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Abstract: In this paper we obtain some P-Q eta-function identities of Ramanujan on
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1. Introduction

Srinivasa Ramanujan has recorded several results in the theories of elliptic functions

to alternative bases corresponding to the classical theory in his Second Notebook [6, pp. 257-

262].

K. Venkatachaliengar [8, pp. 89-95] examined some of the Entries in Ramanujan’s Note-

books [6] devoted to alternative theories. In order to establish several beautiful formulas

for 1/π stated by Ramanujan [5], [7, pp.23-29], J. M. Borwein and P. B. Borwein [4, pp.

177-185] have developed the ”corresponding theories”.

In Entries 51-72 of Chapter 25 of the Second Notebook [6], Ramanujan states twenty-

three elegant, so-called, P-Q identities. Eighteen of these P-Q identities have been proved

by B. C. Berndt [1, pp. 204-237] and B. C. Berndt and L.-C. Zhang [3] on employing

various modular equations belonging to the theory of signature 2 (classical theory). The

main purpose of this paper is to establish some P-Q identities stated by Ramanujan on

employing various modular equations belonging to the theory of signature 4.

2. Some Preliminary Results

First we shall provide some useful notations and definitions. As customary, for any

complex number a set

(a; q)∞ =
∞∏
k=0

(1− aqk), |q| < 1.
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Following Ramanujan, we define

f(−q = (q; q)∞.

Let

z(r) := z(r;x) :=2 F1(
1

r
,
r − 1

r
; 1;x)

and

qr := qr(x) := exp

[
−πcsc(π

r
)

2F1(1
r
, r−1

r
; 1; 1− x)

2F1(1
r
, r−1

r
; 1;x)

]
,

where r = 2, 3, 4, 6 and 0 < x < 1,

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
(c)kk!

xk

with (a)k = (a)(a+ 1) . . . (a+ k − 1).

Let n denote a fixed natural number and assume that

n
2F1(1

r
, r−1

r
; 1; 1− α)

2F1(1
r
, r−1

r
; 1;α)

=
2F1(1

r
, r−1

r
; 1; 1− β)

2F1(1
r
, r−1

r
; 1;β)

(2.1)

where r = 2, 3, 4 or 6. Then a modular equation of degree n in the theory of elliptic functions

of signature r is a relation between α and β induced by (2.1). We often say that β is of

degree n over α and m(r) :=
z(r;α)

z(r; β)
is called the multiplier.

We also use the notations z1 := z1(α) := z(r;α) and zn := zn(β) := z(r; β) to indicate

that β has degree n over α. When the context is clear, we omit the argument r in qr, z(r)

and m(r).

We now collect in the following theorem some of Ramanujan’s modular equations

belonging to the theory of signature 4.

Theorem 2.1. The following modular equations hold in the theory of signature 4.

(i) if β is of degree 3 over α then,

m2 =

(
β

α

)1/2

+

(
1− β
1− α

)1/2

− 9

m2

(
β(1− β)

α(1− α)

)1/2

. (2.2)

(ii) If β is of degree 5 over α, then

m =

(
β

α

)1/4

+

(
1− β
1− α

)1/4

− 5

m

(
β(1− β)

α(1− α)

)1/4

. (2.3)
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(iii) If β is of degree 7 over α, then

m2 =

(
β

α

)1/2

+

(
1− β
1− α

)1/2

− 49

m2

(
β(1− β)

α(1− α)

)1/2

−8

(
β(1− β)

α(1− α)

)1/6
(β

α

)1/6

+

(
1− β
1− α

)1/6
 . (2.4)

(iv) If β is of degree 9 over α, then

√
m =

(
β

α

)1/8

+

(
1− β
1− α

)1/8

− 3√
m

(
β(1− β)

α(1− α)

)1/8

. (2.5)

(v) If β is of degree 13 over α, then

m =

(
β

α

)1/4

+

(
1− β
1− α

)1/4

− 13

m

(
β(1− β)

α(1− α)

)1/4

−4

(
β(1− β)

α(1− α)

)1/12
(β

α

)1/12

+

(
1− β
1− α

)1/12
 . (2.6)

(vi) If β is of degree 25 over α, then

√
m =

(
β

α

)1/8

+

(
1− β
1− α

)1/8

− 5√
m

(
β(1− β)

α(1− α)

)1/8

−2

(
β(1− β)

α(1− α)

)1/24
(β

α

)1/24

+

(
1− β
1− α

)1/24
 . (2.7)

Proof. For a proof of (i) see [2, p. 156. Theorem 10.5]. For a proof of (ii) see [2, p.157,

Theorem 10.6]. For proofs of (iii) and (iv) see [2, p.158, Theorm 10.7 and Theorem 10.8].

For a proof of (v) see [2, p.159, Theorem 10.9]. For a proof of (vi) see [2, p.160, Theorem

10.10].

3. Main Theorem

In this Section we obtain six P-Q identities (3.1)-(3.6) due to Ramanujan which ap-

pears as Entries 51,53,55,56,57 and 58 of Chapter 25 of his Second Notebook on employing

Ramanujan’s modular equations in the theory of signature 4.

Theorem 3.1
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(i) If

P =
f 2(−q)

q1/6f 2(−q3)
and Q =

f 2(−q2)

q1/3f 2(−q6)
,

then

PQ+
9

PQ
=
(
Q

P

)3

+

(
P

Q

)3

. (3.1)

(ii) If

P =
f(−q)

q1/6f(−q5)
and Q =

f(−q2)

q1/3f(−q10)
,

then

PQ+
5

PQ
=
(
Q

P

)3

+

(
P

Q

)3

. (3.2)

(iii) If

P =
f 2(−q)

q1/2f 2(−q7)
and Q =

f 2(−q2)

q f 2(−q14)
,

then

PQ+
49

PQ
=
(
Q

P

)3

+

(
P

Q

)3

− 8
(
Q

P

)
− 8

(
P

Q

)
. (3.3)

(iv) If

P =
f(−q)

q1/3f(−q9)
and Q =

f(−q2)

q2/3f(−q18)
,

then

P 3 +Q3 = P 2Q2 + 3PQ. (3.4)

(v) If

P =
f(−q)

q1/2f(−q13)
and Q =

f(−q2)

q f(−q26)
,

then

PQ+
13

PQ
=
(
Q

P

)3

+

(
P

Q

)3

− 4
(
Q

P

)
− 4

(
P

Q

)
. (3.5)

(vi) If

P =
f(−q1/5)

q1/5f(−q5)
and Q =

f(−q2/5)

q2/5f(−q10)
,

then

P 2Q2 + 5PQ = P 3 − 2P 2Q− 2PQ2 +Q3. (3.6)
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Proof of (3.1). When y = π
√

2
2F1(1

4
, 3

4
; 1; 1− x)

2F1(1
4
, 3

4
; 1;x)

and q = e−y, we find that [2,p.148]

q1/24f(−q) =
√
z2−1/4 x1/24(1− x)1/12,

and

q1/12f(−q2) =
√
z2−1/2 x1/12(1− x)1/24.

Using the above two identities, we deduce that

√
zx1/8 = 23/4q1/8f

2(−q2)

f(−q)
, (3.7)

and
√
z(1− x)1/8 =

f 2(−q)
f(−q2)

, (3.8)

If β is of degree 3 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q3/8

√
z3

f 2(−q6)

f(−q3)
,

(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z3

f 2(−q3)

f(−q6)
, (3.9)

Employing (3.9) in (2.2), we obtain

1 = q
f 8(−q6)f 4(−q)
f 4(−q3)f 8(−q2)

+
f 8(−q)f 4(−q3)

f 4(−q2)f 8(−q6)
− 9q

f 4(−q6)f 4(−q3)

f 4(−q)f 4(−q2)
. (3.10)

Upon simplification, we find that (3.10) is same as (3.1).

