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REGULARITY AND B-FUNCTIONS FOR D-MODULES

YVES LAURENT

Abstract

A holonomic D-module on a complex analytic manifold admits always a b-function along
any submanifold. If the module is regular, it admits also a regular b-function, that is a
b-function with a condition on the order of the lower terms of the equation. We prove that
these two b-functions are equal. In the same time we prove that a module which is regular
along a submanifold admits a regular b-function along this submanifold.

2000 Mathematics Subject Classification. 35A27.
Key words and phrases. D-module, regular, b-function.



2 YVES LAURENT

Introduction

Let f be a holomorphic function on an open set X of C
n. A b-function for f is a

polynomial b ∈ C[s] such that there exists a differential operator P on U with parameter
s satisfying an equation:

(1) b(s)f(x)s = P (s, x,Dx)f(x)
s+1

The generator of the ideal of the b-functions associated to f is usually called the Bernstein-
Sato polynomial of f (see[1] for details).

This definition has been extended by Kashiwara [3] to holonomic D-modules. Let X
be a complex manifold and Y a smooth hypersurface. Let DX be the sheaf of differential
operators on X. Let M be a holonomic DX-module and u a section of M. A b-function
for u along Y is an equation

(2) b(tDt)u = tP (t, x, tDt,Dx)u

satisfied by u. Here (t, x) are local coordinates of X such that t is an equation for Y . A
similar definition exits for submanifolds of X of any codimension.

The b-function is called regular if P may be chosen so that its order is not greater
than the degree of b. ”Order” means order as differential operator that is in (Dx,Dt) in
equation (2) and order in (s,Dx) in equation (1).

It has been proved by Kashiwara [3] that a holonomic D-module admits a b-function
along any smooth hypersurface and by Kashiwara-Kawäı [5] that a regular holonomic D-
module admits a regular b-function along any smooth hypersurface. It is an old question
to know if these two b-functions are equal (see [13] for example but the question is older).

There is another notion of regularity, the regularity of a D-module along a submanifold.
The definition will be given in definitions 1.3 and 2.5. In the case of a hypersurface,
this is equivalent to the fact that solutions in the formal completion transversally to the
hypersurface are convergent. It has been proved that a regular holonomic module is
regular along any submanifold in [6]. It is also a direct consequence of the definition that
if a D-module admits a regular b-function along a submanifold, it is regular along it. The
question is to prove that the two properties are equivalent.

The aim of this paper is to solve these two questions by proving that if a D-module is
regular along a submanifold, its b-function is always regular.

The problem is better understood after microlocalization, that is for modules over the
sheaf EX of microdifferential operators. Regularity and b-function may be defined for a
coherent EX-module M along a conic lagrangian submanifold Λ of the cotangent bundle
[8]. All definitions are invariant under quantized canonical transformation. Concerning
D-modules, this will prove that the result is true not only for hypersurfaces but also for
any smooth subvariety of X.

The b-function is the annihilator of a bi-graded module named gr
(∞)
V (M) and a regular

b-function, if it exists, is the annihilator of a bi-graded module named gr
(1)
V (M). Both are

modules over the sheaf of holomorphic functions on the cotangent bundle to Λ. Moreover,

there exists a surjective morphism gr
(1)
V (M) → gr

(∞)
V (M). We will get the result by

proving that this morphism is an isomorphism if M is regular along Λ.

If M is regular along Λ, the analytic cycles defined by the gr
(∞)
V (M) and gr

(1)
V (M)

are equal. This is a consequence of the study of regularity in [10] and [12]. Hence the

morphism gr
(1)
V (M) → gr

(∞)
V (M) is an isomorphism on a Zarisky open set.
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The problem is now to prove that it is an isomorphism everywhere from the fact that
it is generically an isomorphism. Such a result is well-known for holonomic EX -modules:
the support of a holonomic EX-module is lagrangian, hence a morphism of holonomic EX-
modules which is an isomorphism generically is an isomorphism. However, there is no
such structure on the two graded rings. Here, the idea of the proof is to use the second
microlocalization to define a structure of EX -module on the two graded rings. In fact, we
get a structure of module on the sheaf EX(0) of microdifferential operators of degree 0 but
this is sufficient to get the result.

In the first section of this paper, we briefly recall the definitions of b-functions and state
the result for DX -modules.

In the second section, we study the microlocal case. We define the filtrations and
bifiltrations on holonomic EX -modules which define the b-function and the regularity.

In the third section we define the 2-microlocal operators ant their filtrations. We prove
an isomorphism between a 2-microlocal graded ring and a ring of microdifferential opera-
tors of order 0. Then we prove the main theorem.

In the last section we give an application to meromorphic b-function and an extension
to non regular holonomic D- or E-modules.

1. The case of differential equations

In this first section, we briefly recall the definitions of b-functions and regularity in the
framework of DX -modules and state our main result in this case.

1.1. Filtrations and b-functions. Let X be a complex analytic manifold, OX the sheaf
of holomorphic functions on X and DX the sheaf of differential operators on X with
coefficients in OX . Let T ∗X be the cotangent bundle to X with canonical projection
π : T ∗X → X. Let Y be a submanifold of X.

The sheaf DX is provided with two filtrations. The first one is the filtration (DX,m)m≥0

by the usual order. The corresponding graded ring grDX is identified to π∗O[T ∗X] the
sheaf of holomorphic functions on T ∗X with polynomial coefficients in the fibers of π.

The second one is the V-filtration which has has been defined by Kashiwara in [4] as:

(1.1) VkDX = {P ∈ DX | ∀ℓ ∈ Z, PIℓ
Y ⊂ Iℓ−k

Y }

where IY is the ideal of definition of Y and Iℓ
Y = OX if ℓ ≤ 0.

