 − 1

}
, Tr =

r⋃

q=0

Gq,

which denote respectively the r-th column and the first (r + 1) columns of
the tree. The whole tree is thus defined by

T =

∞⋃

r=0

Gr.

A column of a given vertex n is Grn with rn = ⌊log2 n⌋, where ⌊x⌋ denotes
the integer part of the real number x.

In the sequel, we will see T as a given population in which each individual
in one generation gives birth to two offsprings in the next one. This will make
easier the introduction of different notions. The vertex n will denote the
individual n and the ancestor of individuals 2n and 2n+1. The individuals
who belong to 2N (resp. 2N+1) will be called individual of type 0 (resp. type
1). The column Gr and the first (r+1) columns Tr will denote respectively
the r-th generation and the first (r + 1) generations. The initial individual
will be denoted 1.

For each individual n, we look into a random variable Xn, defined on
a probability space (Ω,F ,P) and which takes its values in a metric space
(E, d) endowed with its Borel σ-algebra E . We assume that each pair of
random variables (X2n,X2n+1) depends of the past values (Xm,m ∈ Trn)
only through Xn. In order to describe this dependance, let us introduce the
following notion.

Definition 1.1 (T-transition probability, see ([29])). We call T-transition
probability any mapping P : E × E2 → [0, 1] such that

• P (·, A) is measurable for all A ∈ E2,

• P (x, ·) is a probability measure on (E2, E2) for all x ∈ E.

In particular, for all x, y, z ∈ E, P (x, dy, dz) denotes the probability
that the couple of the quantities associated with the children are in the
neighbourhood of y and z given that the quantity associated with their
mother is x.
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For a T-transition probability P on E×E2, we denote by P0, P1 the first
and the second marginal of P , that is P0(x,A) = P (x,A × E), P1(x,A) =
P (x,E × A) for all x ∈ E and A ∈ E . Then, P0 (resp. P1) can be seen as
the transition probability associated to individual of type 0 (resp. type 1).

For p ≥ 1, we denote by B(Ep) (resp. Bb(E
p)), the set of all Ep-

measurable (resp. Ep-measurable and bounded) mappings f : Ep → R.
For f ∈ B(E3), we denote by Pf ∈ B(E) the function

x 7→ Pf(x) =

∫

S2

f(x, y, z)P (x, dy, dz), when it is defined.

We are now in position to give a precise definition of bifurcating Markov
chain.

Definition 1.2 (Bifurcating Markov Chains, see ([29])). Let (Xn, n ∈ T)
be a family of E-valued random variables defined on a filtered probability
space (Ω,F , (Fr, r ∈ N),P). Let ν be a probability on (E, E) and P be a T-
transition probability. We say that (Xn, n ∈ T) is a (Fr)-bifurcating Markov
chain with initial distribution ν and T-transition probability P if

• Xn is Frn-measurable for all n ∈ T,

• L(X1) = ν,

• for all r ∈ N and for all family (fn, n ∈ Gr) ⊆ Bb(E
3)

E

[
∏

n∈Gr

fn(Xn,X2n,X2n+1)
∣∣∣Fr

]
=
∏

n∈Gr

Pfn(Xn).

In the following, when unprecised, the filtration implicitly used will be
Fr = σ(Xi, i ∈ Tr).

Remark 1.3. We may of course also consider in this work bifurcating Markov
chains on a a-ary tree (with a ≥ 2) with no additional technicalities, but
heavy additional notations. In the same spirit, Markov chains of higher
order (such as BAR processes considered in [7]) could be handled by the
same techniques. A non trivial extension would be the case of bifurcating
Markov chains on a Galton-Watson tree (see for example [10] under very
strong assumptions), that we will consider elsewhere.
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1.2 Transportation cost-information inequality

We recall that (E, d) is a metric space endowed with its Borel σ-algebra E .
Given p ≥ 1, the Lp-Wasserstein distance between two probability measures
µ and ν on E is defined by

W d
p (ν, µ) = inf

(∫ ∫
d(x, y)pdπ(x, y)

)1/p

,

where the infimum is taken over all probability measures π on the product
space E × E with marginal distributions µ and ν (say, coupling of (µ, ν)).
This infimum is finite as soon as µ and ν have finite moments of order p.
When d(x, y) = 1x 6=y (the trivial measure), 2W d

1 (µ, ν) = ‖µ − ν‖TV , the
total variation of µ− ν.

The Kullback information (or relative entropy) of ν with respect to µ is
defined as

H(ν/µ) =

{∫
log dν

dµdν, if ν ≪ µ

+∞ else.

Definition 1.4 (Lp-transportation cost-inequality). We say that the prob-
ability measure µ satisfies the Lp-transportation cost-information inequality
on (E, d) (and we write µ ∈ Tp(C)) if there is some constant C > 0 such
that for any probability measure ν,

W d
p (µ, ν) ≤

√
2CH(ν/µ).

This transportation inequality have been introduced by Marton [32, 33]
as a tool for (Gaussian) concentration of measure property. The follow-
ing result will be crucial in the sequel. It gives a characterization of L1-
transportation cost-inequality in term of concentration inequality. It is of
course one of the main tool to get deviation inequalities (via Markov in-
equality).

Theorem 1.5 ([11]). µ satisfies the L1-transportation cost-information in-
equality (say T1) on (E, d) with constant C > 0, that is, µ ∈ T1(C), if and
only if for any Lipschitzian function F : (E, d) → R, F is µ-integrable and

∫

E
exp (λ (F − 〈F 〉µ)) dµ ≤ exp

(
λ2

2
C‖F‖2Lip

)
∀λ ∈ R,

where 〈F 〉µ =
∫
E Fdµ and

‖F‖Lip = sup
x 6=y

|F (x)− F (y)|
d(x, y)

< +∞.
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In particular, we have the concentration inequality

µ (F − 〈F 〉µ ≤ −t) ∨ µ (F − 〈F 〉µ ≥ t) ≤ exp

(
− t2

2C‖F‖2Lip

)
∀t ∈ R.

In this work we will focus on transportation inequality T1 mainly. There
is now a considerable literature around these transportation inequalities. As
a flavor, let us cite first the characterization of T1 as a Gaussian integrability
property [20] (see also [23]).

Theorem 1.6 ([20]). µ satisfies the L1-transportation cost-information in-
equality (say T1) on (E, d) if and only if there exists δ > 0 and x0 ∈ E such
that

µ
(
eδd

2(x,x0)
)
< ∞,

and the constant of the Transportation inequality can be made explicit.

