

GMI noise performance optimisation

MAGNETIC

2010

MEASUREMENTS

B. Dufay^{1,2}, M. Malatek^{1,2}, S. Saez¹, C. Dolabdjian¹, A. Yelon², and D. Ménard².

¹ GREYC CNRS, UMR 6072 – ENSICAEN and Université de Caen Basse-Normandie, 6 bd. Mal. Juin, 14050 Caen Cedex, France.

² Département de génie physique & Regroupement Québecois des Matériaux de Pointe, École Polytechnique de Montréal, CP6079, Montréal, Québec, H3C3A7, Canada.

GROUPE DE RECHERCHE EN INFORMATIQUE, IMAGE, AUTOMATIQUE ET INSTRUMENTATION DE CAEN (UMR 6072)

Outline

Introduction

Electrical model of the sensing element :

- Description
- Characterization
- Electronic conditionning
 - Description
 - Noise sources
- Sensitivity evaluation
- Equivalent magnetic noise level
- Conclusion

Giant MagnetoImpedance (GMI)

5

Magnetic noise considerations:

- Thermal fluctuation of the magnetization yields fluctuations of impedance (impedance noise or magnetic noise)
- Johnson noise

For T = 300K and using typical values for amorphous wire properties :

$$b_n \approx 8.5/\sqrt{l(\mathrm{cm})}$$
 fT/ $\sqrt{\mathrm{Hz}}$

L. G. C. Melo, D. Menard, A. Yelon, L. Ding, S. Saez and C. Dolabdjian, « Optimisation of the magnetic noise and sensitivity of GMI sensors », *Journal of applied physics*, vol. 103, 2008

6

Reference signal density (pT/VHz) 10000 1000 Noise spectral mmmm 100 Dominating noise source : electronic conditionning¹ 10100 10000 1000

Reduce the electronic noise.

Increase the intrinsic sensitivity of the sensing element.

¹L. Ding, S. Nabily, S. Saez, J. Gieraltowski, and C. Dolabdjian, « Investigation of Giant MagnetoImpedance magnetic noise comparison », *Sensor Letters*, vol. 5, pp. 171-175, 2007

Increase the *intrinsic sensitivity* of the sensing element.

Using of thin pick-up coil

Also labelled :

Off-diagonal GMI ; orthogonal flux-gate in the fundamental mode

Outline

Electrical model of the sensing element : Description Characterization Electronic conditionning Description Noise sources Sensitivity evaluation Equivalent magnetic noise level Conclusion

100µm diameter 2.5cm long Pick-up coil 500 turns per layer

Fully described by its equivalent two-port network model

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = [Z(B)] \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$
$$= \begin{bmatrix} Z_{11}(B) & Z_{12}(B) \\ Z_{21}(B) & Z_{22}(B) \end{bmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

Fully described by its equivalent two-port network model

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = [Z(B)] \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$
$$= \begin{bmatrix} Z_{11}(B) & Z_{12}(B) \\ Z_{21}(B) & Z_{22}(B) \end{bmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

Description

Characterization

•Electronic

- conditionning
 - Description
 - Noise sources
- Sensitivity evaluation
- •Equivalent magnetic noise level

Conclusion

Impedance matrix of the two ports network :

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = [Z(B)] \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$
$$= \begin{bmatrix} Z_{11}(B) & Z_{12}(B) \\ Z_{21}(B) & Z_{22}(B) \end{bmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

- Physical model
- Measurement

Description

Characterization

•Electronic

conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

Conclusion

Impedance matrix of the two ports network :

Physical model

Surface impedance tensor¹

$$\begin{pmatrix} e_{\varphi} \\ e_{z} \end{pmatrix} = \begin{pmatrix} Z_{\varphi z} & Z_{\varphi \varphi} \\ Z_{z z} & Z_{z \varphi} \end{pmatrix} \begin{pmatrix} h_{\varphi} \\ h_{z} \end{pmatrix}$$

¹D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, « Field-dependent surface impedance tensor in amorphous wires 12 with two types of magnetic anisotropy : helical and circumferential », *Physical Review B*, vol. 63, no. 14, 2001

Description

Characterization

•Electronic

conditionning

- Description
- Noise sources
- Sensitivity evaluation
- •Equivalent magnetic noise level

Conclusion

Impedance matrix of the two ports network :

Measurement

- Description
- Characterization

•Electronic

- conditionning
 - Description
 - Noise sources
- Sensitivity evaluation
- •Equivalent magnetic noise level
- Conclusion

- Description
- Characterization

•Electronic

- conditionning
 - Description
 - Noise sources
- Sensitivity evaluation
- •Equivalent magnetic noise level
- Conclusion

Static working point:

 $B = B_0 + b(t)$

Electronic conditionning circuitry

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

$$f_0 = 300 \text{kHz}$$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

 $\frac{\left|Z_{21_0}(f_0)\right|^2}{\left(R_1 + 50 + \left|Z_{11_0}(f_0)\right|\right)^2} \left[2e_{ng_1}^2 + e_{nR_1}^2\right] + e_{nR=1000}^2 + \left|Z_{22}(f_0)\right|^2 i_{npreamp}^2 + e_{npreamp}^2$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