Let τ : TY X → Y be the normal bundle to Y in X and O[TY X] the sheaf of holomorphic
functions on TY X which are polynomial in the fibers of τ . Let O[TY X][k] be the subsheaf
of O[TY X] of homogeneous functions of degree k in the fibers of τ . There are canonical iso-

morphisms between Ik
Y /I

k−1
Y and τ∗O[TY X][k], between

⊕
Ik
Y /I

k−1
Y and τ∗O[TY X]. Hence

the graded ring grV DX associated to the V-filtration on DX acts naturally on O[TY X]. An
easy calculation [16] shows that as a subring of End(τ∗O[TY X]) it is identified to τ∗D[TY X]

the sheaf of differential operators on TY X with coefficients in O[TY X] .
The Euler vector field θ of TY X is the vector field which acts on O[TY X][k] by multipli-

cation by k. Let ϑ be any differential operator in V0DX whose image in grV0 DX is θ. Let
M be a coherent DX -module and u a section of M.

Definition 1.1. A polynomial b is a b-function for u along Y if there exists a differential
operator Q in V−1DX such that (b(ϑ) +Q)u = 0.
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Definition 1.2. A polynomial b is a regular b-function for u along Y if there exists a
differential operator Q in V−1DX which is of usual order at most the degree of b such that
(b(ϑ) +Q)u = 0.

The set of b-functions is an ideal of C[T ], if it is not zero we call a generator of this
ideal ”the” b-function of u along Y .

Remark that the set of regular b-function for u is not always an ideal of C[T ].

1.2. Regularity. The definition of a regular holonomic module may be found in [6]. It
is equivalent to the fact that formal solutions converges at each point. More precisely, if
x is a point of X, OX,x the ring of germs of OX at x and m the maximal ideal of OX,x,

let us denote by ÔX,x the formal completion of OX,x for the m-topology. The holonomic
DX -module M is regular if and only if:

∀j ≥ 0, ∀x ∈ X, ExtjDX
(M, ÔX,x) = ExtjDX

(M,OX,x)

This may be a definition as in Ramis [14] or a theorem as in Kashiwara-Kawäı [6].
A weaker notion is the regularity along a submanifold. This has been studied in several

papers [7],[8],[12]. The definition will be given in section 2.4 using microcharacteristic
varieties. Here we give a more elementary definition.

Let Y be a submanifold of X, ϑ is the vector field of section 1.1 and M be a holonomic
DX -module M defined In a neighborhood of Y .

Definition 1.3. The holonomic DX-module M is regular along Y if any section u of M is
annihilated by a differential operator of the form ϑN+P+Q where P is in DX,N−1∩V0DX

and Q is in DX,N ∩ V−1DX

Let us denote by O
X̂|Y

the formal completion of OX along Y , that is

O
X̂|Y

= proj lim kOX/Ik
Y

We proved in [9] that if M is regular along Y then

(1.2) ∀j ≥ 0, ExtjDX
(M,O

X̂|Y
) = ExtjDX

(M,OX )

We proved in [12] that the converse is true if Y is a hypersurface.
It has been proved first by Kashiwara in [3], that if M is a holonomic DX-module, there

exists a b-function for any section u of M along any submanifold Y of X. Kashiwara and
Kawäı proved in [5] that if M is a regular holonomic DX -module, there exists a regular

b-function for any section u of M along any submanifold Y of X.
The main result of this paper is:

Theorem 1.4. If the holonomic DX -module M is regular along Y , then for any section

u of M, the b-function of u along Y is a regular b-function for u along Y .

This shows that if M is regular along Y then it admits a regular b-function and also
that if there is a regular b-function then the regular b-function of lowest degree is precisely
the b-function.

Remark 1.5. Explicit calculations in coordinates of various filtrations and b-functions may
be found in [11].
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2. Microdifferential equations

In this section, we review basic definitions of filtration, V-filtration and bifiltrations on
EX-modules. Details may be founded in [1] or [16], and [8].

2.1. V-filtration on microdifferential operators. We denote by EX the sheaf of mi-
crodifferential operators of [15]. It is filtered by the order, we will denote that filtration
by EX =

⋃
EX,k and call it the usual filtration.

Let O(T ∗X) be the sheaf of holomorphic functions on T ∗X which are finite sums of
homogeneous functions in the fibers of π : T ∗X → X. The graded ring grEX is isomorphic
to π∗O(T ∗X) [15].

In [8], we extended the definitions of V-filtrations and b-functions to microdifferen-
tial equations and lagrangian subvarieties of the cotangent bundle. These definitions are
invariant under quantized canonical transformations.

Let Λ be a lagrangian conic submanifold of the cotangent bundle T ∗X and MΛ be a
simple holonomic EX-module supported by Λ. By definition, such a module is generated
by a non degenerate section uΛ, that is such that the ideal of the principal symbols of the
microdifferential operators annihilating uΛ is the ideal of definition of Λ. It always exists
locally [15].

Let MΛ,k = EX,kuΛ. Then the V-filtration on EX along Λ is defined by:

(2.1) VkEX = {P ∈ EX | ∀ℓ ∈ Z, PMΛ,ℓ ⊂ MΛ,ℓ+k }

This filtration is independent of the choices of MΛ and uΛ, so it is globally defined.
Let OΛ[k] be the sheaf of holomorphic functions on Λ homogeneous of degree k in

the fibers of Λ → X and O(Λ) =
⊕

k∈Z OΛ[k]. Then there is an isomorphism between

MΛ,k/MΛ,k−1 and OΛ,k. By this isomorphism the graded ring grV EX acts on O(Λ) and
may be identified to the sheaf D(Λ) of differential operators on Λ with coefficients in O(Λ).

All these definitions are invariant under quantized canonical transformations [8].
The restriction to the zero section T ∗

XX of T ∗X of the sheaf EX is the sheaf DX of
differential operators. If Λ is the conormal bundle T ∗

Y X to a submanifold Y of X then
the V-filtration induced on DX by the V-filtration of EX is the same than the V-filtration
defined in section 1.1. The associated graded ring is the restriction to Y of D(Λ) which is
the sheaf D[Λ] of differential operators with coefficients polynomial in the fibers of Λ → X.

The correspondence between the isomorphism grV DX ≃ D[TY X] of section 1.1 and the

isomorphism grV DX ≃ D[T ∗

Y
X] is given by the partial Fourier transform associated to the

duality between the normal bundle TY X and the conormal bundle T ∗
Y X .