There is also a large deviations characterization [25]. Recent striking
results on transportation inequalities have been obtained for T2, namely
that they are equivalent to dimension free Gaussian concentration [24], or
to a restricted class of logarithmic Sobolev inequalities [27]. Se also [13] or
[14] for practical criterion based on Lyapunov type criterion and we refer for
example to [26] or [37] for surveys on transportation inequality. One of the
main aspect of transportation inequality is their tensorization property, i.e.
µ⊗n will satisfy some transportation measure if µ does (with dependence on
the dimension n2/p−1) . One important development was to consider such a
property for dependent sequences such as Markov chains. In [20], Djellout et
al., generalizing result of Marton [34], have provided conditions under which
the law of a homogeneous Markov chain (Yk)1≤k≤n on En satisfies the Lp-
transportation cost-information inequality Tp with respect to the metric

dlp(x, y) :=

(
n∑

i=1

d(xi, yi)
p

)1/p

.

We will follow similar ideas here to establish the Lp- transportation cost-
information inequality for the law of a bifurcating Markov chain (Xi)1≤i≤N

on EN . This will allow us to obtain concentration inequalities for bifurcat-
ing Markov chains under hypotheses largely weaker than those of Bitseki
et al. [8]. It would also be tempting to generalize the approach of [28] to
Markov chains and bifurcating Markov chains to get directly deviation in-
equalities for Markov chains, w.r.t. the invariant measure. However it would
need to restrict to reversible Markov chains and thus not directly suited to
bifurcating Markov chains and would thus recquire new ideas.
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Remark 1.7. There are natural generalizations of the T1 inequality often
denoted α − T1 inequality, where α is a non negative convex lower semi
continuous function vanishing at 0. We say that the probability measure µ
satisfies α− Tp(C) if for any probability measure ν

α (W1(ν, µ)) ≤ 2C H(ν/µ).

The usual T1 inequality is then the case where α(t) = t2. Gozlan [23]
has generalized Bobkov-Götze’s Laplace transform control [11] and Djellout-
Guillin-Wu [20] integrability criterion to this setting enabling to recover sub
or super Gaussian concentration. The result of the following section can
be generalized to this setting, however adding technical details and heavy
notations. Details will thus be left to the reader.

2 Transportation cost-information inequalities for

bifurcating Markov chains

Let (Xi, i ∈ T) be a bifurcating Markov chain on E with T-probability
transition P and initial measure ν. For p ≥ 1 and C > 0, we consider the
following assumption that we shall call (Hp(C)) in the sequel.

Assumption 2.1 (Hp(C)).

(a) ν ∈ Tp(C);

(b) P (x, ·, ·) ∈ Tp(C), ∀x ∈ E ;

(c) W d
p (P (x, ·, ·), P (x̃, ·, ·)) ≤ q d(x, x̃), ∀x, x̃ ∈ E and some q > 0.

It is important to remark that under (Hp(C)), (c) we have that there
exists r0 and r1 smaller than q such that for b = 0, 1

W d
p (Pb(x, ·), Pb(x̃, ·)) ≤ rb d(x, x̃), ∀x, x̃ ∈ E.

Note also that when P (x, dy, dz) = P0(x, dy)P1(x, dz), then these last two
stability results in Wasserstein contraction implies (Hp(C)), (c) with q ≤
(rp0+rp1)

1/p (using trivial coupling). We may remark also that by (Hp(C)), (b),
P0 and P1 also satisfies (uniformly) a transportation inequality. Let us note
that thanks to the Hölder inequality, (Hp(C)) implies (H1(C)).
We do not suppose here that q, r0 and r1 are strictly less than 1, and thus
the two marginal chains, as well as the bifurcating one, are not a priori
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contractions. We are thus considering here both ”stable” and ”unstable”
cases.

We then have the following result for the law of the whole trajectory on
the binary tree.

Theorem 2.2. Let n ∈ N and let P be the law of (Xi)1≤i≤Tn and denote
N = |Tn|. We assume Assumption 2.1 for 1 ≤ p ≤ 2. Then P ∈ Tp (CN )
where

CN =





CN2/p−1

(1−q)2
if q < 1

C exp
(
2− 2

p

)
N2/p+1 if q = 1

C (N + 1)
(
exp(q−1)rpN

rp−1

)2/p
if q > 1.

Before the proof of this result, let us make the following notations. For a
Polish space χ, we denote by M1(χ) the space of probability measures on χ.
For x ∈ EN , xi := (x1, · · · , xi). For µ ∈ M1(E

N ), let (x1, · · · , xN ) ∈ EN be
distributed randomly according to µ. We denote by µi the law of x2i+1, and
by µi

x2i−1 the conditional law of (x2i, x2i+1) given x2i−1 with the convention
µ1
x0 = µ1, where x0 = x0 is some fixed point. In particular, if µ is the

law of a bifurcating Markov chain with T-probability transition P , then
µi
x2i−1 = P (xi, ·, ·).
For the convenience of the readers, we recall the formula of additivity of

entropy (see for e.g. [37], Lemma 22.8).

Lemma 2.3. Let N ∈ N, let χ1, · · · , χN be Polish spaces and P,Q ∈ M1(χ)
where χ =

∏N
i=1 χi. Then

H(Q|P) =

N∑

i=1

∫

χ
H(Qi

xi−1 |Pi
xi−1)Q(dx)

where Pi
xi−1 and Qi

xi−1 are defined in the same way as above.

We can now prove the Theorem.

Proof of the Theorem 2.2. Let Q ∈ M1(E
N ). Assume that H(Q|P) < ∞

(trivial otherwise). Let ε > 0. The idea is of course to do a conditionnement
with respect to the previous generation, i.e. to Gn−1 but we will do it
sequentially by pairs. Conditionally to their ancestors, every pair of offspring
of an individual is independent of the offspring of the other individuals for
the same generation. Let i be a member of generation Gj−1, and define for
a realization x on the tree Ti(x) := (x1, ..., x|Tj |). By the definition of the
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Wasserstein distance, there is a coupling πi
y2i−1,x2i−1 of (Qi

y2i−1 ,Pi
x2i−1) such

that

Ai :=

∫
(d(y2i, x2i)

p + d(y2i+1, x2i+1)
p)dπi

y2i−1,x2i−1

≤ (1 + ǫ)W d
p

(
Qi

y2i−1 ,Pi
x2i−1

)p

≤ (1 + ǫ)
[
W d

p

(
Qi

y2i−1 ,Pi
y2i−1

)
+W d

p

(
Pi
y2i−1 ,Pi

x2i−1

)]p

≤ (1 + ǫ)
[
W d

p

(
Qi

y2i−1 , P (yi, ·, ·)
)
+W d

p

(
P (yi, ·, ·) , P (xi, ·, ·)

)]p
,

where the second inequality is obtained thanks to the triangle inequality for
the W d

p distance and the equality is a consequence of the Markov property.
By Assumption 2.1, and the convexity of the function x 7→ xp, we obtain,
for a, b > 1 such that 1/a+ 1/b = 1,

Ai ≤ (1 + ǫ)

(√
2CHi(y2i−1) + qd(yi, xi)

)p

≤ (1 + ǫ)

(
ap−1

(√
2CHi(y2i−1)

)p

+ bp−1qpdp(yi, xi)

)

where Hi(y
2i−1) = H(Qi

y2i−1 |Pi
y2i−1). By recurrence, it leads to the finite-

ness of p-moments. Taking the average with respect to the whole law and
summing on i, we obtain

|Tn−1|∑

i=0

E(Ai)

≤ (1 + ε)


ap−1 (2C)p/2

|Tn−1|∑

i=1

E

[
Hi(Y

2i−1)p/2
]

+


bp−1qp

|Tn−2|∑

i=0

E(Ai)


 .

