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NOTES ON THE RIEMANN ZETA�FUNCTION�IV

BY

R�BALASUBRAMANIAN� K�RAMACHANDRA�

A�SANKARANARAYANAN and K�SRINIVAS�

Abstract� For �Good Dirichlet series� F �s	 we prove that there are in�nitely many

poles p�� ip� in ��s	 � C for every �xed C � �� Also we study the gaps between the numbers

p� arranged in the non�decreasing order�

x�� INTRODUCTION� This paper concerns mainly with some applications of the general
result namely Theorem � stated in x� of RB� KR� AS� KS� due to R�Balasubramainian�
K�Ramachandra� A�Sankaranarayanan and K�Srinivas� �At the outset we would like to point

out that their general result can be generalised further as the authors have stated in their

paper just refered to	� Besides touching about some applications� our main object is to prove

the following theorem�

THEOREM �� Let N and D be two �nite sets of complex numbers de�ned by

N 
 f��� ������ �kg � D 
 f��� ��� ���� �lg

where � � k � l� l � � �we stress here that neither the �
s nor the �
s need be distinct	� Let

P �s	 be any �xed Dirichlet Polynomial �i�e� a terminating Dirichlet series	� Let F �s	 �s �

� � it	 be de�ned by

F �s	 
 �P �s	&��N��s� �		�&	�D��s� �		��


 F��s	�F��s		
��

say �in an abvious notation	� Then under the condition that F �s	 is not a terminating

Dirichlet series� we have the following results�

zz

�	If either k � l or �k � l and Re�
P

� �P�	 � �	� then for every Y � ��� there exists a

pole p � p� � ip� �of F �s		� depending on Y for which

jp� � Y j � a log log Y
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���
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where a � � is a constant independent of Y �

��	 If k � l and Re�
P

��P�	 � �� then for every Y � ��� there exists a pole p � p�� ip�

�of F �s		 depending on Y � for which there holds

jp� � Y j � a log Y�

Here a � � is a constant independent of Y �

REMARK �� The theorem is true even when ��s��	 and ��s��	 are replaced by L�s��	

and L�s� �	� �Here L�s	 are any L�series with residue class characters	�

REMARK �� The most general application envisaged by the present paper seems to be as

follows� Put

F �s	 �

P
P �s	&�

�j��
K�
�s� ��R�	P

Q�s	&�
�j��
K�
�s� ��R�	


 F��s	

F��s	
�

where P �s	� Q�s	 are any �xed Dirichlet polynomials and in the numerator the product

is over all possible ��nite number of 	 quadruplets �with repititions	 �K�� j�� R�� �	 vary�

ing! F��s	 is an arbitrary sum over all possible products multiplied by P �s	� �Also here

�
�j�
K �s � ��R	�j � �	 denotes the jth derivative of the zeta�function of the ray class R in a
number �eld K	� The denominator F��s	 is de�ned in a similar way� One condition that

we cannot avoid is that the limit of F���	 as � �� should be �� The functional equations

facilitate the computation of � and � of the general theorem �see x� below	� at least in some
special cases� We de�nitely need the condition

� � max
X

n�K�	 � max
X

n�K�	

where n�k	 denotes the degree of K� But the more di cult problem seems to be to guarantee

that �at least in some cases	 F �s	 is a good Dirichlet series� Provided that � and � satisfy

some very generous conditions� we can arive at suitable upper bounds for jp� � Y j� One
working method to prove goodness of F �s	 is to write

F �s	 �
�X
n��

an n
�s

and investigate things like
P

p ��p	ap p
�s or

P
��p	a�p��p	

�s���p	 being any complex num�

bers with absolute value bounded above	� with suitable weights which are of the form

p���log p	�e�
p

�X � e�
p

X 	�X � � is a variable and �� � are real constants	�

REMARK �� As has been remarked there are many applications of the general result� We

mention only some� In our Theorem � we can replace ��s��	 by any of its derivatives of any
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bounded order� The conclusions will still hold� One special example is F �s	 � � ���s	���s		���

This has in�nitely many poles in � � � � � and the gaps between the ordinates are quanti�ed

by

jp� � Y j � a log log Y�

$From this we can deduce that if all the zeros of ��s	 with ordinates in

Y� Y � a log log Y

are simple then for at least one zero � �of those just mentioned	 we have even � ����	 �� ��
We may deduce from this other corollaries such as � If all the zeros of ��s	 are simple then

given any � � � there are � Y �a log log Y 	�� zeros � in �j� � �
�
j � �� Y � t � �Y 	 with

� ����	 �� �� This follows by the density theorems for the zeros of ��s	�

REMARK 	� Certainly under suitable conditions we can prove that the gaps between the

ordinates of the poles of P �s	�Q�s		�� �a quotient of two Dirichlet polynomials	 are bounded�

One of the very general conditions for this seems to be �apart from A��	 � � as � � �	
that P �s	�Q�s		�� should be a non�terminating Dirichlet series�

REMARK ��� If the function F �s	 of Theorem � is a terminating Dirichlet series then it

is necessarily equal to P �s	� See Theorem ��

x��NOTATION� The notation is standard and is self explanatory�

x�� STATEMENT OF THE GENERAL THEOREM� We recall the general theorem

from the previous paper �III of this series	 for applying it to prove our Theorem � in x�
of the present paper� We state the general theorem as theorem � below� We will write

F �s	 
 F��s	�F��s		
�� where F��s	 and F��s	 are explained below and we are interested in

the poles of F �s	�

In what follows T will exceed a large positive constant� The letters �� � and H denote

positive functions of T and will be bounded below by large positive constants� They are

assumed to satisfy

H � o�T 	� log log� � O�H	

and

log � � O�H	

where the O�constants are assumed to be su ciently small�

�A	 Let F��s	 and F��s	�s � ��it	 be two Dirichlet series �which may depend on a parameter

T and we consider only the interval T �H � t � T �H	 convergent absolutely in � � C���
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���	 and bounded there� The letter g�� �	 will denote a large absolute constant and we

assume that F��s	 and F��s	 can be continued analytically in � � �g�logH	�log logH	��	�
Also we assume that F���	 � � as � � � and that in � � C� the function j logF��s	j is
bounded above�

�B	 Let ��F��s	
�� � �g in � � ���g�

�C	 Let F��s	 �� � in �g � � � �g�logH	�log log H	�� and also in the same region we

have ��F��s	�F��s		
��
�� � C�

� � �C� � �	�

where C� is a constant� For convenience we assume that the constant C� is bounded below

and also above�

�D	 Let

jF��s	j � exp�g��log�	�	 in � � �g�
Under these conditions we have

THEOREM �� �due to R�BALASUBRAMANIAN� K�RAMACHANDRA and

A�SANKARANARAYANAN and K�SRINIVAS�	 We have a pole p� � ip� of F �s	 with

T �H � p� � T �H�

provided F �s	 is good in � � C��

x��APPLICATION TO THE PROOF OF THEOREM �� All the conditions �for ap�

plication	 are easily veri�ed except that the Dirichlet series �in � � C�	 is good � see the

remark at the end of this section	� We prove a more general result namely theorem ��

THEOREM �� Suppose that

F �s	 � P �s	 &����s� �		n���

where � runs over a �nite �non�empty	 set of distinct complex constants and n��	 are non�

zero integer constants positive or negative� Also let P �s	 be any �xed Dirichlet polynomial

which is not identically zero� Then F �s	 is a non�terminating Dirichlet series in � � C��

Moreover F �s	 is good in � � C� where C� is a large positive constant�

REMARK �� Note that the condition �F �s	 is terminating� is not possible �unless P �s	 is

identically zero which we have avoided	�
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REMARK �� Our proof will show that similar things about