2.2. Filtrations on E-modules. Let M be a (left) coherent EX -module. A filtration
(resp. a V-filtration) of M is a filtration compatible with the usual filtration (resp. V-
filtration) of EX .

A good filtration of M is a filtration which is locally of the form Mk =
∑N

i=1 EX,k−kiui
for (u1, . . . , uN ) local sections of M and (k1, . . . , kN ) integers. In the same way, a good

V-filtration of M is locally of the form VkM =
∑N

i=1 Vk−kiEXui.
If M is provided with a good filtration, the associated graded module grM is a coherent

module over grEX = π∗O(T ∗X). Then OT ∗X⊗π−1grEX π−1grM is a coherent OT ∗X -module
which defines a positive analytic cycle on T ∗X independent of the good filtration. This

cycle is called the characteristic cycle of M and denoted by C̃h(M). Its support is the
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characteristic variety of M denoted Ch(M), it is equal to the support of the module M
itself.

The characteristic variety of a coherent EX-module is a homogeneous involutive subva-
riety of T ∗X. When its dimension is minimal, that is when it is a lagrangian, the module
is holonomic.

If M is provided with a good V-filtration, the graded module grV M is a coherent
module over grV EX = D(Λ) hence grV M is a coherent D(Λ)-module. The characteristic
cycle of this module is a positive analytic cycle on T ∗Λ and its support is involutive.
According to [8] and [12], this characteristic cycle is called the microcharacteristic cycle

of M of type ∞ and is denoted by C̃hΛ(∞)(M). The corresponding microcharacteristic
variety is ChΛ(∞)(M) (sometimes also denoted by ChΛ(∞,∞)(M)). We have the following
fundamental result:

Theorem 2.1 (Theorem 4.1.1 of [8]). The dimension of the characteristic variety of

grV M is less or equal to the dimension of the characteristic variety of M. In particular,

grV M is holonomic if M is holonomic.

As grVk EX is identified to the subsheaf of D(Λ) of differential operators P satisfying

[θ, P ] = kP , the Euler vector field θ acts on grV M, so we may define a morphism Θ by
Θ = θ − k on grVk M. As [θ, P ] = +kP on grVk EX , Θ commutes with the action of grV EX
that is defines a section of EndgrV EX (gr

V M).

Definition 2.2. The set of polynomials b satisfying

b(Θ)grV (M) = 0

is an ideal of C[T ]. When this ideal is not zero, a generator is called the b-function of M
along Λ.

Theorem 2.3. If M is a holonomic EX-module, there exists a b-function for M along

any lagrangian submanifold Λ of T ∗X.

This theorem has been proved first by Kashiwara for D-modules in [3]. It has been
proved for EX-module in [8] as a corollary of theorem 2.1.

The b-function depends on the good V -filtration, in fact its roots are shifted by integers
by change of V-filtration.

2.3. Bifiltration. From the two filtrations on EX , we get a bifiltration:

(2.2) ∀(k, j) ∈ Z× Z Fk,jEX = EX, j ∩ VkEX

To this bifiltration is associated the bigraded ring:

(2.3) grFEX =
⊕

(k,j)

grFk,jEX with grFk,jEX = Fk,jEX/(Fk−1,jEX + Fk,j−1EX)

This bigraded ring is equal to the graded ring of grV EX = D(Λ) (this latter with the
standard filtration). So it is isomorphic to πΛ∗O[T ∗Λ], the sheaf of holomorphic functions
on T ∗Λ which are polynomial in the fibers of πΛ : T ∗Λ → Λ and sum of homogeneous
functions for the second action of C∗ on T ∗Λ. ”Second action” means action induced on
T ∗Λ by the action of C∗ on Λ.



REGULARITY AND B-FUNCTIONS FOR D-MODULES 7

Let M be a (left) coherent EX-module. A good bifiltration of M is a bifiltration com-

patible with the bifiltration of EX which is locally equal to Fk,jM =
∑N

ν=1 Fk−kν ,j−jνEXuν
for (u1, . . . , uN ) local sections of M.

The bigraded module associated to the bifiltration is defined by the same formula than
(2.3). It is proved in §3.3. of [8], that the bigraded module associated to a good bifiltration
is a coherent grFEX = πΛ∗O[T ∗Λ] module.

Let OT ∗Λ be the sheaf of holomorphic functions on T ∗Λ. Then OT ∗Λ⊗O[T∗Λ]
π−1grFM.

is a coherent OT ∗Λ-module. The associated analytic cycle and analytic variety are called
the microcharacteristic cycle and microcharacteristic variety of M of type (∞, 1) and are

denoted respectively by C̃hΛ(∞,1)(M) and ChΛ(∞,1)(M). This microcharacteristic variety
is an involutive bihomogeneous subvariety of T ∗Λ [7],[8]. (The same microcharacteristic
variety has been defined with different notations by Teresa Monteiro Fernandes [2].)

Definition 2.4. Let M be a coherent EX-module with a good bifiltration FM. A regular

b-function for M is a polynomial b such that:

∀(i, j) ∈ Z× Z, b(Θ)Fi,jM ⊂ Fi−1,j+nM

where n is the degree of b.

To end this section, let us remark that we may recover the microcharacteristic cycle

C̃hΛ(∞)(M) from a good bifiltration. Indeed, if FM is a good bifiltration, we may define
a V-filtration by VkM =

⋃
j Fk,jM and a good filtration on grVk M is induced by the

images of the sheaves Fk,jM. In this way, the cycle C̃hΛ(∞)(M) as defined in section 2.2
is the analytic cycle associated to the bigraded module:

grWM =
⊕

(k,j)

grWk,jM with

grWk,jM = Fk,jM

/(
Fk,j−1M+ Fk,jM

⋂⋃

ℓ

Fk−1,ℓM

)
(2.4)

2.4. Regularity along a lagrangian conic submanifold. The Euler vector field θ of
Λ is a differential operator on Λ, its characteristic variety is a canonical subvariety of T ∗Λ
which will be denoted by SΛ. As in section 2.1, MΛ is a simple holonomic EX -module
supported by Λ.