Letting ε goes to 0+, we are led to

|Tn−1|∑

i=0

E(Ai)

≤
N∑

i=1

(
ap−1 (2C)p/2 E

[
Hi(Y

i−1)p/2
])

+


bp−1qp

|Tn−2|∑

i=0

E(Ai)


 .
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Iterating the latter inequality, increasing some terms and thanks to Hölder
inequality, we obtain

|Tn−1|∑

i=0

E(Ai) ≤
N∑

i=1




i∑

j=1

hj


(bp−1qp

)N−i
=

N∑

i=1

hi

N−i∑

j=0

(
bp−1qp

)j

≤
(

N∑

i=1

h
2/p
i

)p/2



N∑

i=1




N−i∑

j=0

(
bp−1qp

)j



2

2−p




2−p
2

where hi = ap−1(2C)p/2E[Hi(Y
i−1)p/2]. By the definition of the Wasserstein

distance, the additivity of entropy and using the concavity of the function
x 7→ xp/2 for p ∈ [1, 2], we obtain

W
dlp
p (Q,P)p ≤ ap−1 (2CH (Q|P))p/2




N∑

i=1




N−i∑

j=0

(
bp−1qp

)j



2

2−p




2−p
2

≤ ap−1 (2CH (Q|P))p/2 N1− p
2

N−1∑

j=0

(
bp−1qp

)j
.

When q < 1, we take b = q−1, so that bp−1qp = r < 1 and the desired result
follows easily. When q ≥ 1, we take b = 1+1/N and the results follow from
simple analysis and this ends the proof.

Remark 2.4. For q < 1, we then have that the constant CN of T1 inequality
for P increases linearly on the dimension N . However, for T2 this constant
is independent of the dimension as in the i.i.d. case.

Remark 2.5. As we will see in the next section, still when q < 1, Theorem
2.2 and Theorem 1.5 applied to F (X1, · · · ,XN ) = (1/N)

∑N
i=1 f(Xi) (where

f is a Lipschitzian function defined on E) gives us deviation inequalities
with a good order of N . But, when they are applied to F (X1, · · · ,XN ) =
f(XN ), deviation inequalities that we obtain does not furnish the good or-
der of N when N is large. The same remark holds when F (X1, · · · ,XN ) =
g(Xn,X2n,X2n+1) with n ∈ {1, · · · , (N −N [2])} and g a Lipschitzian func-
tion defined on E3. As this last question is important for the L1-transportation
cost-information inequality of the invariant measure of a bifurcating Markov
chain, we give the following results.
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Proposition 2.6. Under (H1(C)), for any n ∈ T and x ∈ E

L(Xn|X1 = x) ∈ T1(cn)

where

cn = C

rn−1∑

k=0

r
2(k−ak)
0 r2ak1 ; a0 = 0

and for all k ∈ {1, · · · , rn− 1}, ak is the number of ancestor of type 1 of Xn

which are between the rn − k + 1-th generation and the rn-th generation.

Before the proof, we introduce some more notations. Let n ∈ T. We
denote by (z1, · · · , zrn) ∈ {0, 1}rn the unique path from the root 1 to n.
Then, for all i ∈ {1, · · · , rn}, zi is the type of the ancestor of n which is in
the i-th generation and the quantities ak defined in the Proposition 2.6 are
given by

ak =

rn∑

i=rn−k+1

zi.

For all k ∈ {1, · · · , rn}, we denote by P k and P−k the iterated of the tran-
sition probabilities P0 and P1 defined by

P k := Pz1 ◦ · · · ◦ Pzk and P−k := Pzrn−k
◦ · · · ◦ Pzrn .

Proof of the Proposition 2.6. First note that since

W d
1 (ν, µ) = sup

f :‖f‖Lip≤1

∣∣∣∣
∫

S
fdµ−

∫

S
fdν

∣∣∣∣ ,

condition (c) of (H1(C)) implies that

‖Pbf‖Lip ≤ rb‖f‖Lip ∀b ∈ {0, 1}.

Now let f be a Lipschitzian function defined on E. By (b)-(c) of (H1(C))
and Theorem 1.5, we have

P rn(ef ) ≤ P rn−1

(
exp

(
Prnf +

C‖f‖2Lip
2

))
.

Once again, applying Theorem 1.5, we obtain

P rn(ef ) ≤ P rn−2

(
exp

(
P−1f +

C‖f‖2Lip
2

+
C‖Pzrnf‖2Lip

2

))
.

11



By iterating this method, we are led to

P rn(ef ) ≤ exp

(
P−rn+1f + (1 + r2zrn + r2zrnr

2
zrn−1

+ · · · +
rn∏

i=2

r2zi)
C‖f‖2Lip

2

)
.

Since

1+r2zrn+r2zrnr
2
zrn−1

+· · ·+
rn∏

i=2

r2zi =

rn−1∑

k=0

r
2(k−ak)
0 r2ak1 and P−rn+1f = P rnf,

we conclude the proof thanks to Theorem 1.5.

The next result is a consequence of the previous Proposition.

Corollary 2.7. Assume (H1(C)) and r := max{r0, r1} < 1. Then

L(Xn|X1 = x) ∈ T1(c∞) and L((Xn,X2n,X2n+1)|X1 = x) ∈ T1(c
′
∞)

where

c∞ =
C

1− r2
and c′∞ = C

(
1 +

(1 + q)2

1− r2

)
.

Proof. That L(Xn|X1 = x) ∈ T1(c∞) is a direct consequence of Proposition
2.6. It suffices to bound r0 and r1 by r.

In order to deal with the ancestor-offspring case (Xn,X2n,X2n+1), we
do the following remarks.

Let f : (E3, dl1) → R be a Lipschitzian function. We have

‖Pf‖Lip = sup
x,x̃∈E

∣∣∫ f(x, y, z)P (x, dy, dz) −
∫
f(x̃, y, z)P (x̃, dy, dz)

∣∣
d(x, x̃)

.