Proof of (3.2). If β is of degree 5 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q5/8

√
z5

f 2(−q10)

f(−q5)
,

(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z5

f 2(−q5)

f(−q10)
, (3.11)

Employing (3.11) in (2.3), we obtain

1 = q
f 4(−q10)f 2(−q)
f 2(−q5)f 4(−q2)

+
f 4(−q5)f 2(−q2)

f 2(−q10)f 4(−q)
− 5

q

f 2(−q10)f 2(−q5)

f 2(−q)f 2(−q2)
. (3.12)

On simplification we see that (3.12) is same as (3.2).

Proof of (3.3). If β is of degree 7 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q7/8

√
z7

f 2(−q14)

f(−q7)
,
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(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z7

f 2(−q7)

f(−q14)
, (3.13)

Employing (3.13) in (2.4), we obtain

1 = q3 f
8(−q14)f 4(−q)
f 4(−q7)f 8(−q2)

+
f 8(−q7)f 4(−q2)

f 4(−q14)f 8(−q)
− 49q3 f

4(−q14)f 4(−q7)

f 4(−q)f 4(−q2)
.

−8q
f 4/3(−q14)f 4/3(−q7)

f 4/3(−q)f 4/3(−q2)

[
q
f 8/3(−q14)f 4/3(−q)
f 4/3(−q7)f 8/3(−q2)

+
f 8/3(−q7)f 4/3(−q2)

f 4/3(−q14)f 8/3(−q)

]
. (3.14)

On simplification we see that (3.14) is same as (3.3).

Proof of (3.4). If β is of degree 9 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q9/8

√
z9

f 2(−q18)

f(−q9)
,

(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z9

f 2(−q9)

f(−q18)
, (3.15)

Employing (3.15) in (2.5), we obtain

1 = q
f 2(−q18)f(−q)
f(−q9)f 2(−q2)

+
f 2(−q9)f(−q2)

f(−q18)f 2(−q)
− 3q

f(−q9)f(−q18)

f(−q)f(−q2)
. (3.16)

Further simplification of (3.16) yields (3.4).

Proof of (3.5). If β is of degree 13 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q13/8

√
z13

f 2(−q26)

f(−q13)

(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z13

f 2(−q13)

f(−q26)
, (3.17)

Using (3.17) in (2.6), it follows that

1 = q3 f
4(−q26)f 2(−q)

f 2(−q13)f 4(−q2)
+

f 4(−q13)f 2(−q2)

f 2(−q26)f 4(−q)
− 13q3 f

2(−q26)f 2(−q13)

f 2(−q2)f 2(−q)

−4q
f 2/3(−q26)f 2/3(−q13)

f 2/3(−q)f 2/3(−q2)

[
q
f 4/3(−q26)f 2/3(−q)
f 2/3(−q13)f 4/3(−q2)

+
f 4/3(−q13)f 2/3(−q2)

f 2/3(−q26)f 4/3(−q)

]
. (3.18)

Further simplification of (3.18) yields (3.5).

Proof of (vi). If β is of degree 25 over α, then from (3.7) and (3.8), it follows that

α1/8 =
23/4q1/8

√
z1

f 2(−q2)

f(−q)
, β1/8 =

23/4q25/8

√
z25

f 2(−q50)

f(−q25)
,
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(1− α)1/8 =
1
√
z1

f 2(−q)
f(−q2)

, (1− β)1/8 =
1
√
z25

f 2(−q25)

f(−q50)
, (3.19)

Using (3.19) in (2.7), it follows that

1 = q3 f
2(−q50)f(−q)

f(−q25)f 2(−q2)
+

f 2(−q25)f(−q2)

f(−q50)f 2(−q)
− 5q3 f(−q50)f(−q25)

f(−q)f(−q2)

−2q
f 1/3(−q50)f 1/3(−q25)

f 1/3(−q)f 1/3(−q2)

[
q
f 2/3(−q50)f 1/3(−q)
f 1/3(−q25)f 2/3(−q2)

+
f 2/3(−q25)f 1/3(−q2)

f 1/3(−q50)f 2/3(−q)

]
. (3.20)

Upon simplification we see that (3.20) is same as (3.6).
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