Definition 2.5. Let Λ be a lagrangian conic submanifold of T ∗X and M be a holonomic
EX-module. The module M is regular along Λ if and only if it satisfies the following
equivalent properties:

i) The microcharacteristic variety ChΛ(∞,1)(M) is contained in SΛ.

ii) The microcharacteristic variety ChΛ(∞,1)(M) is lagrangian.

iii) The microcharacteristic variety ChΛ(∞,1)(M) is equal to ChΛ(∞)(M)

iv) The microcharacteristic cycle C̃hΛ(∞,1)(M) is equal to C̃hΛ(∞)(M)

v) ∀j ≥ 0, ExtjEX (M,MΛ) = ExtjEX (M, E∞
X ⊗EX MΛ)

We recall that E∞
X is the sheaf of microdifferential operators of infinite order.

Proof. This equivalence between the items of this definition has been proved in [8], [10]
and [12], more precisely:
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• (iv)⇒(iii) is straightforward while (iii)⇒(ii) comes from theorem 2.1.

• (ii)⇒(i) because any lagrangian bihomogeneous subvariety of T ∗Λ is contained in
SΛ [8].

• (i) ⇒(v) by corollary 4.4.2. of [10].

• (v) ⇒(iv) by theorem 2.4.2 of [12].

�

If Λ is the conormal bundle to a submanifold Y of X, we may take MΛ = CY |X the
sheaf of holomorphic microfunctions of [15]. Then (v) is reformulated as:

(v)’ ∀j ≥ 0, ExtjEX (M, CY |X) = ExtjEX (M, C∞
Y |X)

If Y has codimension 1, let B∞
Y |X = H1

Y (OX) be the cohomology of OX and BY |X =

H1
[Y ](OX) the corresponding algebraic cohomology. As we are in codimension 1, we have:

C∞
Y |X/CY |X = π−1(B∞

Y |X/BY |X) with π : T ∗
Y X → Y

So if M is a holonomic DX-module condition (v) is equivalent to

(v)” ∀j ≥ 0, ExtjDX
(M,BY |X) = ExtjDX

(M,B∞
Y |X)

and by [12] this is equivalent to formula 1.2.

2.5. The main result for EX-module. Let Λ be conic lagrangian submanifold of T ∗X.
Remark that if M has a regular b-function along Λ, it satisfies definition 2.5 hence is
regular along Λ.

Theorem 2.6. If the holonomic EX -module M is regular along Λ, then the b-function of

M along Λ is a regular b-function.

As stated in the introduction, this theorem contains two results:

• M is regular along Λ if and only if it admits a regular b-function along Λ.
• If M admits a regular b-function along Λ, then any usual b-function (including
”the” b-function) is regular.

It is easy to see that definitions 1.1, 1.2 and 1.3 and theorem 1.4 are obtained as
restriction to the zero section of T ∗X of definitions 2.2, 2.4 and 2.5 and theorem 2.6.

3. Second microlocalization

3.1. 2-microdifferential operators. Let Λ be a lagrangian conic submanifold of T ∗X.
The sheaf E2

Λ of 2-microdifferential operators is a sheaf of rings on T ∗Λ which has been
defined in [7]. In this paper, we will use it in a very specific situation, so we just give the
definition in local coordinates.

We assume that Y = { (x, t) ∈ X | t = 0 } is a smooth hypersurface of X, that
Λ = T ∗

Y X = { (x, t, ξ, τ) ∈ T ∗X) | t = 0, ξ = 0 } and that T ∗Λ has coordinates (x, τ, x∗, τ∗).
We denote by πΛ the projection T ∗Λ → Λ.

E2
Λ is a bifiltered sheaf of rings E2

Λ =
⋃

E2
Λ[k, ℓ] where a section of E2

Λ[k, ℓ] on an open
set Ω of T ∗Λ is represented by a formal series:

(3.1) P =
∑

(i,j)∈Z2

j−i≤k,j≤ℓ

Pij(x, τ, x
∗, τ∗)
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where Pij is a holomorphic function on Ω, homogeneous of degree i in (x∗, τ∗) and of
degree j in (τ, x∗), with the growth condition:

(3.2) ∀K ⊂⊂ U, ∃C > 0, ∀(x, τ, x∗, τ∗) ∈ K, |Pij(x, τ, x
∗, τ∗)| < Ck+ℓ+i−2j(ℓ− j)!

The product of two operators P =
∑

Pij and Q =
∑

Qij is given by R =
∑

Rij with
(3.3)
Rλµ(x, τ, x

∗, τ∗) =

∑

λ=i+k−|α|−|β|
µ=j+ℓ−|α|−|β|

1

α!

1

β!

(
∂

∂x∗

)α( ∂

∂τ

)β

Pij(x, τ, x
∗, τ∗)

(
∂

∂x

)α( ∂

∂τ∗

)β

Qkℓ(x, τ, x
∗, τ∗)

The restriction of E2
Λ to the zero section of T ∗Λ is denoted by D2

Λ. Sections of D
2
Λ have a

symbol P which is polynomial in (x∗, τ∗). In fact, D2
Λ is canonically isomorphic as a sheaf

of rings to EX |Λ. Explicitly the morphism is given as follows:
A section of EX |Λ is represented by a symbol P =

∑
j≤j0

Pj(x, t, ξ, τ) where Pj is a

holomorphic function homogeneous of degree j in (ξ, τ) and defined near {t = 0, ξ = 0}.
Each Pj develops in Taylor series as:

Pj(x, t, ξ, τ) =
∑

α,β

Pjαβ(x, τ)t
αξβ

and its image in D2
Λ is given by

∑
Pij with

Pij(x, τ, x
∗, τ∗) =

∑

|α|+|β|=i

Pjαβ(x, τ)(−τ∗)α(x∗)β

The isomorphism EX |Λ → D2
Λ is compatible with the bifiltrations. We denote FijE

2
Λ =

E2
Λ[i, j] and define the associated bigraded ring by the same formula than (2.3). This

bigraded ring is isomorphic to the sheaf O(T ∗Λ) =
⊕

O(T ∗Λ)[i, j] where O(T ∗Λ)[i, j] is the
sheaf of holomorphic functions on T ∗Λ which are homogeneous of degree i in (x∗, τ∗) and
of degree j in (τ, x∗).