Thanks to condition (c) of (H1(C)), we have the following inequalities
∣∣∣∣
∫

f(x, y, z)P (x, dy, dz) −
∫

f(x̃, y, z)P (x̃, dy, dz)

∣∣∣∣

≤ ‖f‖Lip
(
d(x, x̃) +W

dl1
1 (P (x, ·), P (x̃, ·))

)

≤ (q + 1)‖f‖Lipd(x, x̃),

and then,
‖Pf‖Lip ≤ (q + 1)‖f‖Lip.

We recall that X1 = x. We have

E [exp (f(Xn,X2n,X2n+1))] = P rn(Pef (x)).
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Now, from (H1(C)), the previous remarks and using the same strategy as
in the proof of Proposition 2.6, we are led to

E [exp (f(Xn,X2n,X2n+1))]

≤ exp

(
Pz1 · · ·PzrnPf(x) +

C‖f‖2Lip
2

+
C(1 + q)2‖f‖2Lip

2

rn−1∑

i=0

r2i

)
.

Since Pz1 · · ·PzrnPf(x) = E [f(Xn,X2n,X2n+1)] and
∑rn−1

i=0 r2i ≤ 1/(1−r2),
we obtain

E [exp (f(Xn,X2n,X2n+1))] ≤ exp
(
E [f(Xn,X2n,X2n+1)] + c′∞

)

with c′∞ given in the Corollary. We then conclude the proof thanks to
Theorem 1.5.

3 Concentration inequalities for bifurcating Markov

chains

3.1 Direct applications of the Theorem 2.2

We are now interested in the concentration inequalities for the additive
functionals of bifurcating Markov chains. Specifically, let N ∈ N

∗ and I be
a subset of {1, · · · , N}. Let f be a real function on E or E3. We set

MI(f) =
∑

i∈I

f(∆i)

where ∆i = Xi if f is defined on E and ∆i = (Xi,X2i,X2i+1) if f is
defined on E3. We also consider the empirical mean M I(f) over I defined
by M I(f) = (1/|I|)MI (f) where |I| denotes the cardinality of I. In the
statistical applications, the cases N = |Tn| and I = Gm (for m ∈ {0, · · · , n})
or I = Tn are relevant (see for e.g. [8]).

First, we will establish concentration inequalities when f is a real Lip-
schitzian function defined on E. For a subset I of {1, · · · , N}, let FI be
the function defined on (EN , dlp), p ≥ 1 by FI(x

N ) = 1/(|I|)∑i∈I f(xi) for
all xN ∈ EN . Then FI is also a Lipschitzian function on (EN , dlp) and we

have ‖FI‖Lip ≤ |I|−1/p‖f‖Lip. The following result is a direct consequence
of Theorem 2.2.
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Proposition 3.1. Let N ∈ N
∗ and let P be the law of (Xi)1≤i≤N . Let f be

a real Lipschitzian function on (E, d). Then, under (Hp(C)) for 1 ≤ p ≤ 2,

P ◦ F−1
I ∈ Tp(CN |I|−2/p‖f‖2Lip)

where CN is given in the Theorem 2.2 and P ◦ F−1
I is the image law of P

under FI . In particular, for all t > 0 we have

P
(
FI(X

N ) ≤ −t+ E
[
FI(X

N )
])

∨ P
(
FI(X

N ) ≥ t+ E
[
FI(X

N )
])

≤ exp

(
− t2|I|2/p
2CN‖f‖2Lip

)
.

Proof. The first part is a direct consequence of Theorem 2.2 and Lemma 2.1
of [20]. The second part is an application of Theorem 1.5.

For the next concentration inequality, we assume that f is a real Lips-
chitzian function defined on (E3, dl1), which means that

|f(x)− f(y)| ≤ ‖f‖Lip
3∑

i=1

d(xi, yi) ∀x, y ∈ E3.

We assume that N is a odd number. Let I be a subset of {1, · · · , (N −
1)/2}. Now, we denote by FI the real function defined on (EN , dlp) by
FI(x

N ) = (1/|I|)∑i∈I f(xi, x2i, x2i+1). For all xN , yN ∈ EN we have for
some universal constant c

|FI(x
N )− FI(y

N )| ≤ ‖f‖Lip
|I|

∑

i∈I

(d(xi, yi) + d(x2i, y2i) + d(x2i+1, y2i+1))

≤ c‖f‖Lip
|I|1/p dlp(x

N , yN ).

FI is then a Lipschitzian function on (EN , dlp) and ‖FI‖Lip ≤ c‖f‖Lip/|I|1/p.
We then have the following result.

Proposition 3.2. Let N ∈ N
∗ be a odd number and let P be the law of

(Xi)1≤i≤N . Let f be a real Lipschitzian function on (E3, dl1). Then, under
(Hp(C)) for 1 ≤ p ≤ 2,

P ◦ F−1
I ∈ Tp(cCN |I|−2/p‖f‖2Lip)
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where CN is given in the Theorem 2.2 and P ◦ F−1
I is the image law of P

under FI . In particular, for all t > 0 we have

P
(
FI(X

N ) ≤ −t+ E
[
FI(X

N )
])

∨ P
(
FI(X

N ) ≥ t+ E
[
FI(X

N )
])

≤ exp

(
− t2|I|2/p
2cCN‖f‖2Lip

)
.

Proof. The proof is a direct consequence of Theorem 2.2, Lemma 2.1 of [20]
and Theorem 1.5.

Remark 3.3. The previous results applyed with p = 1 to the empirical means
MGn(f) and MTn(f) (f being a real Lipschitzian function) give us relevant
concentration inequalities, that is with the good order size of the index set,
when q < 1. For example, for MGn(f) , it suffices to take N = |Tn| and
I = Gn in the Propositions 3.1 and 3.2. But for q ≥ 1, the concentration
inequalities obtained thanks to these results are not satisfactory. In the
sequel, we will be interested in obtaining relevant concentration inequalities
for the empirical means MGn(f) and MTn(f) when q ≥ 1.

3.2 Gaussian concentration inequalities for the empirical means

MGn(f) and MTn(f)

Throughout this section, we will focus only in the case p = 1, and will
assume (H1(C)). We set r = r0 + r1.

The main goal of this subsection is to broaden the range of application of
deviation inequalities of MGn(f) and MTn(f) to cases where r > 1, namely
when it is possible that one of the two marginal Markov chains is not a
strict contraction. The transportation inequality of Theorem 2.2 is a very
powerful tool to get deviation inequalities for all lipschitzian functions of the
whole trajectory (up to generation n), and may thus concern for example
Lipschitzian function of only offspring generated by P0 or P1. Consequently,
to get ”consistent” deviation inequalities, both marginal Markov chains have
to be contractions in Wasserstein distance.
However when dealing with MGn(f) or MTn(f), we may hope for an av-
eraging effect, i.e. if one is not a contraction and the other one a strong
contraction it may in a sense compensate. Such averaging effect have been
observed at the level of the LLN and CLT in [29, 16] but only asymptoti-
cally. Our purpose here will be then to show that such averaging effect will
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also affect deviation inequalities.

