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We propose a scheme for a quantum thermal machine made by atoms interacting with a single nonequilibrium
electromagnetic field. The field is produced by a simple configuration of macroscopic objects held at thermal
equilibrium at different temperatures. We show that these machines can deliver all thermodynamic tasks (cooling,
heating, and population inversion) by establishing quantum coherence with the body on which they act.
Remarkably, this system allows these machines to reach efficiencies at maximum power very close to the
Carnot limit, which is much more than in existing models. Our findings offer a paradigm for efficient quantum
energy flux management, and can be relevant for both experimental and technological purposes.
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I. INTRODUCTION

Recent years have seen a rising interest in thermodynamics
at the atomic scale [1–4] due to the latest-generation manipu-
lation of few, if not single, elementary quantum systems [2,5].
In particular, out-of-equilibrium thermodynamics of quantum
systems represents one of the most active research areas in the
field [6–10]. In this context, triggered by vast technological
outcomes [11,12], the concept of a quantum absorption
thermal machine [13] has been reintroduced [14–19]. These
machines are particularly convenient since they function
without external work, extracting heat from thermal reservoirs
through single atomic transitions to perform thermodynamic
tasks (e.g., refrigeration).

Nonetheless, fundamental issues remain unsolved. A first
one is the connection of a single atomic transition to given
thermal reservoirs, posing serious obstacles to the practical
realizations of such machines. A second, more theoretical issue
concerns the role of quantumness. Indeed, in typical models,
quantum features are not required [13,18], and only recently
have the advantages of quantum properties in thermal reser-
voirs been pointed out [16]. The role of quantum features in the
machines is debated [18,19], so that the advantages of quantum
machines over standard ones remains partially unclear.

In this paper, we address both of these open problems
by introducing a quantum thermal machine setting, based
on an out-of-thermal-equilibrium (OTE) electromagnetic bath
naturally (i) coupling to each single atomic transition and (ii)
creating quantum features in the machine. The field is produced
by macroscopic objects and acts on each atomic transition as a
different thermal bath at an effective temperature, hence pro-
viding all of the elements needed for quantum absorption tasks.

This paper is structured as follows: the physical system is
introduced in Sec. II, along with the master equation governing
its dynamics, while Sec. III is devoted to the introduction of
thermodynamic quantities characterizing the heat exchanges
happening between atoms and field. In Sec. IV, the first part of
the results is given concerning the action of the machines, the
different tasks they can perform, and their intrinsic quantum
origin. The second part of the results of this work about the
machine efficiency and its Carnot limit is given in Sec. V.
Finally, remarks are made and conclusions are drawn in
Sec. VI.

II. PHYSICAL SYSTEM

The setup of this paper is schematically depicted in
Fig. 1(a), where a slab of thickness δ at temperature TS is
placed in the blackbody radiation emitted by some walls
at temperature TW �= TS . The total electromagnetic field
embedding the space between the slab and the walls is therefore
given by the sum of four contributions: the direct blackbody
radiation of the walls, the radiation emitted naturally by the
slab, and the walls’ radiation after being either reflected or
transmitted by the slab. Such an OTE field has been studied in
the context of Casimir-Lifshitz force and heat transfer [20–23],
where its properties have been characterized in terms of the
field correlators through a scattering matrix approach. The
slab and the walls, i.e., macroscopic objects, are the only
ones directly connected to thermal baths here. In addition,
a three-level atom M (machine) and a two-level atom B

(target body) are placed at the same distance z from the
surface of the slab and spatially separated by a distance r .
The atomic open system involves then four transitions: the
body transition labeled as B and the three machine transitions
labeled as 1,2,3. Transition 1 connects the two lowest-lying
energy eigenstates [red transition in Fig. 1(b)] and transition 2
connects the two highest ones [green transition in Fig. 1(b)].
The OTE field interacts with them through the Hamiltonian
HI = −∑

i di · E(Ri), where di is the dipole moment of
the ith transition of the atomic system and E(Ri) is the
electromagnetic field at its position Ri . The total Hamiltonian
of the system is

Htot = HM + HB + Hfield + HI , (1)

where Hfield is the Hamiltonian of the OTE field. In the
following, we will not need the explicit expression of Hfield

since only the field correlations will enter the master equation
describing the dynamics of the atoms. The free atomic
Hamiltonians HM and HB have expressions

HB = [ωB + �S(ωB)]σ †σ = ω̃Bσ †σ, (2)

HM = [ω1 + �S(ω1) + S−(ω2) − S−(ω3)]κ†
1κ1

+ [ω3 + �S(ω3) + S+(ω2) − S−(ω1)]κ†
3κ3

= ω̃1κ
†
1κ1 + ω̃3κ

†
3κ3, (3)
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FIG. 1. (Color online) (a) A slab of thickness δ at temperature
TS is placed in the blackbody radiation of some walls at temperature
TW . Two atoms are placed in the resulting OTE electromagnetic field,
at a distance z from the slab and at a distance r from each other.
(b) Stationary heat fluxes between the OTE environment E and each
atomic transition. The OTE field also mediates for an effective atomic
interaction producing an energy exchange Qr between resonant
atomic transitions. Each flux contribution corresponds to a term in
the atomic master equation (4).