The sheaf of rings E2
Λ is coherent, noetherian and flat on π−1

Λ EX |Λ [7]. (Remark that in
[7], the sheaf denoted here by E2

Λ is denoted by E2
Λ(∞,1).)

3.2. Bifiltrations and V-filtration on E2
Λ-modules. Let M be a coherent E2

Λ-module
with a good bifiltration M =

⋃
FijM. The associated bigraded module is

(3.4) grFM =
⊕

(i,j)

grFi,jM with grFi,jM = Fi,jM/(Fi−1,jM+ Fi,j−1M)

As in the case of EX-modules, we may also define grWM by formula (2.4).

From [7, §2.6.], we know that grFM and grWM are coherent modules over grFE2
Λ =

O(T ∗Λ). The module OT ∗Λ ⊗O(T∗Λ)
grFM defines an analytic cycle C̃hΛ(∞,1)(M) whose

support is equal to the support of M and is denoted by ChΛ(∞,1)(M). In the same way,

OT ∗Λ ⊗O(T∗Λ)
grWM defines the cycle C̃hΛ(∞)(M) and the microcharacteristic variety

ChΛ(∞)(M). These microcharacteristic varieties are involutive [7].
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Let M be a coherent EX -module with a good bifiltration. As E2
Λ is flat on π−1

Λ EX |Λ, the

module M̃ = E2
Λ ⊗π−1

Λ EX |Λ
π−1
Λ M|Λ is coherent and the bifiltration given by

(3.5) FijM̃ =
∑

k+p=i,ℓ+q=j

E2
Λ[k, ℓ] ⊗ π−1

Λ FpqM

is a good bifiltration.

Lemma 3.1. Let M be a coherent EX-module and M̃ = E2
Λ ⊗

π−1
Λ EX |Λ

π−1
Λ M|Λ. The

microcharacteristic cycles of M and M̃ are equal:

C̃hΛ(∞,1)(M) = C̃hΛ(∞,1)(M̃) and C̃hΛ(∞)(M) = C̃hΛ(∞)(M̃)

Proof. Let I be a coherent ideal of EX . Theorem 2.6.3. of [7] shows that grF (E2
Λπ

−1
Λ I) =

grF (E2
Λ)gr

F (π−1
Λ I) and grW (E2

Λπ
−1
Λ I) = grW (E2

Λ)gr
W (π−1

Λ I).
Using the same argument than in the proof of proposition 2.6.1. in [16] we get the

result. �

Lemma 3.2. Let M be a coherent E2
Λ-module such that C̃hΛ(∞,1)(M) = C̃hΛ(∞)(M).

Then there exists a hypersurface L of ChΛ(∞,1)(M) such that the morphism grFM →
grWM is an isomorphism on the complementary of L.

Proof. Remark first that from the definition of graded modules, grFM → grWM is always
well defined and surjective.

The microcharacteristic cycles are by definition the analytic cycles associated to the
coherent OT ∗Λ-modules OT ∗Λ⊗O(T∗Λ)

grFM and OT ∗Λ⊗O(T∗Λ)
grWM. If these cycles are

equal the surjective morphism between them is an isomorphism almost everywhere that
is outside some hypersurface L.

Then the fact that OT ∗Λ ⊗O(T∗Λ)
grFM → OT ∗Λ ⊗O(T∗Λ)

grWM is an isomorphism

implies that the morphism grFM → grWM is an isomorphism. This has been proved for
graded modules in lemma 2.2.2. of [16] and the proof for bigraded modules is similar. �

3.3. V-filtration. We may define a filtration V E2
Λ which is an extension of the V-filtration

on EX |Λ by:

VkE
2
Λ =

⋃

ℓ

E2
Λ[k, ℓ]

Let Ỹ = Y × C with coordinates (x, s). We denote by (x, s, x∗, s∗) the corresponding
coordinates of T ∗Y ×T ∗

C and define E∗
Ỹ
as the subsheaf of EỸ of microdifferential operators

commuting with the derivation Ds (that is with a symbol independent of s).
Let γ : T ∗Y × T ∗

C
C → T ∗Y be the canonical map (x, x∗, s, 0) 7→ (x, x∗).

From now on in this section, we assume that τ 6= 0, that is we work outside of the zero
section of T ∗X . Then SΛ = { (x, τ, x∗, τ∗) ∈ T ∗Λ | τ∗ = 0 } and we set ̺ : SΛ → T ∗Y .

Lemma 3.3. There is an isomorphism of sheaves of rings

̺∗
(
grV0 E

2
Λ|SΛ

)
≃ γ∗

(
E∗
Ỹ
|T ∗Y×T ∗

C
C

)

which induces isomorphisms for any j ∈ Z

̺∗
(
grV0 E

2
Λ[0, j]|SΛ

)
≃ γ∗

(
E∗
Ỹ
(j)|T ∗Y×T ∗

C
C

)
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Proof. From definition (3.1), we see that a section of grV0 E
2
Λ is represented by a series

P =
∑

j≤ℓ Pj(x, τ, x
∗, τ∗) where Pj is holomorphic and homogeneous of degree j in (x∗, τ∗)

and also j in (τ, x∗). If it is defined in a neighborhood of {τ∗ = 0}, each Pj develops in
Taylor series in τ∗ and by homogeneity may be rewritten as

Pj(x, τ, x
∗, τ∗) =

∑

k≥0

Pjk(x, x
∗)(ττ∗)k

where Pjk is defined on an homogeneous subset V of T ∗Y and homogeneous of degree
j − k in x∗. Inequalities (3.2) give:

(3.6) ∀K ⊂⊂ V, ∃C > 0, ∃C1 > 0, ∀(x, x∗) ∈ K, |Pjk(x, x
∗)| < Ck

1C
ℓ−j(ℓ− j)!