 $\frac{\left|Z_{21_0}(f_0)\right|^2}{\left(R_1 + 50 + \left|Z_{11_0}(f_0)\right|\right)^2} \left[2e_{ng_1}^2 + e_{nR_1}^2\right] + e_{nR=1000}^2 + \left|Z_{22}(f_0)\right|^2 i_{npreamp}^2 + e_{npreamp}^2$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

$$\frac{|Z_{21_0}(f_0)|^2}{(R_1+50+|Z_{11_0}(f_0)|)^2} \left[2e_{ng_1}^2+e_{nR_1}^2\right] + e_{nR=1000}^2 + |Z_{22}(f_0)|^2 i_{npreamp}^2 + e_{npreamp}^2 + e_{npreamp}^2$$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

 $\frac{\left|Z_{21_0}(f_0)\right|^2}{\left(R_1 + 50 + \left|Z_{11_0}(f_0)\right|\right)^2} \left[2e_{ng_1}^2 + e_{nR_1}^2\right] + e_{nR=1000}^2 + \left|Z_{22}(f_0)\right|^2 i_{npreamp}^2 + e_{npreamp}^2 +$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

 $\frac{|Z_{210}(f_0)|^2}{(R_1+50+|Z_{110}(f_0)|)^2} \left[2e_{ng_1}^2+e_{nR_1}^2\right] + e_{nR=1000}^2 + |Z_{22}(f_0)|^2 i_{npreamp}^2 + e_{npreamp}^2$

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 $e_{n_{21}}^2$

 $\frac{|Z_{21_0}(f_0)|^2}{(R_1 + 50 + |Z_{11_0}(f_0)|)^2} \left[2e_{ng_1}^2 + e_{nR_1}^2\right] + e_{nR=1000}^2 + |Z_{22}(f_0)|^2 i_{npreamp}^2 + e_{npreamp}^2$

Evaluation of the sensitivity GREYC

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

Conclusion

Sensitivity
$$T_{r_{21}} = \frac{\partial V_{out}(t)}{\partial b(t)}$$
 [V/T]
 $B = B_0 + b(t)$
 $Z_{21}(B) = Z_{21_0} + \frac{\partial Z_{21}}{\partial B}\Big|_{B=B_0} .b(t)$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

Conclusion

Sensitivity
$$T_{r_{21}} = \frac{\partial V_{out}(t)}{\partial b(t)}$$
 [V/T]
 $B = B_0 + b(t)$
 $Z_{21}(B) = Z_{21_0} + \frac{\partial Z_{21}}{\partial B}\Big|_{B=B_0} .b(t)$

$$T_{r_{21}}(f_0) \approx \frac{e_{g_1}}{|Z_{11_0}(f_0)| + R_1 + 50} \frac{\partial |Z_{21}(f_0)|}{\partial B}$$

Equivalent magnetic noise

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources
- Sensitivity evaluation

•Equivalent magnetic noise level

Conclusion

 $b_{n_{21}} = \frac{e_{n_{21}}}{T_{r_{21}}}$ T/\sqrt{Hz}

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

Conclusion

 ${\rm T}/\sqrt{Hz}$

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

 ${\rm T}/\sqrt{Hz}$

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

egs=1Vpeak

100

100

eg/=1Vpeal

 $R_{I}^{lk}(\Omega)$

 $R_{I}^{|k|}(\Omega)$

 $e_{aX}(V/\sqrt{Hz})$

100k

 $T_{A}(V/T)$

- Description
- Characterization

Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

•Equivalent magnetic noise level

 T/\sqrt{Hz}

100

egs=1Vpeak

 $e_{aX}(V/\sqrt{Hz})$

Conclusion

GMI-Coil configuration is a promising approach to increase noise performances of GMI based magnetometers.

Good agreement between the model and experimental data:

- Identify dominating noise sources.
- Extrapolate results to other conditionning circuitry.
- Noise floor is still due to electronic circuitry.

IpT/Hz^{1/2}, leaving room for further improvements.

The amorphous wire was kindly provided by prof. H. Chiriac from National Institute of Research & Development for Technical Physics, Romania.

Contact: basile.dufay@greyc.ensicaen.fr

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

Associated noise sources :

$$e_{ng_{1,2}}^2 = \frac{\left(\frac{e_{g_{1,2}}}{\sqrt{2}}\right)^2}{10^{148/10}} = \left(\frac{e_{g_{1,2}}}{10^{151/20}}\right)^2 \, [V_{\rm rms}^2/{\rm Hz}]$$
$$e_{nR}^2 = 4k_B TR \, [V_{\rm rms}^2/{\rm Hz}]$$

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

- Description
- Characterization

•Electronic conditionning

- Description
- Noise sources

Sensitivity evaluation

- •Equivalent magnetic noise level
- Conclusion

 (e_n, i_n) preamplifier

Associated noise sources :

$$e_{nR}^{2} = 4k_{B}TR \left[\mathbf{V}_{\rm rms}^{2}/\mathrm{Hz}\right]$$
$$e_{ng_{1,2}}^{2} = \frac{\left(\frac{e_{g_{1,2}}}{\sqrt{2}}\right)^{2}}{10^{148/10}} = \left(\frac{e_{g_{1,2}}}{10^{151/20}}\right)^{2} \left[\mathbf{V}_{\rm rms}^{2}/\mathrm{Hz}\right]$$

Applied magnetic field (mT)

 $\frac{1k}{R_{I}(\Omega)}$

10k

100k

 $\frac{1k}{R_{I}(\Omega)}$

10k

100k

10

100

10