where σ (σ †) is the lowering (raising) operator of the
body B and κn,κ

†
n (n = 1,2,3) are the lowering and raising

operators of M . Here, S±(ωi) represents a shift of the
energy of each level in the ith transition due to the local
interaction with the field and �S(ω) = S+(ω) − S−(ω). In
the third equality, the renormalized transition frequencies
ω̃i for M and B have been introduced to account for
the effects of the shifts S±(ωi). Throughout this work,
we will always assume the physical consequences of such
frequency renormalization to be negligible, such that ω̃i =
ωi ∀i. This assumption has been fully confirmed by ex-
tended numerical simulations, having always detected the
relative error introduced by neglecting these shifts to be less
than 1%.

It is worth stressing here that differently from previ-
ous works on atomic-scale thermal machines [14–16,18,19],
each atomic transition interacts with the same electromag-
netic field here, which embeds all of the space where
the atoms are placed. As we will show in what follows,
there is then no need to conceive different environments,
each interacting with a single atomic transition: here, a
single nonequilibrium electromagnetic field is able to pro-
duce all of the physics needed for quantum thermodynamic
tasks.

A. The master equation

In [24], the master equation (ME) for two emitters in such
a field has been derived under the Markovian limit as

dρ

dt
= − i

�
[HT ,ρ] + DB(ρ) +

3∑
n=1

Dn(ρ) + Dd (ρ), (4)

where HT = HM + HB + HMB . HMB = ��(ωB)(σ †κr +
σκ

†
r ) is an effective field-mediated dipole interaction coupling

resonant atomic transitions. Here we assume B and M to be
resonant through transitions at frequency ωB , and all their
dipoles to have the same magnitude and to lie along the line
joining the two atoms, and oriented from B to M . ��(ω)
is the effective interaction strength and σ (κr ) is the lowering
operator of the body (of the resonant transition of the machine).
HMB originates from the correlations of the fluctuations of
atomic dipoles due to the common field.

The derivation of the master equation (4) has been
performed under the Markovian and rotating-wave approx-
imations. It involves the average photon number n(ω,T ) =
1/(e�ω/kBT − 1) at frequency ω and temperature T and the
two functions αW (S), which encompass all of the properties
of the environment, such as the dielectric properties of the
slab and the correlation functions of the field. For their
explicit expressions, we refer the interested reader to [24]. The
dissipative effects due to the atom-field coupling are accounted
for by the dissipators Dk , with expressions

DB(ρ) = 
+
B (ωB)

(
σρσ † − 1

2 {σ †σ,ρ})
+
−

B (ωB)
(
σ †ρσ − 1

2 {σσ †,ρ}), (5)

Dn(ρ) = 
+
n (ωn)

(
κnρκ†

n − 1
2 {κ†

nκn,ρ})
+
−

n (ωn)
(
κ†

nρκn − 1
2 {κnκ

†
n,ρ}), (6)

Dd (ρ) = 
+
d (ωd )

(
κrρσ † − 1

2 {σ †κr,ρ})
+
−

d (ωd )
(
κ†

r ρσ − 1
2 {σκ†

r ,ρ}) + h.c., (7)

where ωd = ωB . One recognizes standard local dissipation
terms (DB and Dn), each associated to the degrees of freedom
of a well-identified atom, and nonlocal dissipation (Dd ), which
describes energy exchanges at frequency ωB of the atomic
system as a whole with its OTE environment, not separable
in machine or body contributions, since its action involves
degrees of freedom of both atoms in a symmetric way. The
parameters 
±

i (ωi) (the rates of the dissipative processes of
absorption and emission of photons through local or nonlocal
interactions) depend on local or nonlocal correlations of the
field in the atomic positions, which in turn are functions
of the temperatures TS and TW and the dielectric properties
of the slab S as


+
i (ω)


0
i (ω)

= [1 + n(ω,TW )]αi
W (ω) + [1 + n(ω,TS)]αi

S(ω), (8)


−
i (ω)


0
i (ω)

= n(ω,TW )αi
W (ω)∗ + n(ω,TS)αi

S(ω)∗, (9)
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where 
0
i (ω) = |di |2ω3/(3�πε0c

3), for i = 1,2,3,B, is the
vacuum spontaneous emission rate of the ith atomic transition

having a dipole moment di , and 
0
d (ω) =

√

0

B(ω)
0
r (ω).