Through the isomorphism EX |Λ → D2
Λ of section 3.1, (ττ∗)k is the symbol of the operator

(−1)ktkDk
t which may be written as a polynomial in tDt. Explicitly,

(3.7) tkDk
t =

k∑

j=1

αj,k(tDt)
j with

k∑

j=1

αj,kT
j = T (T − 1) . . . (T − k + 1)

The numbers αj,k are determined by the relation αj,k+1 = αj−1,k−kαj,k hence the numbers

βj,k = (−1)k−j(k − 1)!/(i− 1)!αj,k satisfy βj,k+1 = (j − 1)/(k − 1)βj−1,k + βj,k. So, βj,k is

smaller than the binomial coefficient hence than 2k, this gives

(3.8) |αj,k| < 2kk!/j! ≤ 4k(k − j)!

The operator P of symbol
∑

Pj(x, τ, x
∗, τ∗) may be written as

∑
Qj,k(x, x

∗)σk where σ
is the symbol of the operator tDt and Qj,k(x, x

∗) is homogeneous of degree j − k in x∗.
From (3.7) we get

Qj,k(x, x
∗) =

∑

ℓ≥0

Pj+ℓ−k,ℓ(x, x
∗)αℓ,k

Combining inequalities (3.6) and (3.8) we have:

(3.9) ∀K ⊂⊂ V, ∃C > 0, ∃C1 > 0, ∀(x, x∗) ∈ K, |Qjk(x, x
∗)| < Ck

1C
ℓ−j(ℓ− j)!

The function Qj(x, x
∗, s∗) =

∑
k≥0Qj−k,k(x, x

∗)(s∗)k is homogeneous of degree j in

(x∗, s∗) and defined near s∗ = 0, that is on a conic open subset of T ∗Ỹ of the form
V = {x ∈ V0, |s

∗| < ε|x∗|} and the condition (3.8) shows that Q =
∑

Qj is the symbol of

a microdifferential operator on Ỹ independent of s and defined near s∗ = 0.
As tDt commutes with itself, formula (3.3) implies that the product of P by Q when

they are written as P (x, x∗, σ) and Q(x, x∗, σ) is

(3.10) R(x, x∗, σ) =
∑(

∂

∂x∗

)α

P (x, x∗, σ)

(
∂

∂x

)α

Q(x, x∗, σ)

which is precisely the product of two operators of E∗
Ỹ
(when σ is replaced by s∗) hence the

morphism ̺∗
(
grV0 E

2
Λ|SΛ

)
≃ γ∗

(
E∗
Ỹ
|T ∗Y×T ∗

C
C

)
is a morphism of sheaves of rings. �

Remark 3.4. On the zero section of T ∗X this result is equivalent to the well-known fact
that gr0V DX ≃ DY [θ].

LetDs be the derivation in s, that is the section of E∗
Ỹ
of symbol s∗. We have E∗

Ỹ
/E∗

Ỹ
Ds ≃

γ−1EY .
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Lemma 3.5. Let M be a coherent E∗
Ỹ
-module whose support is contained in {s∗ = 0}.

Then M is a coherent γ−1EY -module and a good E∗
Ỹ
-filtration for M is also a good γ−1EY -

filtration.

Proof. Let P ∈ E∗
Ỹ

whose principal symbol is σ(P ) = (s∗)N for some integer N . By the

division theorem [15, Th 2.2.1 Ch II], E∗
Ỹ
/E∗

Ỹ
P is isomorphic to (γ−1EY )

N .

If the support of M is contained in {s∗ = 0}, each section of M is annihilated by an
operator P with σ(P ) = (s∗)N hence there is a surjective morphism

⊕

k=1...q

E∗
Ỹ
/E∗

Ỹ
Pk → M → 0

and the kernel of this morphism has his support contained in {s∗ = 0} so we may iterate
the process and get (locally) a resolution of M by free (γ−1EY )

N -modules. This proves
that M is a coherent γ−1EY -module.

If (Mj)j∈Z is a good filtration, there are locally sections (u1, . . . , uN ) of M and integers
(j1, . . . , jN ) such that Mj =

∑
E∗
Ỹ
(j − jk)uk. We choose Pk as before for each uk and the

map
⊕

E∗
Ỹ
/E∗

Ỹ
Pk → M define the same filtration which is then a good γ−1EY filtration.

�

The previous lemma is still true for microdifferential operators of order 0:

Lemma 3.6. Let M be a coherent E∗
Ỹ
(0)-module whose support is contained in {s∗ = 0}.

Then M is a coherent γ−1EY (0)-module and a good E∗
Ỹ
(0)-filtration for M is also a good

γ−1EY (0)-filtration.

Proof. On the zero section of T ∗Y , that is near point where x∗ = 0, E∗
Ỹ
(0) and EY (0) are

both isomorphic to OY so the result is trivial.
If x∗ 6= 0, there is locally an invertible operator ∆ of order 1 in EY and the proof is the

same than the proof of lemma 3.5 replacing Ds by ∆−1Ds which is of order 0. �

Proposition 3.7. Let M be a coherent E2
Λ-module with a good bifiltration FM. Assume

that the support of M is contained in SΛ. Then for all (i, j) ∈ Z× Z, the two quotients:

FijM /Fi−1,jM and FijM

/(
FijM∩

⋃

k

Fi−1,kM

)

are coherent ̺−1EY (0)-modules.

Proof. We consider the sheaf of rings E2
Λ[0, 0] filtered by the subsheaves E2

Λ[i, 0] for i ≤ 0.
It has been proved in [7, theorem 2.5.3] that this filtration is a ”good noetherian filtra-

tion”. This denomination is due to Björk [1] while the same property is called ”zariskian”
by Schapira [16]. Moreover the associated graded ring is coherent [7, lemma 2.6.2].

So we may apply [16, proposition 1.4.1] to the filtered coherent E2
Λ[0, 0]-module FijM

and we get that FijM /Fi−1,jM is a coherent E2
Λ[0, 0]/E

2
Λ[−1, 0]-module.

The same results are true for E2
Λ with the V-filtration [7, theorem 2.5.1] and we get that

FijM /
⋃

k Fi−1,kM is also a coherent E2
Λ[0, 0]/E

2
Λ[−1, 0]-module.