We will use, directly inspired by Bobkov-Götze’s Laplace transform con-
trol, what we call Gaussian Concentration property: for κ > 0, we will say
that a random variable X satisfies GC(κ) if

E [exp (t (X − E [X]))] ≤ exp
(
κt2/2

)
∀t ∈ R.

Using Markov’s inequality and optimization, this Gaussian concentration
property immediately implies that

P(X − E(X) ≥ r) ≤ e−
r2

2κ .

We may thus focus here only on the Gaussian concentration property (GC).

Proposition 3.4. Let f be a real Lipschitzian function on E and n ∈ N.
Assume that (H1(C)) holds. Then MGn(f) satisfies GC(γn) where

γn =





2C‖f‖2Lip

|Gn|

(
1−(r2/2)

n+1

1−r2/2

)
if r 6=

√
2

2C‖f‖2Lip(n+1)

|Gn|
if r =

√
2.

We recall that here r = r0 + r1.

Remark 3.5. One can observe that for r <
√
2, the previous inequalities are

on the same order of magnitude that the inequalities obtained thanks to
Proposition 3.1 with q < 1. For r < 2 the above inequalities remain relevant
since we just have a negligible loss with respect to |Gn|. But for r ≥

√
2,

these inequalities are not significant (see the same type of limitations at the
CLT level in [16]).

Proof. Let f be a real Lipschitzian function on E, n ∈ N and t ∈ R. We
have

E

[
exp

(
t2−n

∑

i∈Gn

f(Xi)

)]
= E


exp


t2−n

∑

i∈Gn−1

(P0 + P1)f(Xi)




×E


exp


t2−n

∑

i∈Gn−1

(f(X2i) + f(X2i+1)− (P0 + P1)f(Xi))



∣∣∣Fn−1




 .
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Thanks to the Markov property, we have

E


exp


t2−n

∑

i∈Gn−1

(f(X2i) + f(X2i+1)− (P0 + P1)f(Xi))



∣∣∣Fn−1




=
∏

i∈Gn−1

P
(
exp

(
t2−n (f ⊕ f − (P0 + P1)f)

))
(Xi)

where f ⊕ f is the function on E2 defined by f ⊕ f(x, y) = f(x) + f(y).
We recall that from (H1(C)) we have P (x, ·, ·) ∈ T1(C) for all x ∈ E. Now,
thanks to Theorem 1.5, we have

∏

i∈Gn−1

P
(
exp

(
t2−n (f ⊕ f − (P0 + P1)f)

))
(Xi)

≤
∏

i∈Gn−1

exp

(
t2C‖f ⊕ f‖2Lip

2× 22n

)
.

Since ‖f ⊕ f‖Lip ≤ 2‖f‖Lip, we are led to

E

[
exp

(
t2−n

∑

i∈Gn

f(Xi)

)]
≤ exp

(
22t22n−1C‖f‖2Lip

2× 22n

)

× E


exp


t2−n

∑

i∈Gn−1

(P0 + P1)f(Xi)




 .

Doing the same for E[exp(t2−n
∑

i∈Gn−1
(P0 + P1)f(Xi))] with (P0 + P1)f

replacing f and using the inequality

‖(P0 + P1)f ⊕ (P0 + P1)f‖Lip ≤ 2r‖f‖Lip,

we are led to

E

[
exp

(
t2−n

∑

i∈Gn

f(Xi)

)]
≤ E


exp


t2−n

∑

i∈Gn−2

(P0 + P1)
2f(Xi)






× exp

(
22t2C‖f‖2Lip2n−1

2× 22n

)
exp

(
22t2C‖f‖2Lipr22n−2

2× 22n

)
.

Iterating this method and using the inequalities

‖(P0 + P1)
kf ⊕ (P0 + P1)

kf‖Lip ≤ 2rk‖f‖Lip ∀k ∈ {1, · · · , n− 1},
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we obtain

E

[
exp

(
t2−n

∑

i∈Gn

f(Xi)

)]
≤ exp

(
22t2C‖f‖2Lip

2× 22n

n−1∑

k=0

r2k2n−k−1

)

× E
[
exp

(
t2−n(P0 + P1)

nf(X1)
)]

.

Since E [t2−n(P0 + P1)
nf(X1)] = E

[
t2−n

∑
i∈Gn

f(Xi)
]
= t2−nν(P0+P1)

nf ,
we obtain

E

[
exp

(
t2−n

(
∑

i∈Gn

f(Xi)− ν(P0 + P1)
nf

))]

≤ exp

(
22t2C‖f‖2Lip

2× 22n

n−1∑

k=0

r2k2n−k−1

)

× E
[
exp

(
t2−n ((P0 + P1)

nf(X1))− ν(P0 + P1)
nf
)]

.

Thanks to (H1(C)), we conclude that

E

[
exp

(
t2−n

(
∑

i∈Gn

f(Xi)− ν(P0 + P1)
nf

))]

≤ exp

(
22t2C‖f‖2Lip

2× 22n

n∑

k=0

r2k2n−k−1

)

and the results of the Proposition then follow from this last inequality.

For the ancestor-offspring triangle (Xi,X2i,X2i+1), we have the following
result which can be seen as a consequence of the Proposition 3.4.

Corollary 3.6. Let f be a real Lipschitzian function on E3 and n ∈ N.
Assume that (H1(C)) holds. Then MGn(f) satisfies GC(γ′n) where

γ′n =





2C(1+q)2‖f‖2Lip

r2|Gn|

(
1−(r2/2)

n+2

1−r2/2

)
if r 6=

√
2

2C(1+q)2‖f‖2Lip(n+2)

|Gn|
if r =

√
2.

Proof. Let f be a real Lipschitzian function on E3, n ∈ N and t ∈ R. We
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have

E

[
exp

(
t2−n

∑

i∈Gn

f(Xi,X2i,X2i+1)

)]
= E

[
exp

(
t2−n

∑

i∈Gn

Pf(Xi)

)

× E

[
exp

(
t2−n

∑

i∈Gn

(f(Xi,X2i,X2i+1)− Pf(Xi))

)∣∣∣Fn

]]
.

By the Markov property and thanks to the Proposition 2.2 and the Theorem
1.5, we have

E

[
exp

(
t2−n

∑

i∈Gn

(f(Xi,X2i,X2i+1)− Pf(Xi))

)∣∣∣Fn

]

≤ exp

(
t2C‖f‖2Lip2n

2× 22n

)
.

