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Abstract—This paper deals with a vector control of n-phase 
permanent magnet synchronous machine. To use control 
algorithms already developed for sine-wave 3-phase machines, 
the spectrum of back electromotive force (EMF) must contain 
only odd 2k+1 harmonics which verify the following inequality, 

nk <+≤ 121 . In an experimental vector control of a 5-phase 
drive, two usual algorithms of sine-wave 3-phase machine are 
thus used to supply a machine with trapezoidal waveform back 
EMF.  In this case, the first and third harmonics are used to 
produce torque: the other harmonics, and particularly the 7th 

one, induce effects as torque ripples and parasitic currents.  

Keywords- multi-phase; synchronous motor; multi-machine. 

I.  INTRODUCTION 
Multi-phase machines have several advantages over 

conventional 3-phase ones [1]-[2] such as higher reliability and 
reduction of the torque pulsation magnitude. Nevertheless, 
their vector controls are not known as well as those of 3-phase 
BLDC machines [3]. For these last ones, two kinds of controls 
are usually distinguished on the basis of back EMF waveforms. 
If the back EMFs have a sinusoidal waveform then current 
controls in synchronous frame achieve high efficient brushless 
DC machines. If the back EMFs have trapezoidal waveforms, 
the control in stationary frame is simpler but also less efficient 

[3]. For n-phase machines, particular controls have already 
been proposed [4]-[6] but there is no synthetic approach. This 
simple classification is no more obvious for n-phase machines. 
In fact, a more accurate harmonic analysis of back EMF is 
necessary to distinguish between two kinds of machines which 
make possible two kinds of performances. We consider only 
the case of machines whose number of phases is a odd number. 
If the harmonic spectrum of a n-phase machine contains only 
odd harmonics strictly inferior to n, then it is possible to 
achieve equivalent controls as those of sine-wave 3-phase 
machines. In this paper, the particular case of a 5-phase  
experimental (Fig1. Fig.2 Fig.3) drive is used to highlight the 
influence of harmonics on the vector control.  

II. MULTI-MACHINE CHARACTERIZATION OF A n-PHASE 
MACHINE  

Under assumptions of no saturation, no reluctance effect and 
regular spatial distribution of windings, the vectorial approach 
developed in [7]-[9] leads to define the equivalence of a n-
phase wye-connected machine to a set of (n-1)/2 fictitious 
independent 2-phase machines. 

A. Assumptions, notations, nomenclature 
1) Nomenclature  

All quantities relating to the phase n° k are written xk. 

• jsk: current in the phase n° k;  

• usk: voltage across the phase n°  k; 

• φsk: flux through the phase n° k exclusively produced 
by the stator currents; 

• φsrk: flux through the phase n° k exclusively due to the 
rotor magnets; 

• ek: electromotive force (EMF) induced in the phase 
n° k only due to the rotor magnets; 

• θ: mechanical angle. 

2) Assumptions 
Usual assumptions are used to model the machine: 

• all phases are identical and regularly shifted by an 
angle (Fig.4):  

n
2πα =     (1) 

Vbus

 

Figure 1. Symbolic representation  of the 5-leg PWM-VSI and wye-coupled 
5-phase machine.  
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Figure 2. Experimental 5-phase motor. 



• effects of saturation and damper windings are 
neglected. 

B. Usual modeling in a natural base 
In the usual matricial approach of n-phase machines, a 

vector n-space is implicitly considered since vectors with n 
components are defined. This space is provided with an 

orthonormal base 






= σσσ

σ nxxxB ,...,, 21  that can be called 

“natural” since the coordinates of a vector in this base are the 
measurable values relative to each phase.  

In this paper, we consider that this space is an Euclidean 
vectorial space with the usual canonical dot product. 

In this natural base, different vectors are defined: 

σσσ
nsn22s11ss xu...xuxuu +++=   (2) 
σσσ
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Taking into account Rs, the stator resistance per phase, the 
vectorial voltage equation is: 
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The Βσ index reminds that differentiation is operated 
according to the Βσ natural base. 
This equation can be projected onto each vector of the natural 
base to find again the more usual equation:  

k
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ksskssk e
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d
jRx.uu ++==
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The assumptions previously defined allow to write a linear 
relation between the stator current vector and the stator flux 
vector: 

( )sss jΛφ =    (8) 
usually written with the circular matrix notation: 
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The modeling of the machine in the natural base is not simple 
because of the complexity of the matrix [ ]σ

sL . It would be 
interesting to find a simpler form for matrix of Λs. 