So FijM /Fi−1,jM and FijM /
⋃

k Fi−1,kM are coherent (E2
Λ[0, 0]/E

2
Λ[−1, 0])-modules

supported by SΛ. We conclude immediately by using lemmas 3.3 and 3.6. �
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Proposition 3.8. If the support of M is contained in SΛ, the submodules Fi,kM for k ≤ j
define a good filtration of ̺−1EY (0)-modules

on FijM /Fi−1,jM and on FijM

/(
FijM∩

⋃

k

Fi−1,kM

)

Proof. The good bifiltration of M is given locally by sections (u1, . . . , uN ):

∀(ℓ, k) ∈ Z× Z, FℓkM =
∑

λ

E2
Λ[ℓ− ℓλ, k − kλ]uλ

We fix (i, j). As we have assumed that τ 6= 0, the operator Dt is invertible in E2
Λ. As Dt

is of order (1, 1), we may multiply each uλ by a power of Dt and assume that the integers
(ℓ1, . . . , ℓN ) are all equal to i so that

FikM =
∑

λ

E2
Λ[0, k − kλ]uλ

Let us assume first that x∗ 6= 0. Then there is an operator in E2
Λ which is of order (0, 1),

hence we may assume that all (k1, . . . , kN ) are all equal to 0 and so FikM =
∑

λ E
2
Λ[0, k]uλ.

Then the image of FikM in FijM /Fi−1,jM and FijM /
⋃

k Fi−1,kM are generated by∑
grV0 E

2
Λ[0, k]ūλ where ūλ is the class of uλ. Then by lemmas 3.3 and 3.5, these images

define good filtrations.
At a point p where x∗ = 0, E2

Λ[0, 0]/E
2
Λ[−1, 0] is isomorphic to OY by lemma 3.3, the

filtration induced by Fi,kM is finite because E2
Λ[0, k] = 0 for k < 0. So the filtration is

good if its graduate is OY -coherent. This a consequence of the fact that the bigraded
module grM is coherent. �

Remark 3.9. If Λ is not the conormal bundle to a hypersurface, the same results may be
proved if Y is changed to PΛ = Λ/C∗.

3.4. Proof of the main result. Let Λ be a smooth conic lagrangian submanifold of
T ∗X . Let M be a holonomic EX-module with a good bifiltration FM relative to Λ.

The aim of this section is to prove the following result:

Theorem 3.10. If M is regular along Λ, the canonical map

FijM /Fi−1,jM → FijM

/(
FijM∩

⋃

k

Fi−1,kM

)

is an isomorphism for each (i, j) ∈ Z× Z.

To prove the theorem, we will use the following lemma:

Lemma 3.11. Let Y be a complex manifold of dimension m and K be a coherent EY (0)-
module which is globally defined on T ∗Y . If the support of K is of dimension ≤ m − 1,
then K = 0.

Proof. The module EY ⊗EY (0)K is a coherent EY -module which is supported by the support
of K. But the support of a coherent EY -module is an involutive subvariety of T ∗Y hence
must be of dimension ≥ m or be empty. So EY ⊗EY (0) K = 0.

The restriction of EY to the zero section of T ∗Y is EY |Y = DY while EY (0)|Y = OY ,
hence K|Y is a coherent OY -module such that DY ⊗OY

(K|Y ) = 0.
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The sheaf DY is a locally free OY -module hence is faithfully flat so K|Y = 0. As K is
globally defined on T ∗Y , it is invariant under the action of C on the fibers of T ∗Y . So, if
K|Y = 0 then K = 0. �

Proof of theorem 3.10: first step. We will first prove the result under the conditions of
section 3. That is we assume that Λ is the conormal to a smooth hypersurface Y with
local coordinates such that Y = { (x, t) ∈ X | t = 0 } and Λ = { (x, t, ξ, τ) ∈ T ∗X | t =
0, ξ = 0 }. We also assume τ 6= 0.

Let M̃ = E2
Λ ⊗π−1EX |Λ π−1M|Λ with the bifiltration FijM̃ given by formula 3.5.

We fix some (i, j) ∈ Z× Z for which we will proof the theorem. We denote

(3.11) N1 = FijM̃
/
Fi−1,jM̃ and N∞ = FijM̃

/(
FijM̃ ∩

⋃

k

Fi−1,kM̃

)

By definition 2.5, as M is regular along Y , the microcharacteristic variety ChΛ(∞,1)(M)
is contained in SΛ = { (x, τ, x∗, τ∗) ∈ T ∗Λ | ττ∗ = 0 }. By lemma 3.1, this variety is the

support of M̃, hence by proposition 3.7, N1 and N∞ are coherent ̺−1EY (0)-modules with

the good filtrations (FℓN1) and (FℓN∞) induced by (FiℓM̃)ℓ≤j .
We have

FℓN1/Fℓ−1N1 = FiℓM̃
/
(Fi−1,jM̃+ Fiℓ−1M̃)(3.12)

FℓN∞/Fℓ−1N∞ = FiℓM̃

/(
Fi,ℓ−1M̃+

⋃

ℓ

Fi−1,ℓM̃

)
= grWiℓ M̃(3.13)

Remark that grℓN1 = FℓN1/Fℓ−1N1 is not equal a priori to grFiℓM̃. Anyway, for ℓ ≤ j,

we have grℓN∞ = grWiℓ M̃ and a surjective morphism

grFiℓM̃ = FiℓM̃/(Fi−1,ℓM̃+ Fi,ℓ−1M̃) → grℓN1

If M is regular then by definition 2.5 the two cycles C̃hΛ(∞,1)(M) and C̃hΛ(∞)(M) are
equal. Hence by lemmas 3.1 and 3.2, there exists a hypersurface L of ChΛ(∞,1)(M) such

that the morphism grFM̃ → grWM̃ is an isomorphism on the complementary of L.

Remark that the morphism α : grFiℓM̃ → grWiℓ M̃ is composed of β : grFiℓM̃ → grℓN1

and γ : grℓN1 → grℓN∞. As β is surjective, β and γ are isomorphisms when α is an
isomorphism, that is out of L.

The map N1 → N∞ is a filtered map which induces an isomorphism of graded modules
on T ∗Λ−L. These filtrations are good filtrations and the filtration on ̺−1EY (0) is zariskian
[16, th. 2.1.1. ch II], so by [16, prop. 1.1.3. ch II]N1 → N∞ is an isomorphism on T ∗Λ−L.