Thanks to the functional dependence of these parameters on
the frequency and on the position of the atom, and to the
critical behavior shown in correspondence to the resonance
frequency ωS of the slab material, thermodynamic tasks
become achievable. To simplify the notation, in the rest of
this work the explicit ω dependence in all of the 
s will be
omitted.

III. THERMODYNAMICS OF THE SYSTEM

After having introduced all of the dynamic effects charac-
terizing the atomic system, we want in this section to introduce
some quantities which will characterize the machine tasks and
functioning.

A. Environmental and population temperatures

In order to describe the machine thermodynamics, it is
convenient to introduce two kinds of temperatures. A first one
characterizes the action of the field on the atoms: it has been
shown [25] that the atom-field interaction can be effectively
rewritten as if each atomic transition felt a local equilibrium
environment whose temperature depends on the transition
frequency, on the properties of the slab and on the slab-atom
distance z. These effective environmental temperatures depend
on the rates 
±

n as

Tn = T (ωn) = �ωn

kB ln(
+
n /
−

n )
, (10)

with n = 1,2,3,B,d. It is important to stress here that
although these effective environments can be characterized by
a temperature, their spectra are not simply blackbody spectra
as they have their own transition-dependent Purcell factor [25].

In this framework, we study the thermodynamic effects
of stationary heat fluxes between M and B, mediated and
sustained by the OTE environment. To characterize the effects
of these fluxes, a second kind of temperature has to be
introduced. Indeed, as much as the environmental temperatures
characterize the thermodynamics of the OTE field, we need
a second parameter to describe the energetics of atoms. In
particular, atoms exchange energy under the form of heat
with their surroundings by emitting photons through one of
their transitions. This means that the possibility of such heat
exchanges is related to the distribution of population in each
atomic level. Note that from the very definition of Tn, the
environmental temperature depends on how the field tends
to distribute atomic population in each pair of levels, due to
the presence of the ratio 
+

n /
−
n . A transition is therefore

in equilibrium with its effective local environment if and
only if its two levels |a〉 and |b〉 are populated such that
pa/pb = 
+/
−. If not, the field and the atom will exchange
heat along such a transition until such a ratio is reached.
This suggests the introduction of a second temperature, hereby
referred to as population temperature, which for a transition

of frequency ωn (n = 1,2,3,B) is defined as

θn = �ωn

kB ln
(
pa

n/p
b
n

) , (11)

with pa
n (pb

n) being the stationary population of the ground
(excited) state of the nth transition. The result of a stationary
thermodynamic task on the body, be it refrigeration, heating
or population inversion, is then to modify its population
temperature θB .

B. Heat fluxes

The condition Ti = θi is satisfied only if detailed balance
(pa

i /p
b
i = 
+

i / 
−
i ) holds. It can be proven that detailed

balance can be broken in a three-level atom in OTE fields. As
a consequence, the machine M produces nonzero stationary
heat fluxes with B and the field environment, one for each
dissipative process Dn in the ME (4). These fluxes, following
the standard approach in the framework of Markovian open
quantum systems [26], are given as Q̇n = Tr[HatDnρ], where
ρ is the stationary atomic state and Hat is a suitable atomic
Hamiltonian which can be HM,HB , or HM + HB , depending
on which part of the atomic system the heat flows into. Note
that this definition implies an outgoing heat flux to be negative.

Following their definition, these heat fluxes depend both
on the field properties (through the structure of the dissipators
Dn) and on the properties of the atoms through their stationary
state. This dependence, for the local dissipators, can be put
under the very clear thermodynamic form

Q̇n = Kn

(
e

�ωn
kB θn − e

�ωn
kB Tn

) � Cn(θn)(Tn − θn), (12)

where Kn > 0,Cn(θn) is a positive function of θn (and of
other parameters such as the frequency of the transition) and
the second approximated equality holds in the limit θn � Tn.
Equation (12) shows that the direction of heat flow is uniquely
determined by the sign of the difference Tn − θn, matching
the thermodynamic expectation that heat flows naturally from
the hotter to the colder body and strengthening the physical
meaning of θn.

Since there is no time dependence in the Hamiltonian of the
model, the first law of thermodynamics at stationarity for the
total atomic system comprises only heat terms and assumes
the form

Q̇B +
3∑

n=1

Q̇n + Q̇d = 0. (13)

In addition, energy is exchanged between the machine and
the body thanks to their field-induced interaction HMB . In
Appendix A, following the general scheme developed in [27],
we show such an exchange to be under the form of heat. Seen
by M , such a flux is Q̇r = −iTr(HM [HMB,ρs])/�, while as
expected B sees the flux −Q̇r . By introducing the explicit
expressions for HM and HMB , one can obtain a particularly
simple form for Q̇r as

Q̇r = 2�ωB�(ωB)〈σ †κr〉−, (14)

where 〈σ †κr〉− = i
2 〈σ †κr − σκ

†
r 〉. In an analogous way, by

employing Eq. (7), one can evaluate the change in internal
energy of M due to the nonlocal heat flux exchanged by the
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atomic system with the OTE environment, given by Q̇d =
Tr[HMDdρ]. It is

Q̇d = −�ωBRe{〈σκ†
r 〉[
+

d − (
−
d )∗]}. (15)

Finally, the change in the internal energy of B due to the same
effect, Tr[HBDdρ], is given by the same expression (15).