F �s	 � P �s	&����L�s� �� �		n�����

are true �where L�s� �	 are any L�series with residue class characters	 with suitable integer

constants n��� �	�

REMARK �� If P �s	 �
PM

n�LAn n
�s where � � L �M� and AM �� �� then C� �M��

PROOF� Let

P �s	 �
MX
n�L

An n
�s

where � � L � M and AL �� �� We have �in a notation to be explained presently	 in

� � C�� F �s	 ���
P

p

P
� n��	AL�Lp	

�s p���

�Here as well as in the rest of the proof of theorem �� by a relation of the type

X
D���
n n�s ���

X
D���
n n�s

we mean that jD���
n j � jD���

n j	� It follows that for all p exceeding a large constant p�X
�

n��	p�� � �

provided F �s	 terminates� Let �� be an � for which the real part is the lowest� Then consider

the identity X
�

n��	p�������� log p � �� �� � �	�

valid for all primes p � p�� Summing up over all p � p�� we have

�
X

n��	
� ���� �� � � � �	

���� �� � � � �	
� O��	�

the O��	 independent of � and comes from the primes p with � � p � p�� Here all the

terms of the sum with � �� �� are bounded as � � � while that with � � �� contributes

n���	�
�� �O��	� This leads to n���	 � �� a contradiction� This proves the �rst part of the

theorem�

We next proceed to prove the second part� We get back to the relation

F �s	 ���
X
p

�X
�

n��	AL�Lp	
�sp��
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where the sum is over all primes p� It su ces to prove that

G�s	 

X
p

�
X
�

n��	p����
log p

p
	p�s

is a good Dirichlet series� Here �� is a certain � with the least real part� For this purpose

we consider the function

G�s�X	 �
�

��i

Z Ai�

A�i�

G�s	Xs��s � �	'�s	ds

where A � ����� �
P j�j	� �Note that RHS is nothing but

X
p

�X
�

n��	p����

�
e�

p

�X � e�
p

X

� logp
p

�

We see easily that s � � is a simple pole of the integrand contributing the residue term

n���	� which gives �by standard methods of moving the contour	

G�s�X	 � n���	 �O�exp��
p
logX		 �R

with

R �
X

�	����Re ��Re ��

n��	X���������� � �	'��� � �	 �O�exp��
p
logX		�

We now put X � exp�Y �Y �u������ur		 and average the main term in R over the unit cube

� � uj � ��j � �� �� ���� r	� The average is plainly

O
�X

�rY �rj�� � �j�r
�

the sum being as in the main term in R� Thus by choosing r to be a large integer� we haveZ
G�s�X	dv � n���	 � o��	� �dv � du����dur	�

thereby giving

jG�s�X	j � �

for at least one X with eY � X � eY �r��� This gives what we want after a trival work�

Thus theorem � is completely proved�

REMARK� For the veri�cation of the conditions on F �s	 other than the goodness we can

use the functional equation� �For details see our earlier paper II KR� AS�� with the same

title	� This does not present any serious di culties� Thus Theorem � is completely proved�
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x�� AN INTERESTING ��� RESULT� Let a� and b be any two complex constants of

which b �� �� Suppose that a��
���	 � b� ����	 � � holds for all zeros � � � � i� with

Y � � � Y � a log logY� where a � � is a certain constant�Then of these zeros there is at

least one zero whose order is at least �� This follows from our general Theorem�

Finally we wish to include the following corollary to our main theorem�

COROLLARY�Let �� and �� be two inequivalent proper characters and let L�s� ��	 and

L�s� ��	 be the corresponding L�functions� Put F �s	 � L�s����
L�s����

�

Then there are in�nitely many poles of F �s	 in � � � � �� t � ��

Let ��� ��� � � � be the ordinates of these poles arranged in the non�decreasing order� Then

�n� � �n � loglog�n� whenever �n � �����

The same is also true of the zeros of F �s	�

This follows immediately from our main theorem�

R E F E R E N C E S

RB� KR� AS� KS�� R� BALASUBRAMANIAN� K� RAMACHANDRA� A� SANKARA�
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POST SCRIPT The work in this series of papers will be continued in paper V with the same

title �likely in Acta Arithmetica	�


