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1.1 GMI effect

Simultaneous solving of Maxwell's  and Landau-Lifshitz equations :

1. Static equilibrium :

2. Solving of the linearized equations :

→ and             with

Surface impedance tensor
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1.2 Application to the magnetometry
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GMI Detection 
coil

1.3 Two-port Network configuration
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1.2 Application to the magnetometry
Noise performance

L. Melo, et al., Formalism to optimize magnetic noise in giant magnetoimpedance-based devices, IEEE Transactions 
on Magnetics, vol. 43, no. 6, p. 29922994, 2007.
L. Melo, et al., Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors, Journal of 
Applied Physics, vol. 103, no. 3, p. 033903033903, 2008.

in white noise region
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Magnetic noise
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4 Previous results ( EMSA 2012 – MO30 [1] )

[1] B. Dufay, et al., Development of a high sensitivity GMI magnetometer: comparison with a commercial flux-gate, 
IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 85-88, 2013.

in fair agreement with 
model of white noise
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2.1 Magnetization fluctuations

2. which will induce output voltage noise

[Ohm/rad]

1. [Z] strongly depends upon the magnetization direction
 → Any fluctuations of        will induce an impedance variation.

L.G.C. Melo, et al., Optimization of the magnetic 
noise and sensitivity of GMI sensors, Journal of 
Applied Physics, vol. 103, no. 3, p. 033903, 2008.

In classical GMI (Z
11

):

[rad²/Hz]

C. Dolabdjian, et al., Is low frequency Excess noise 
of GMI induced by magnetization fluctuations, Key 
Engineering Materials, vol. 605, pp. 437-440, 2014.
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2.2 Extension to off-diagonal configuration

Does not depend upon 
the configuration ij

1. To be numerically evaluated by differentiation from the 
two-port network model for the all 4 configuration cases.

 → If the impedance fluctuation is expressed 
as an equivalent magnetic noise:

noise level does not depend upon the 
configuration ij anymore !!

 → Computation results fit with the analytical 
expression obtained for the Z

11
 case.
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2.2 Extension to off-diagonal configuration
Does not depend upon 
the configuration ij

2. Express the impedance fluctuations as an equivalent 
magnetic noise [T/√Hz]:

● Does not depend upon the configuration ij anymore.

[1]

● Only relies upon the static magnetization direction.

● Depicts an 1/f  behavior

[1] L.G.C. Melo, et al., Optimization of the magnetic noise and sensitivity of GMI sensors, 
Journal of Applied Physics, vol. 103, no. 3, p. 033903, 2008.

 → Analytical expression which:
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       linked with hysteresis 
area of magnetization 
loop.

 → Worst case : 

3.1 Results

Low frequency excess 
noise level is the same in 
all ij configurations

 → may appears only in 
cases for which the 
electronic white noise is 
low enough.

[1] B. Dufay, et al., Characterization of an optimized off-diagonal GMI-based magnetometer, IEEE Sensors Journal, 
vol. 13, no. 1, pp. 379-388, 2013.

[1]
@1Hz
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3.2 Discussion

 → Linked to losses in the magnetic material which 
may depends upon :

Coherent with some other experimental results (M. Butta et al.).

 → Modelization of       is under investigation.

● Excitation current frequency

● Excitation current amplitude

● DC bias current value

Worst case:

Based on modelization of non-linear GMI effect (D. Seddaoui et al.).
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