Figure 1(b) shows the full scheme of such heat fluxes for
a particular configuration of the system. The two levels of B

will be labeled here as |g〉 and |e〉. Although the two-level
assumption might seem specific, it has been shown in various
contexts [3,28] that quantum thermal machines only couple
to some effective two-level subspaces in the Hilbert space
of the body they are working on. A two-level system is
therefore the fundamental building block of the functioning
of quantum thermodynamic tasks.

IV. COHERENCE-DRIVEN MACHINE TASKS

The main result of this paper is the possibility to drive the
temperature θB of the body outside of the range defined by the
external reservoirs at TW and TS . The body, without the effect
of the machine, would thermalize at the local environmental
temperature (θB = TB), corresponding to pe/pg = 
−

B /
+
B .

This temperature is necessarily constrained within the range
[TW ,TS] [25].

Due to the particular form of the master equation (4), in
which all collective atomic terms involve only resonant atomic
transitions, in the nonresonant subspace the collective atomic
state will be diagonal in the eigenbasis of HB + HM . This is
due to the fact that local dissipation in Eq. (4) of Sec. II induces
a thermalization with respect to the free atomic Hamiltonians.
On the other hand, in the resonant atomic subspace of the
eigenbasis of HB + HM spanned by the states |g〉,|e〉 of B and
the two states |0r〉,|1r〉 of the transition of M at frequency ωB ,
the most general form of the atomic stationary state is⎛⎜⎝pe1r

0 0 0
0 pe0r

cr 0
0 c∗

r pg1r
0

0 0 0 pg0r

⎞⎟⎠. (16)

A coherence cr is present in the decoupled basis between the
two atomic states |g1r〉 and |e0r〉 having the same energy.

Note that the temperature θB of the body increases mono-
tonically with the ratio pe/pg . By tracing out the machine
degrees of freedom from the master equation (4), one obtains
a diagonal state with stationary populations pg and pe of the
body B. Then the expressions for heat fluxes exchanged by B

with its surroundings are

Q̇r = i

�
〈[HB,HMB]〉, (17)

Q̇d = 
+
d

[〈σ †HBκr〉 − 1
2 〈{HB,σ †κr}〉

]
+
−

d

[〈σHBκ†
r 〉 − 1

2 〈{HB,σκ†
r }〉

] + c.c., (18)

Q̇B = 
+
B

[〈σ †HBσ 〉 − 1
2 〈{HB,σ †σ }〉]

+
−
B

[〈σHBσ †〉 − 1
2 〈{HB,σσ †}〉], (19)

where the mean values are evaluated over the stationary state
of the total system. Exploiting its general form (16), it is just a
matter of straightforward calculations to evaluate all the mean
values above. By imposing the sum of (17)–(19) to vanish [first
law for B, analogous to Eq. (13)], one obtains

pe

pg

= 
−
B − �(ωB)


+
B + �(ωB)

, (20)

where

�(ωB) = 2�(ωB)Im{cr} + Re{cr [
+
d − (
−

d )∗]}. (21)

Note now that thanks to Eq. (16), 〈σκ
†
r 〉 = cr and 〈σ †κr〉− =

Im(cr ), such that the first term in �(ωB) stems from the
resonant heat −Q̇r = −2�ωB�(ωB)Im(cr ) exchanged with
the machine, while the second is due to the nonlocal heat flux
Q̇d . Equations (20) and (21) show that the thermal machine
works only if a stationary quantum coherence cr is present.
Remarkably, it can be shown [29] that quantum discord [30] (a
key measure of purely quantum correlations) is a monotonic
function of the absolute value of the coherence cr in our system.
Differently from previous studies [18], here discord between
M and B is a necessary condition for any thermodynamic
task, and represents a resource the machine can use through
the two different processes Q̇r and Q̇d . Equation (20)
means that a quantum coherence between machine and body
modifies the stationary temperature of the body with respect to
TB . This modification is reported in Fig. 2, where the behavior
of θB as a function of the slab-atoms distance z is shown
for two different slab thicknesses δ. Four possible regimes
can be singled out: both during refrigeration (θB < TB) and
heating (θB > TB), θB can be either driven outside of the
range [TW ,TS] (strong tasks) or kept within it (light tasks).
As a limiting case of strong heating, the body can be brought
to infinite temperature (pe = pg) and, further on, to negative
ones, producing population inversion. As one can easily see
from Fig. 2, the physics behind the absorption tasks is enclosed
in the strong sensitivity of the population temperature θB of the
body to the population temperature θM of the machine along
the resonant transition when the body is not present.