Now, using Pf instead of f in the proof of the Proposition 3.4 and using
the fact that ‖Pf‖Lip ≤ (1 + q)‖f‖Lip and

E

[
2−n

∑

i∈Gn

f(Xi,X2i,X2i+1)

]
= E

[
2−n

∑

i∈Gn

Pf(Xi)

]
= 2−nν(P0+P1)

nPf,

we are led to

E

[
exp

(
t2−n

(
∑

i∈Gn

f(Xi,X2i,X2i+1)− ν (P0 + P1)
n Pf

))]

≤ exp

(
4t2C(1 + q)2‖f‖2Lip

22 × 2n

n∑

k=−1

(
r2

2

)k
)
.

The results then follow by easy calculations.

For the subtree Tn, we have the following result.

Proposition 3.7. Let f be a real Lipschitzian function on E and n ∈ N.
Assume that (H1(C)) holds. Then MTn(f) satisfies GC(τn) where

τn =





2C‖f‖2Lip

(r−1)2|Tn|

(
1 +

1−(r2/2)
n+1

1−r2/2

)
if r 6=

√
2, r 6= 1

2C‖f‖2Lip

(r−1)2|Tn|
(r2(n + 1) + 1) if r =

√
2

2C‖f‖2Lip

|Tn|2

(
|Tn| − n+1

2

)
if r = 1.
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Proof. Let f be a real Lipschitzian function on E and n ∈ N. Note that

E

[
∑

i∈Tn

f(Xi)

]
= ν

(
n∑

m=0

(P0 + P1)
mf

)
.

We have

E

[
exp

(
t

|Tn|
∑

i∈Tn

f(Xi)

)]
= E


exp


 t

|Tn|
∑

i∈Tn−2

f(Xi)




× exp


 t

|Tn|
∑

i∈Gn−1

(f + (P0 + P1) f) (Xi)




×E


exp


 t

|Tn|
∑

i∈Gn−1

(f(X2i) + f(X2i+1)− (P0 + P1)f(Xi))



∣∣∣Fn−1




 .

As in the proof of Proposition 3.4, we have

E


exp


 t

|Tn|
∑

i∈Gn−1

(f(X2i) + f(X2i+1)− (P0 + P1)f(Xi))



∣∣∣Fn−1




≤ exp

(
22Ct2‖f‖2Lip2n−1

2|Tn|2

)
.

This leads us to

E

[
exp

(
t

|Tn|
∑

i∈Tn

f(Xi)

)]
≤ exp

(
22Ct2‖f‖2Lip2n−1

2|Tn|2

)

×E


exp


 t

|Tn|
∑

i∈Tn−2

f(Xi)


 exp


 t

|Tn|
∑

i∈Gn−1

(f + (P0 + P1) f) (Xi)




 .

Iterating this method, we are led to

E

[
exp

(
t

|Tn|
∑

i∈Tn

f(Xi)

)]
≤ exp


22t2C‖f‖2Lip

2|Tn|2
n−1∑

k=0

(
k∑

l=0

rl

)2

2n−k−1




× E

[
exp

(
t

|Tn|

n∑

m=0

(P0 + P1)
m f(X1)

)]
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and we then obtain thanks to (a) of (H1(C)) and Theorem 1.5

E

[
exp

(
t

|Tn|

(
∑

i∈Tn

f(Xi)− ν

(
n∑

m=0

(P0 + P1)
mf

)))]

≤ exp


22t2C‖f‖2Lip

2|Tn|2
n∑

k=0

(
k∑

l=0

rl

)2

2n−k−1


 .

In the last inequality we have used
∥∥∥∥∥

n∑

m=0

(P0 + P1)
mf

∥∥∥∥∥
Lip

≤
(

n∑

k=0

rk

)
‖f‖Lip.

The results then easily follows.

For the ancestor-offspring triangle we have the following results which
can be seen as a consequence of the Proposition 3.7.

Corollary 3.8. Let f be a real Lipschitzian function on E3 and n ∈ N.
Assume that (H1(C)) holds. Then MTn(f) satisfies GC(τ ′n) where

τ ′n =





23C(1+q)2‖f‖2Lip

|Tn|

(
1 + 1

(r−1)2

(
1 +

r2
(

1−(r2/2)
n+1

)

1−r2/2

))
if r 6=

√
2, r 6= 1

23C(1+q)2‖f‖2Lip

|Tn|

(
1 + 1+r2(n+1)

(r−1)2

)
if r =

√
2

23C(1+q)2‖f‖2Lip

|Tn|2

(
2|Tn| − n+1

2

)
if r = 1.

Proof. Let f be a real Lipschitzian function on E3 and n ∈ N. By Hölder
inequality and using the fact that

E

[
∑

i∈Tn

f(∆i)

]
= E

[
∑

i∈Tn

Pf(Xi)

]
,

we have

E

[
exp

(
t

|Tn|

(
∑

i∈Tn

f(∆i)− E

[
∑

i∈Tn

f(∆i)

]))]

≤
(
E

[
exp

(
2t

|Tn|

(
∑

i∈Tn

(f(∆i)− Pf(Xi))

))])1/2

×
(
E

[
exp

(
2t

|Tn|

(
∑

i∈Tn

Pf(Xi)− E

[
∑

i∈Tn

Pf(Xi)

]))])1/2

.
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We bound the first term of the right hand side of the previous inequality by
using the same calculations as in the first iteration of the proof of Corollary
3.6. We then have

(
E

[
exp

(
2t

|Tn|

(
∑

i∈Tn

(f(∆i)− Pf(Xi))

))])1/2

≤ exp

(
2t2C‖f‖2Lip|Tn|

2|Tn|2

)
.

For the second term, we use the proof of the Proposition 3.7 with Pf instead
of f . We then have

(
E

[
exp

(
2t

|Tn|

(
∑

i∈Tn

Pf(Xi)− E

[
∑

i∈Tn

Pf(Xi)

]))])1/2

≤ exp


23t2R(1 + q)2‖f‖2Lip

2|Tn|2
n∑

k=0

(
k∑

l=0

rl

)2

2n−k−1


 .

The results then follow by easy analysis and this ends the proof.

3.3 Deviation inequalities towards the invariant measure of

the randomly drawn chain

All the previous results do not assume any ”stability” of the Markov chain
on the binary tree, whereas for usual asymptotic theorem the convergence
is towards mean of the function with respect to the invariant probability
measure of the random lineage chain. To reinforce this asymptotic result
by non asymptotic deviation inequality, it is thus fundamental to be able to
replace for example E(MTn(f)) by some asymptotic quantity. This random
lineage chain is a Markov chain with transition kernel Q = (P0 + P1)/2.
We shall now suppose the existence of a probability measure π such that
πQ = π. We will consider a slight modification of our main assumption and
as we are mainly interested in concentration inequalities, let us focus in the
p = 1 case:

Assumption 3.9 (H ′
1(C)).

(a) ν ∈ T1(C);

(b) Pb(x, ·) ∈ T1(C), ∀x ∈ E, b = 0, 1 ;
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(c) W d
1 (P (x, ·, ·), P (x̃, ·, ·)) ≤ q d(x, x̃), ∀x, x̃ ∈ E and some q > 0. And

for r0, r1 > 0 such that r0+r1 < 2, for b = 0, 1, W d
1 (Pb(x, ·), Pb(x̃, ·)) ≤

rb d(x, x̃), ∀x, x̃ ∈ E.

Under this assumption, using the convexity of W1 (see [37]), we easily
see that

W1(Q(x, ·), Q(x̃, ·)) ≤ r0 + r1
2

d (x, x̃) , ∀x, x̃

ensuring the strict contraction of Q, and then the exponential convergence
towards π in Wasserstein distance, namely (assuming that π has a first
moment)

W1(Q
n(x, ·), π) ≤

(
r0 + r1

2

)n ∫
d(x, y)π(dy).

Let us show that we may now control easily the distance between E(MTn(f))
and π(f). Indeed, we may first remark that

E


∑

k∈Gn

f(Xk)


 = ν(P0 + P1)

nf

so that assuming that f is 1-lipschitzian, and by the dual version of the
Wasserstein distance

∣∣E(MTn(f))− π(f)
∣∣ =

1

|Tn|

∣∣∣∣∣∣

n∑

j=1

E


∑

k∈Gj

(f(Xk)− π(f)



∣∣∣∣∣∣

=
1

|Tn|

∣∣∣∣∣∣

n∑

j=1

2jν

(
P0 + P1

2

)j

(f − π(f))

∣∣∣∣∣∣

≤ 1

|Tn|

n∑

j=1

2jW1(νQ
j, π)

≤ 1

|Tn|

n∑

j=1

(r0 + r1)
j

≤ cn :=

{
c
(
r0+r1

2

)n+1
if r0 + r1 6= 1

c n
2n+1 if r0 + r1 = 1

for some universal c, which goes to 0 exponentially fast as soon as r0+r1 < 2
which was assumed in (H ′

1(C)). We may then see that for r > cn

P
(
MTn(f)− π(f) > r

)
≤ P

(
MTn(f)− E(MTn(f)) > r − cn

)

and one then applies the result of the previous subsection.
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4 Application to nonlinear bifurcating autoregres-

sive models

The setting will be here the case of the nonlinear bifurcating autoregressive
models. It has been considered as a particular realistic model to study cell
aging [36], and the asymptotic behavior of parametric estimators as well
as non parametric estimators has been considered in an important series of
work, see e.g. [1, 2, 3, 4, 5, 29, 6, 19, 15, 17, 7] (and for example in the
random coefficient setting in [16]).

We will then consider the following model where to simplify the state
space E = R, where L(X1) = µ0 satisfies T1 and we recursively define on
the binary tree as before

{
X2k = f0(Xk) + ε2k
X2k+1 = f1(Xk) + ε2k+1

(4.1)

with the following assumptions:

Assumption 4.1 (NL). f0 and f1 are Lipschitz continuous function.

Assumption 4.2 (No). (εk)k≥1 are centered i.i.d.r.v. and for all k ≥ 0, εk

have law µε and satisfy for some positive δε, µε

(
eδεx

2
)
< ∞. Equivalently,

µε satisfies T1(Cε).

It is then easy to deduce that under these two assumptions, we perfectly
match with the previous framework. Denoting P0 and P1 as previously, we
see that (H ′

1) is verified, with the additional fact that P = P0 ⊗P1. We will
do the proof for P0, being the same for P1. The conclusion follows for P by
conditional independence of X2k and X2k+1. Let us first prove that P0(x, ·)
satisfies T1. Indeed P0(x, ·) is the law of f0(x) + ε2k, and we have thus
to verify the Gaussian integrability property of Theorem 1.6. To this end,
consider x0 = f(x), and choose δε of condition (No) to verify the Gaussian
integrability property. We have thus that P0 satisfies T1(CP ).
We prove now the Wasserstein contraction property. P0(x, ·) is of course the
law of f0(x) + εk. Here εk denotes a generic random variable and thus the
law of P0(y, ·) is the law of f0(y)+εk and an upper bound of the Wasserstein
distance between P0(x, ·) and P0(y, ·) can then be obtained by the coupling
where we really choose the same noise εk for the realization of the two
marginal laws so that
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Let f be any Lipschitz function such that ‖f‖Lip ≤ 1

∣∣∣∣
∫

S
f(z)P0(x, dz) −

∫

S
f(z)P0(y, dz)

∣∣∣∣ = E [f (f0(x) + ε1)− f (f0(y) + ε1)]

≤ ‖f‖Lip|f0(x)− f0(y)|.

By the Monge-Kantorovitch duality expression of the Wasserstein distance,
one has then

W1(P0(x, ·), P0(y, ·)) ≤ |f0(x)− f0(y)| ≤ ‖f0‖Lip|x− y|.

Thus under (NL) and (No), our model fits in the framework of the pre-
vious section with q = ‖f0‖Lip + ‖f1‖Lip, r0 = ‖f0‖Lip and r1 = ‖f1‖Lip.
We will be interested here in the non parametric estimation of the autore-
gression functions f0 and f1, and we will use Nadaraya-Watson kernel type
estimator, as considered in [9]. Let K be a kernel satisfying the following
assumption.

Assumption 4.3 (Ker). The function K is non negative, has compact sup-
port [−R,R], is Lipschitz continuous with constant ‖K‖Lip and such that∫
K(z)dz = 1.

Let us also introduce as usual a bandwidth hn which will be taken to
simplify as hn := |Tn|−α for some 0 < α < 1. The Nadaraya-Watson
estimators are then defined as for x ∈ R

f̂0,n(x) :=

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

)
X2k

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

)

f̂1,n(x) :=

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

)
X2k+1

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

) .

Let us focus on f0, as it will be exactly the same for f1 and fix x ∈ R. We will
be interested here in deviation inequalities of f̂0,n(x) with respect to f(x).
One has to face two problems. First it is an autonormalized estimator. It will
be dealt with considering deviation inequalities for the numerator and de-
nominator separately and reunite them. Secondly (x, y) → K(x)y is in fact
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not Lipschitzian in general state space, so that the result of the previous sec-
tion for deviation inequalities of Lipschitzian function of ancestor-offspring
may not be applied directly. Let us tackle this problem. By definition

f̂0,n(x)− f(x) =

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

)
[f0(Xk)− f0(x) + ε2k]

1

|Tn|hn
∑

k∈Tn

K

(
Xk − x

hn

)

:=
Nn +Mn

Dn
.

where

Nn :=
∑

k∈Tn

K

(
Xk − x

hn

)
[f0(Xk)− f0(x)],

Mn :=
∑

k∈Tn

K

(
Xk − x

hn

)
ε2k,

Dn =
∑

k∈Tn

K

(
Xk − x

hn

)
.

Denote also Ñn = Nn/(|Tn|hn), M̃n = Mn/(|Tn|hn), D̃n = Dn/(|Tn|hn).
Let us remark that Dn and Mn completely enter the framework of Proposi-
tion 3.7. We may thus prove

Proposition 4.4. Let us assume that (NL), (No) and (Ker) holds, and
q = ‖f0‖Lip + ‖f1‖Lip <

√
2. Let us also suppose that α < 1/4. Then for

all r > 0 such that r > E(Ñn)/E(D̃n), there exists constants C,C ′, C ′′ > 0
such that

P

(
|f̂0,n(x)− f(x)| > r

)
≤ 2 exp

(
−C(rE(D̃n)− E(Ñn))

2|Tn|h2n
)

+2exp

(
−C ′ (rE(D̃n)− E(Ñn))

2|Tn|h2n
1 + C ′′ r2

h2
n

)
.

Proof. Remark first that, by (Ker), K is Lipschitz continuous so that y →
K(y−x

hn
) is also lipschitzian with constant ‖K‖Lip/hn. The mapping y →

K(y−x
hn

)(f0(y)− f0(x)), as K has a compact support and f0 is Lipschitzian,
is also Lipschitzian with constant R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞. We can
then use Proposition 3.7 to get deviation inequalities for Dn. For all positive
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r there exists a constant L (explicitly given through Proposition 3.7), such
that

P(|Dn − E(Dn)| > r|Tn|hn) ≤ 2 exp
(
−Lr2|Tn|h4n/‖K‖2Lip

)
.

For Nn+Mn we cannot directly apply Proposition 3.7 due to the successive
dependence of Xk at generation n and ε2k of generation n − 1. But as we
are interested in deviation inequalities, we may split the deviation coming
from each term. For Nn, it is once again a simple application of Proposition
3.7,

P(|Nn−E(Nn)| > r|Tn|hn) ≤ 2 exp

( −Lr2|Tn|h2n
(R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞)2

)
.

Note that ε2k is independent of Xk, and centered so that E(Mn) = 0,
and satisfies a transportation inequality. Note also that K is bounded. By
simple conditioning argument, we may control the Laplace transform of Mn

quite simply. We then have for all positive r

P(|Mn| > r|Tn|hn) ≤ 2 exp

(
−r2

|Tn|h2n‖K‖2∞
2Cε

)
.

However, we cannot use directly these estimations as the estimator is
autonormalized. Instead

P

(
f̂0,n(x)− f(x) > r

)

≤ P(Ñn + M̃n > rD̃n)

≤ P

(
Ñn − E(Ñn)− r(D̃n − E(D̃n)) + M̃n > rE(D̃n)− E(Ñn)

)

≤ P

(
Ñn − E(Ñn)− r(D̃n − E(D̃n) > (rE(D̃n)− E(Ñn))/2

)

+P

(
M̃n > (rE(D̃n)− E(Ñn))/2

)

Remark now to conclude that K((y−x)/hn)(f(y)−f(x))+K((y−x)/hn) is
(R‖K‖Lip‖f0‖Lip + ‖f0‖Lip‖K‖∞ + r‖K‖Lip/hn)-Lipschitzian, and we may
then proceed as before.

Remark 4.5. In order to get fully practical deviation inequalities, let us
remark that

E

[
D̃n

]
=

1

|Tn|hn

n∑

m=0

2mµ0Q
mH −→

n→+∞
ν(x)
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where H(y) = K((y − x)/hn), ν(·) is the invariant density of the Markov
chain associated to a random lineage and

E

[
Ñn

]
=

1

|Tn|hn

n∑

m=0

2m (µ0Q
m(Hf0)− f0(x)µ0Q

mH) −→
n→+∞

0.

We refer to [9] for quantitative versions of these limits.

Remark 4.6. Of course this non parametric estimation is in some sense
incomplete, as we would have liked to consider a deviation inequality for
supx |f̂0,n(x) − f0(x)|. The problem is somewhat much more complicated
here, as the estimator is self normalized. However, it is a crucial problem
that we will consider in the near future. For some ideas which could be
useful here, let us cite the results of [12] for (uniform) deviation inequal-
ities for estimators of density in the i.i.d. case, and to [22] for control of
the Wasserstein distance of the empirical measure of i.i.d.r.v. or of Markov
chains.

Remark 4.7 (Estimation of the T-transition probability). We assume that
the process has as initial law, the invariant probability ν. We denote by f the
density of (X1,X2,X3). For the estimation of f , we propose the estimator
f̂n defined by

f̂n(x, y, z) =
1

|Tn|hn
∑

k∈Tn

K

(
x−Xk

hn

)
K

(
y −X2k

hn

)
K

(
z −X2k+1

hn

)
.

An estimator of the T-probability transition is then given by

P̂n (x, y, z) =
f̂n(x, y, z)

D̃n

.

For x, y, z ∈ R, one can observe that the function G defined on R
3 by

G(u, v, w) = K

(
x− u

hn

)
K

(
y − v

hn

)
K

(
z − w

hn

)

is Lipschitzian with ‖G‖Lip ≤ (‖K‖2∞‖K‖Lip)/hn. We have

P̂n (x, y, z) − P (x, y, z) =
f̂n(x, y, z) − f(x, y, z)

D̃n

+
f(x, y, z)(ν(x) − D̃n)

ν(x)D̃n

.

Now using the decomposition

f̂n(x, y, z) − f(x, y, z) =
(
f̂n(x, y, z) − E

[
f̂n(x, y, z)

])

+
(
E

[
f̂n(x, y, z)

]
− f(x, y, z)

)
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and the convergence of E
[
f̂n(x, y, z)

]
to f(x, y, z), we obtain a deviation

inequality for |P̂n (x, y, z)−P (x, y, z)| similar to that obtained at the Propo-
sition 4.4.

When the density gε of (ε2, ε3) is known, another strategy for the esti-
mation of the T-transition probability is to observe that P (x, y, z) = gε(y−
f0(x), z − f1(x)). An estimator of P (x, y, z) is then given by P̂n(x, y, z) =
gε(y− f̂0,n(x), z− f̂1,n(x)) where f̂0,n and f̂1,n are estimators defined above.
If gε is Lipschitzian, we have

|P̂n (x, y, z)− P (x, y, z)| ≤ ‖gε‖Lip
(
|f̂0,n(x)− f0(x)|+ |f̂1,n(x)− f1(x)|

)

and the deviation inequalities for |P̂n (x, y, z) − P (x, y, z)| are thus of the
same order that those given by the Proposition 4.4.
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[25] N. Gozlan and C. Léonard. A large deviation approach to some
transportation cost inequalities. Probab. Theory Related Fields, 139(1-
2):235–283, 2007.
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