Remark that N1 and N∞ are coherent ̺−1EY (0)-modules hence are locally constant on
the fibers of ̺, so L is equal to ̺−1(L0) where L0 is a subvariety of T ∗Y of dimension
strictly lower than the dimension of Z. IfX is of dimension n, ChΛ(∞,1)(M) is of dimension
n (because M is holonomic), hence L is of dimension at most n− 1 and L0 at most n− 2.
Hence by lemma 3.11 applied to its kernel, the morphism N1 → N∞ is an isomorphism
on T ∗Λ (outside of the zero section of T ∗X).

Second step: We still remain outside of the zero section of T ∗X and we assume now
that Λ is any homogeneous lagrangian submanifold of T ∗X . The problem being local on
T ∗X , there is a homogeneous symplectic transformation which sends Λ to the conormal
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bundle to a smooth hypersurface Y of X. Using a quantized canonical transformation
associated to this symplectic transformation, we get the result by the first step.

Third step: We assume now that M is defined on the zero section of T ∗X . Hence
M is a DX -module and T ∗Λ = T ∗

Y X for some submanifold Y of X (not necessarily a
hypersurface). We define N1 and N∞ as in (3.11) and K as the kernel of N1 → N∞. The
three modules K, N1 and N∞ are coherent O[Λ]-modules.

By the first step K is a coherent O[Λ]-module such that DΛ ⊗ K is a coherent DΛ-
module whose characteristic variety is contained in the zero section. So K is a locally free
O[Λ]-module [1, th. 7.1., ch.5] and its support is equal to Λ.

But the cycles C̃hΛ(∞,1)(M) and C̃hΛ(∞)(M) are equal hence grN1 → grN∞ is gener-
ically an isomorphism and K must be supported by a strict subvariety of Λ. So we must
have K = 0 and the proposition is proved. �

To end this section we remark that theorem 2.6 is a direct consequence of theorem 3.10.
Indeed, a b-function is a polynomial such that b(θ + i) annihilates FijM /

⋃
k Fi−1,kM

while a regular b-function is a polynomial such that b(θ + i) annihilates FijM /Fi−1,jM .

4. Applications and Extensions

4.1. Regular meromorphic b-functions.

Corollary 4.1. Assume that a DX -module is regular along a submanifold Y outside a

hypersurface Z. Let ϕ be an equation of Z. Then any section u of M satisfy an equation

(ϕN b(ϑ) + Q)u = 0 where b is a polynomial and Q is a differential operator in V−1DX

which is of order at most the degree of b.

Proof. By the hypothesis, the kernel of the morphism defined in theorem 2.6 is contained
in Z. As its restriction to the zero section X of T ∗X is a coherent OX -module there is
some N ∈ N such that ϕN annihilates this kernel. �

4.2. b-function and Newton polygon. When a holonomic module is not regular, its
irregularity is characterized by its Newton Polygon [12]. In particular, the first slope of
this Newton polygon determines the growth of formal solutions (which are not convergent
if the module is not regular). We will see in this section that this slope determines also
the order of the operator Q in the definition 1.1.

Let us briefly redefine the first slope of a coherent DX or EX-module, details may be
found in [8].

Let r > 1 be a rational number written as an irreducible quotient p/q of two integers
with p > q ≥ 1. From the two filtrations (EXj)j∈Z and (VkEX)k∈Z of section 2.2 we define
a new filtration:

(4.1) ∀k ∈ Z F r
kEX =

∑

(p−q)m+qn=k

EX,n ∩ VmEX

and a bifiltration

(4.2) ∀(k, j) ∈ Z× Z F r
k,jEX = F r

j EX ∩ VkEX

If M is a coherent EX -module, a good F rEX-bifiltration is defined as in section 2.2
as well as the associated bigraded module grF rM. To this module is associated the

microcharacteristic variety ChΛ(∞,r)(M) and the microcharacteristic cycle C̃hΛ(∞,r)(M).
We may now adapt the definition of regularity 2.5:
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Definition 4.2. Let Λ be a lagrangian conic submanifold of T ∗X and M be a holonomic
EX-module. The first slope of the module M is the lowest rational number such that M
satisfies the following equivalent properties:

i) The microcharacteristic variety ChΛ(∞,r)(M) is contained in SΛ.

ii) The microcharacteristic variety ChΛ(∞,r)(M) is lagrangian.

iii) The microcharacteristic variety ChΛ(∞,r)(M) is equal to ChΛ(∞)(M)

iv) The microcharacteristic cycle C̃hΛ(∞,r)(M) is equal to C̃hΛ(∞)(M)

v) ∀j ≥ 0, ExtjEX (M,MΛ) = ExtjEX (M, EX (∞,r)⊗EX MΛ)

We may also define the slope of a b-function of the module M by adapting definition
2.4:

Definition 4.3. A polynomial b of degree n is a b-function with slope r for M along Y if
M admits a good V -filtration VM and a good F r-filtration F rM such that:

∀(i, j) ∈ Z× Z, b(Θ)F r
j M∩ ViM ⊂ F r

j+qnM∩ Vi−1M

where qn is the order of b(Θ) for the F rEX-filtration.
Given a b-function, the slope of this b-function is the lowest rational number such that

this is true.

By the definitions, the first slope is 1 if and only if M is regular along Λ. This definition
takes a more explicit form if we restrict to a section of M:

Definition 4.4. Let M be a coherent EX-module and u a section of M.
A polynomial b is b-function with slope r for u along Y if there exists a differential

operator Q in V−1EX which is of order less or equal to the order of b(ϑ) for the F rEX-
filtration and such that (b(ϑ) +Q)u = 0.

In the case ofDX -modules this means thatQmay be written as a sum
∑

j≥1Qj(x,Dx, tDt)t
j

where Qj is of order at most m+ (r − 1)j where m is the degree of b.

Theorem 4.5. If M is a holonomic EX-module, the first slope of M is equal to the slope

of its b-function.

The proof of this theorem is similar to the proof of theorem 2.6 replacing the bifiltrations
by the F r bifiltrations and the sheaf E2

Λ by the sheaf E2
Λ(∞,r) also defined in [7].
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