Optimal conditions for thermodynamic tasks

It is shown in Fig. 2 that the machine has a very high thermal
inertia, such that the body, when put into thermal contact
with the machine having a certain temperature θM , thermalizes
with it and θB � θM . Figure 3 shows the mechanism that the
machine uses to modify its population temperature θM in the
absence of the body, thanks to the different environmental
temperatures felt by each of its transitions. This drives M

out of the detailed balance condition and allows M to keep its
resonant transition temperature almost constant. Here we label
the three transitions of the machine as high frequency (ωh),
average frequency (ωa), and low frequency (ωl), one of which
(suppose here ωl , connecting states |0r〉 and |1r〉) is resonant
with ωB . For simplicity, let us focus on refrigeration only,
which we suppose to happen through transition 2 (connecting
the first and second excited states), since in this configuration
the high-frequency transition 3 is always used by an absorption
refrigerator to dissipate heat into the environment [16]. As
shown in Fig. 2, to obtain a low θB , the resonant machine
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FIG. 2. (Color online) Stationary temperature θB of the body
(solid black line), machine resonant temperature θM in the absence of
B (dotted pink line), and local-environment temperature TB felt by
the body (dot-dashed green line) vs z. The slab is made of sapphire
and kept at TS = 500 K while TW = 300 K. The machine transition
frequencies are ω1 = 0.9 ωS,ωB = ω2 = 0.1 ωS and ω3 = ωS,ωS =
0.81 × 1014 rad s−1, which is the first resonance frequency of sapphire
(the optical data for the dielectric permittivity of the slab material are
taken from [31]). The two atoms are placed at a distance r = 1 μm
from each other. (a) Numerical data for a semi-infinite slab. Light and
strong refrigeration are achieved in this configuration. (b) The same
quantities for a slab of finite thickness. The plotted functions are, in
this case, −1/θB, − 1/θM , and −1/TB (left vertical scale), with the
same color code as before. The population inversion corresponds to
divergent θB and θM . The corresponding value of the temperature can
be read on the right vertical scale. All tasks are in this case obtained.

transition must be made cold. This is achieved by reducing the
ratio p1r

/p0r
, which in turn happens when:

(a) the effective environmental temperature Th felt by
the high-frequency transition is very cold. In this way, the
environment contributes to increasing the population of the
ground state of M at the expense of the population of its most
energetic state. The resonant transition necessarily involves
one of these two levels, and in both cases the effect of the
high-frequency transition helps reduce p1r

/p0r
;

(b) the effective environmental temperature felt by the
average transition is very hot. This, following the same idea,
would either mean reducing the population of p1 or increasing
the one of p0, thus reducing p1r

/p0r
.

When these two conditions are met, the machine can always
redistribute its populations such that the ratio p1r

/p0r
can be

kept low and almost unaffected by the presence of another
atom. The advantage of the OTE field configuration is that
the effective field temperatures can be manipulated through a
wide set of parameters involving z,δ,TW , and TS . In particular,

FIG. 3. (Color online) Conditions for refrigeration: effective rate
temperatures Th,Ta , and Tl of the local environments felt by the
three machine transitions, for ωh = ωS,ωa = 0.8 ωS and ωl = 0.2 ωS

(ωS = 0.81 × 1014 rad s−1) vs the machine-slab distance z in the
absence of the body. The slab and walls temperatures are TS = 200 K
and TW = 300 K, and the slab thickness is δ = 0.05 μm. As the plot
shows, the transition having the same frequency as the slab resonance
is much more strongly affected by the field emitted by the slab, such
that its rate temperature is kept much lower than Ta . This produces
a mechanism, shown in the inset, according to which excitations
(yellow dots) are transferred to the intermediate level of the machine
and removed from its upper one. This in turn drives the population
temperature θl of the transition at ωl (transition 2 in the example)
to values lower than the one Tl of its local environment, allowing
the machine to refrigerate objects. In this configuration, introducing
a body B at z = 1 μm from the slab and r = 1 μm from M , one
obtains θB = 160 K < TS .

the role of the resonance of the slab material is crucial [25],
as explained in the caption of Fig. 3. In the case TS < TW ,
transitions strongly affected by the field emitted by the slab
feel a cold local environment. Moreover, provided ωa is far
enough from ωS , one can at the same time have Ta � TW . By
this mechanism, M can change the temperature θB , bringing
it to values far outside the range [TS,TW ].

We stress here that the difference between light and strong
tasks is a fundamental one: while light tasks could also be
obtained by direct thermal contact of the body with the two
real reservoirs at TS and TW , strong tasks can only be achieved
through the action of a thermal machine.

�(ωB) strongly depends on the slab-matter system distance
z and on the external temperatures through cr ,�, and 
±

d . One
can thus engineer one or many of these regimes at will, as
shown in the functioning-phase diagram of the machine in
Fig. 4 for a fixed thickness δ = 0.05 μm. All of the strong and
light functioning phases of the machine are found as a function
of both TW − TS and z.