C. Vectorial decomposition in eigenspaces of ΛS 

The equation (8) is true whatever is the chosen base 
associated with the stator coils. The symmetry and circularity 
of the inductance matrix [ ]σ

sL allows to state that: 

• Λs belongs F eigenvalues Lg with F=(n+1)/2 and 

( )
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1eg
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• the F associated eigenspaces Gg are orthogonal each 
other; 

• the G0 eigenspace,  associated with the eigenvalue L0, 
is a vectorial line; 

• the others (n-1)/2 eigenspaces G2g ( ( ) 211 −≤≤ ng ), 
associated with the others (n-1)/2 eigenvalues Lg are 
vectorial planes. A base of G2g plane is: 
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Figure 3. Experimental drive. 
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Figure 4. Presentation of n-phase PM machine. 



The orthogonality of the G2g planes allows to decompose 
every vector y  into a sum of vectors gy obtained by 

orthogonal projection of y onto G2g: 

∑
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Fg

g
gyy    (12)  

This kind of decomposition has already been achieved in 
particular cases [10] for induction machines. 

Finally, as Lg are eigenvalues of Λs, a simpler expression 
between flux and currents can be expressed: 
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D.  Multi-machine concept 
It is now possible to show that the torque of a multi-phase 

machine can be decomposed into a sum of torques of machines 
which are magnetically decoupled. 

First, the electric power in the stator is expressed: 
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sksks j.ujup  ==∑

=

=

  (14) 

From (6) we obtain: 
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With the previous assumptions, the eigenvalues and 
eigenvectors are constant, the electromotive force does not 
depend on currents. We have then: 
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Therefore, as the eigenspaces are orthogonal each other, 
(14) becomes: 
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The first term can be considered as stator Joule losses, the 
second term as derivative of stator magnetic energy and the 
third as the product of angular speed dθ/dt by torque: 
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The wye-coupling implies that 0
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The total torque Tem is then: 
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So we can consider (F-1) fictitious machines, each one of 
them being associated with one eigenspace. These machines 
are magnetically independent and have two phases since the 
dimension of their associated eigenspaces is two. These 2-
phase machines are electrically and mechanically coupled.  

A very well-known case is the wye-coupled 3-phase 
machine that is considered to be equivalent to only one 2-phase 
machine  in d-q theory. The control of the torque of such 3-
phase machine is then equivalent to this one of the 2-phase 
fictitious machine. In this case, it is obvious that the proposed 
approach is not interesting. 

In the case of a wye-coupled 5-phase machine, there are 
two fictitious 2-phase machines named MM (Main Machine, 
g=1) and SM (Secondary Machine, g=2) which produces 
respectively the torque T2 and T4. Consequently, for the control 
of the 5-phase machine, a choice must be done to define the 
two references T2-ref  and T4-ref from a unique torque reference 
Tem-ref. Of course, the choice depends on the characteristics of 
the two fictitious machines but also of the supply of the 5-
phase machine. The designer must simultaneously take into 
account these two aspects [11]. 

 This kind of problem is the same as found into multi-
machine control. So, we propose to use a formalism developed 
for these systems [12]-[13]. The considered approach (Fig.5) 
highlights the electrical and mechanical couplings (the 
intersecting rectangles and triangles) between the two fictitious 
machines (the circles).  

 

To control a multi-machine system, it is necessary to 
characterize each machine. In the following section, an 
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Figure 5.  Multi-machine Representation of  a 5-phase machine. 



harmonic characterization of the fictitious machines is 
presented. 

III. HARMONIC  CHARACTERIZATION OF FICTITIOUS 
MACHINES 

We prove that for a n-phase machine, a machine n° g is 
associated with the family of gnh ±  odd harmonics 
( 2/)1(1 −≤≤ ng ).  In the case of the 5-phase machine (n=5), 
the first machine (MM, g=1) is associated with the odd 
harmonics 15 ±h , and the Secondary Machine (SM, g=2)  
with the odd harmonics 2h5 ± . 