V. EFFICIENCY AND CARNOT LIMIT

Consider now the refrigerating regime in which the machine
extracts heat from the body through transition 2. The scheme
of heat fluxes is then exactly the one depicted in Fig. 1(b). The
efficiency of this process is

ηref = Q̇r

Q̇1 + Q̇2
, (22)
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FIG. 4. (Color online) Functioning phases of the absorption ma-
chine vs the atoms-slab distance z and �T = TW − TS . The sapphire
slab has a thickness δ = 0.05 μm and its temperature is continuously
changed in the range [30 K, 570 K]. The walls are at TW = 300 K.
Strong refrigeration (blue areas), strong heating (red areas), light
refrigeration (cyan), light heating (orange), and population inversion
(green) can all be obtained.

due to the fact that Q̇r is the power produced by the
machine, which absorbs energy from its surroundings through
transitions 1 and 2 (the equivalent of a work input), while
using transition 3 to dissipate part of the absorbed energy after
use (the equivalent of the spiral in a normal refrigerator). The
corresponding Carnot limit ηC

ref can be obtained by analyzing
the machine functioning in its reversible limit (zero entropy
production). The instantaneous entropy production rate τ for
quantum systems is defined as [26]

σ = − d

dt
S(ρ(t)||ρst) � 0, (23)

where S(ρ(t)||ρst) is the so-called relative entropy [32] of the
instantaneous state ρ(t) and the stationary state ρst, never in-
creasing in time under a Markovian dynamics. Following [16],
one can apply Eq. (23) term by term to each dissipator in the
master equation, thanks to the fact that they all are under a
Markovian form. One thus obtains∑

i

Tr
[
(Dkρ

st) ln ρst
k

]
� 0, (24)

where ρst
k ,k = 1,2,3,B,d is the kernel (stationary state) of

the single dissipator Dk . The three local dissipators Dn

of the machine and the local dissipator DB of the body
induce stationarity under the standard Gibbs form at the
effective environmental temperature, diagonal in the free
atomic Hamiltonian basis. The nonlocal dissipator Dd , in the
case studied here where the dipoles of B and M lie along
the line connecting the two atoms (and more generally, when

±

d ∈ R), has the same kernel at environmental temperature Td ,
local in the degrees of freedom of M and B. Introducing these

η r
ef

/η
C r
ef

ω3/ωS

D

ω3/ωS

Q̇r

Discord

FIG. 5. (Color online) The ratio ηref/η
C
ref (blue triangles, left

vertical axis), the power of the machine (Q̇r , red dots, right vertical
axis in units of 10−14 μJ/s), and machine-body discord (dashed red
line, right vertical scale in units of 10−4) vs the scaled machine
transition frequency ω3/ωS . The sapphire slab is semi-infinite and
at TS = 395 K, while TW = 125 K and z = 4.8 μm. The transition
frequency of the body is fixed as 0.1ωS (ωS = 0.81 × 1014 rad s−1),
resonant with transition 2 of the machine. The maximum power
is reached for ω3 = 1.05 ωS , corresponding to ηref/η

C
ref � 0.89.

Remarkably, discord shows a sharp resonance peak, similarly to Q̇r .

single-dissipator stationary states into Eq. (24), one obtains

Q̇1

T1
+ Q̇2

T2
+ Q̇3

T3
+ Q̇B

TB

+ 2Q̇d

Td

� 0, (25)

which is a form of the second law at stationarity for our system.
With the help of the first law in Eq. (13) of Sec. III, the known
property of three-level atomic heat fluxes [13] |Q̇n/Q̇m| =
ωn/ωm ∀m,n = 1,2,3 (where Q̇n is the total flux along the
nth transition) and the fact that in refrigeration T3 < T2,Td and
T2,Td < T1 (as commented in Sec. IV) and under the condition
Q̇d < 0 (other cases can be treated analogously), one obtains
from (25) another first degree inequality. This has a nontrivial
solution only if Td > T2, from which a bound on the efficiency
in Eq. (22) can be obtained, as shown in Appendix B. Such a
bound depends only on the three frequencies of the machine
and the temperatures of the effective local and nonlocal
environments. In the case of refrigeration along transition 2,
the Carnot efficiency assumes the form

ηC
ref =

{
ω2

2ω1
+ 1

2
T2Td (T1−T3)
T1T3(Td−T2) + ω2

2ω1

T2(Td−T3)
T3(Td−T2) , if Td > T2,

ω2
ω1

, if Td � T2.

(26)

Efficiency at maximum power

An important figure of merit for the realistic functioning
of any thermal machine is how close to its Carnot limit it
works when delivering maximum power (i.e., when Q̇r is
maximized). Many bounds are known for different setups,
limiting the efficiency at maximum power ηm to some fractions
of ηC [16,33]. Remarkably, our structured OTE environment
allows for refrigeration tasks with ηm much closer to ηC

than the bound known for quantum absorption machines [16]
based on ideal blackbody reservoirs, reading for our system
ηm < 0.75 ηC . This is exemplified in Fig. 5 for a particular
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0.6 0.7 0.75 0.8 0.9 1

ηm η C
0
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5

10

15

≈
≈

FIG. 6. (Color online) Statistical occurrence of ratios ηm/ηC for a
random sampling of 2 × 104 thermal machines, always in resonance
with the same body B. For each machine, z has been randomly
generated in the range [0.9 μm,100 μm],TW ∈ [50 K,500 K], and,
for each value of TW ,TS ∈ [TW ,TW + 500 K]. The internal structure
of the body is kept fixed during the simulations, with a frequency
ωB = 0.1 ωS resonant with the transition 2 of M . The maximization
is performed over every possible value of ω1 ∈ (ω2,ωS) and ω3

compatible with the condition ω1 + ω2 = ω3. Around 50% of
machines thus generated have ηm > 0.75 ηC .

configuration of the model. The blue triangles (left vertical
scale) represent the ratio ηref/η

C
ref , plotted versus ω3 while

keeping fixed ω2 = ωB = 0.1 ωS . The red dots (right vertical
scale) are the power Q̇r , plotted versus the same quantity, while
the red dashed line is the machine-body discord (right vertical
scale). It is clear that the power is maximized at ω3 = 1.05 ωS ,
corresponding to ηm

ref � 0.89 ηC
ref . Q̇r starts decreasing, as

classically expected when the efficiency approaches ηC ,
around ω3 � 0.9 ωS , but suddenly increases again when ω3

approaches ωS . This behavior is due to the fact that when
one atomic transition is resonant with the characteristic
frequency of the slab material, the atomic populations are
strongly affected by the field emitted by the slab. Hence, the
nonblackbody nature of the total field become crucial (e.g., the
atomic decay rate is no longer proportional to ω3), allowing
it to overcome bounds set by the blackbody physics. The role
of discord as machine resource is clearly shown here, where
discord at resonance has a sharp peak leading to the high-power
performance of M .

One could wonder whether such an exceptionally high
efficiency at maximum power is infrequently attained for the
kind of machines described here. To answer such a question
on quantitative bases, we performed a random sampling of
over 2 × 104 thermal machines, all delivering thermodynamic
tasks on the same fixed body. In the simulations performed and
reported in Fig. 6, the machines work as a quantum refrigerator
delivering strong refrigeration using a semi-infinite slab. In
this sampling, the machine-slab distance z has been, for each
machine, randomly drawn in the range [0.9 μm,100 μm],
the walls temperature has been selected randomly in TW ∈
[50 K, 500 K], and, for each value of TW , the slab temperature
has been chosen at random in TS ∈ [TW ,TW + 500 K]. The in-
ternal structure of the body is kept fixed during the simulations,
with a frequency ωB = 0.1 ωS resonant with the transition 2
of M . For each machine thus generated, we have then maxi-
mized the delivered power by modifying the two other machine

frequencies over every possible value of ω1 ∈ (ω2,ωS) and ω3

compatible with the condition ω1 + ω2 = ω3. Finally, once the
configuration corresponding to the maximum power has been
obtained, we have computed the efficiency of the process.
Figure 6 shows the histogram of the distribution of the ratio
ηm/ηC of efficiency at maximum power to the corresponding
Carnot efficiency in the interval [0,1] within these 2 × 104

random refrigerators. It is remarkable that around 50% of these
machines work at maximum power with efficiencies higher
than the bound 0.75 ηC in [16] and that none of them have
been found to work at maximum power with efficiencies lower
than 0.6ηC . Moreover, as can be clearly seen in Fig. 6, a small
but non-negligible fraction of them can reach ηm � 0.98ηC .

VI. CONCLUSIONS

This work introduces a realization of a quantum thermal
machine using atoms interacting with single nonequilibrium
electromagnetic fields. By simply connecting two thermal
reservoirs to macroscopic objects, their radiated field allows
the atomic machine to achieve all quantum thermodynamic
effects (heating, cooling, population inversion), without any
direct external manipulation of atomic interactions. This
overcomes the usual difficulty of connecting single transitions
to thermal reservoirs, in a realistic and simple configuration
where the field-mediated atomic interaction modifies at will
stationary interatomic energy fluxes.

Despite the environmental dissipative effects, atoms share
steady quantum correlations [24,34], which we showed to be
necessary for one atom to deliver a thermodynamic task on the
other, uncovering genuinely nonclassical machine functioning.
These particular features affect the tasks efficiency, which
can be remarkably high also at maximum power, defying
the known bounds for quantum machines based on ideal and
independent blackbody reservoirs, thanks to the fundamental
effect of the resonance with the real material of which the
slab is made. Moreover, such a remarkably high efficiency at
maximum power is strongly connected to the presence of a
peak in quantum correlations between the machine and the
body, which represents the resource the machine uses for its
tasks.

These results tackle major open problems on quantum ther-
mal machines, paving the way for an efficient quantum energy
management based on the potentialities of nonequilibrium and
quantum features in atomic-scale thermodynamics.
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APPENDIX A: RESONANT HEAT FLUX

In this Appendix, we demonstrate that the resonant energy
exchange between M and B due to the field-mediated coherent
interaction HMB consists only of heat. Following the approach
of [27], the dynamics of the sole M induced by the Hamiltonian
interaction HMB comprises, in general, a Hamiltonian and a
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dissipative part and can be written as

ρ̇M = − i

�

[
HM + H eff

M ,ρM

] + DMB(ρ), (A1)

where DMB is a nonunitary dissipative term for M due to the
interaction with B, which depends, however, on the total state
ρ = ρMB because, in general, the two subparts are correlated.
H eff

M is a renormalized free Hamiltonian of subsystem M due
to the interaction with B. Defining the two marginals ρM(B) =
TrB(M)ρ and the correlation operator CMB = ρ − ρM ⊗ ρB , it
is shown in [27] that

H eff
M = TrB[HMB(IM ⊗ ρB)], (A2)

DMB(ρ) = −iTrB([HMB,CMB]). (A3)

By introducing H eff
M1 as the part of H eff

M which commutes with
HM , and H eff

M2 which does not, one has, directly from Eq. (A1),
for the internal energy of M UM = Tr[(HM + H eff

M )ρ],

U̇M = TrM
[(

HM + H eff
M1

)
DMB(ρ)

] + TrM
(
Ḣ eff

M1ρM

)
− iTrM

([
HM + H eff

M1,H
eff
M2

]
ρM

)
. (A4)

It is customary to identify heat terms as the ones producing a
change in the entropy of a subsystem: all of the rest is identified
as work W . Equation (A4) can then be split in

Q̇M = TrM
[(

HM + H eff
M1

)
DMB(ρ)

]
, (A5)

ẆM = TrM
(
Ḣ eff

M1ρM − i
[
HM + H eff

M1,H
eff
M2

]
ρM

)
. (A6)

By introducing the symbols c
ij

M = 〈i|ρM |j 〉 (i �= j ) for the
coherences of the marginal ρst

M [different from the coherence
cr introduced in Eq. (16) of Sec. IV which is a two-atom
coherence], Eq. (A2) becomes

H eff
M ∝ Re

(
c10
M

)
. (A7)

By tracing out the machine or the body degrees of freedom
from Eq. (16), one can prove that the two stationary marginals

ρst
M and ρst

B are always diagonal in the eigenbases of their
respective free Hamiltonians, so that c10

M = 0. No renormal-
ization to the machine Hamiltonian comes therefore from
the interaction with B, which means that Eq. (A6) vanishes,
proving that no work is involved in machine-body energy
exchanges. As for the heat, considering that [HMB,ρst

M ⊗
ρst

B ] = 0, Eq. (A5) reduces to

Q̇M = −iTrM (HMTrB[HMB,ρst]) = Q̇r , (A8)

with the same Q̇r given in Eq. (14).

APPENDIX B: CARNOT LIMIT

In this Appendix we deduce Eq. (26) of Sec. V for the
Carnot efficiency in refrigeration along transition 2, and under
the condition Q̇d < 0. In addition to Eqs. (13) and (25), the
condition |Q̇n/Q̇m| = ωn/ωm gives for n = 1 and m = 2 the
following:

Q̇1

Q̇2 + Q̇r + Q̇d

= ω1

ω2
. (B1)

By solving Eqs. (13) and (B1) for Q̇3 and Q̇d and using these
solutions in (25), one obtains, for Q̇r ,

Q̇r � Q̇1
TdT2

Td − T2

[
1

T3

(
1 + ω2

ω1

)
− 1

T1
− ω2

ω1

1

Td

]
− Q̇2,

(B2)
which, used in Eq. (22) of Sec. V, gives a bound on ηref as
a function of Q̇1 and Q̇2. Finally, using the fact that such
a bound is a decreasing function of Q̇2, one obtains the
Carnot efficiency as the limit for Q̇2 → 0, which turns out
to be independent of Q̇1 and ultimately gives the first line of
Eq. (26). On the other hand, in the case T2 < Td , one cannot
obtain anything like Eq. (B2) and the only possibility for the
machine to work without producing entropy is therefore to
have vanishing heat flux to or from the body. This means Q̇2 =
Q̇d = 0 which, inserted in the expression for the efficiency
and using again |Q̇n/Q̇m| = ωn/ωm, leads to the second line
of Eq. (26).
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