1) Projection onto eigenspace G2g 
 

Expression (19) shows that the torque T2g is the dot product 
of projections of two vectors. The first one is only depending 
on the design of the machine, the second one is imposed by the 
power supply. To characterize the fictitious machine, 

θφ dd sr / = ( )θq is analyzed. 

As  ( )θq is a 2π/p periodic function, each one of its n 
components, qk, can be decomposed into a Fourier series. 
Properties of symmetry, due to the regular manufacturing 
assumption of the rotating machine, involve, as usual, the 
cancellation of cosine terms and of even sine terms.  
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To get components of ( )αq  in the different eigenspaces, the 
equation must be inserted in the following vectorial expression 
of ( )αq  in the natural basis: 
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By combination of  (21) and (23), ( )αq  becomes: 
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( )αq has been expressed as a sum of n vectors ( )αeg . It is 

sufficient to study the projections of ( )αeg . 
 

2) Family of harmonics 

Let us calculate the projection of the vector ( )αeg  onto the 

subspace G2g . The dot product of ( )αeg  by d
gx  and d
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 With the same approach: 
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It appears that the family of odd harmonics verifying 
gnhe ±= is associated with the eigenspace G2g. According to 

the considered eigenspace associated with the fictitious studied 
machine, the null terms of the Fourier series are not the same. 
There is a distribution of the different space harmonics between 
the eigenspaces. 

3) References and examples  
 

 This kind of harmonic characterization has already been 
observed in [14] by E. Klingshirn, studying multi-phase 
induction motors supplied by PAM VSI: in steady states, an 
harmonic analysis of the periodic voltages shows that there are 
families of harmonics which are each one associated with a 
particular impedance of the motor. 

For transient states, [10] has also in the particular case of a 
6-phase induction machine exhibited, using a matrix approach, 
harmonic families  associated with particular eigenspaces.  

Other harmonic studies [15]-[18] have been also realized 
for n-phase machines but have not exhibited neither the 
fictitious machines nor the independence of the different 
families of harmonics.  

In the following tables, examples of Multi-machine 
characterization are given. 

TABLE I.  HARMONIC CHARACTERIZATION FOR WYE-COUPLED 3-PHASE 
MACHINE 

Fictitious 
machine 

Eigenspace Families of  odd 
harmonics 

First 2-phase 
machine 

G2 1, 5, 7,…, 13 ±h  

TABLE II.  HARMONIC CHARACTERIZATION FOR WYE-COUPLED  5-PHASE 
MACHINE 

Fictitious machine Eigenspace Families of odd harmonics 
First 2-phase machine G2 1, 9, 11,…, 15 ±h  

Second  2-phase machine G4 3, 7, 13…, 25 ±h  

TABLE III.  HARMONIC CHARACTERIZATION FOR WYE-COUPLED 7-PHASE 
MACHINE 

Fictitious machine Eigenspace Families of odd harmonics 
First 2-phase machine G2 1, 13, 15,…, 17 ±h  

Second  2-phase machine G4 5, 9, 19…, 27 ±h  
Third  2-phase machine G6 3, 11, 17…, 37 ±h  

TABLE IV.  HARMONIC CHARACTERIZATION FOR WYE-COUPLED 9-PHASE 
MACHINE 

Fictitious machine Families of odd harmonics 
First 2-phase machine 1, 17, 19,…, 19 ±h  

Second  2-phase machine 7, 11, 25…, 2h9 ±  
Third  2-phase machine 3, 15, 21…, 39 ±h  
Fourth  2-phase machine 5, 13, 23…, 49 ±h  

IV. RIGHT HARMONIC SPECTRUM OF BACK-EMF FOR 
EFFICIENT CONTROL 

The Multi-machine modeling of n-phase machine is used to 
find right characteristics of the machine for efficient vector 
control. 

If the back EMFs of a 3-phase machine have a sinusoidal 
waveform then current controls in synchronous frame permit to 
achieve high efficient brushless DC machines particularly at 
low speeds [3]. 

It has been shown that the control of a n-phase machine is 
equivalent to the control of (n-1)/2 2-phase fictitious machines. 
To be able to use algorithms developed for sine wave 3-phase 
machines, it is enough to have only one harmonic per fictitious 
machine. Each fictitious machine is then a sine wave one. For 
each fictitious machine it is then possible to work in a frame 
where the back EMF has a constant value. To get constant 
torque the reference current iref is then constant: a simple 
Proportional Integral controller is convenient for each fictitious 
machine. 

Consequently, the equivalent case of a sine-wave 3-phase 
machine for a n-phase one is that the spectrum of back 
electromotive force must contain only odd 2k+1 harmonics 
which verify the following inequality, nk <+≤ 121 . 

 For a 5-phase machine for example the back-EMF has only 
to contain the first and third harmonics. The corresponding 
synopsis of control is presented in Fig.7. 

After a choice of repartition of the torque reference Tem-ref 
between the two fictitious machines, two independent controls 
using the same algorithm as for vector control of 3-phase 
machines are used. The unique difference is that the angle of 
the matrix rotation relative to the secondary machine is 
3θ instead of θ. Such a control has been implemented for an 
experimental 5-phase machine whose characteristics of back 
EMF (Fig.6) are given in TABLE V.  

One can remark that the main machine is almost a machine 
with a sinusoidal back-EMF since the 9th

 represents only 1,7% 
of the first harmonic. For the secondary machine, the 7th 
harmonic of back-EMF, which is only 5,1% of the 
fundamental, represents 18% of the 3rd harmonic. 
Consequently, the back-EMF of  SM can not be considered as 
sinusoidal  because it is composed of 3rd and 7th harmonics.   

TABLE V.  HARMONIC DECOMPOSITION OF BACK-ELECTROMOTIVE OF 
ONE PHASE 

Order of harmonic 1 3 5 7 9 

Relative RMS amplitude  100% 28,5% 12,4% 5,1% 1,7% 
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Figure 6. Back electromotive force of 5-phase machine. 



To exhibit the influence of the 7th harmonic on the 
performance of the drive, it has been chosen to use only the 
Main Machine to produce the torque. In the ideal case of a 
machine with only the 1st and 3rd harmonics in the back emf it 
should appear only the first harmonic in the spectrum of the 
current. In Fig.8 and Fig.10 effects of 7th harmonic of EMF are 
visible on the current in the phase n°1. Fig.12  shows currents 
in each frame of the fictitious machines: it is effectively in the 
Secondary Machine that the 7th harmonic appears. It is 
consequently necessary to compensate the negative effect of 
the 7th harmonic in the control of Secondary Machine. In Fig.9 
and Fig.11 effects of compensation of 7th harmonic of EMF are 
shown.  

In a second strategy, the two fictitious machines have been 
used to produce torque with a compensation of the 7th 
harmonic. Fig.14., Fig. 15, Fig. 16 and Fig.17 gives results of 
the vector control. More explanations about this control are 
given in [19]. 

CONCLUSION 
In this paper, a Multi-machine modeling of n-phase machines 
has been presented. This approach exhibits particularities of n-
phase machine beyond 3-phase ones: it is possible to get the 
total torque using different fictitious machines. The choice of 
the repartition of the total torque between the different 
machines depends on the characteristic of the fictitious 
machines whose harmonic characterization has been given. To 
use algorithms already developed for vector control of 3-phase 

machine, it is sufficient that each fictitious machine has 
sinusoidal waveform EMF.  
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Figure 7. Synopsis of control. 
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Figure 8. Experimental i1 current in phase n°1 at 1000 rpm without compensation 
of  7th harmonic of back-EMF. 
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Figure 9. Experimental i1 current in phase n°1 at 1000 rpm with 
compensation of  7th harmonic of back-EMF. 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 00

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

F u n d a m e n t a l  o f  i 1 :  i 1 -1

7 th  h a r m o n ic  o f  i 1  :  i 1 - 7

1 0 0 %

2 9 %
S M

M M

H z

 
Figure 10. Spectrum of experimental current i1 at 1000 rpm without compensation 
of 7th harmonic of back-EMF. 
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Figure 11. Spectrum of experimental current i1 at 1000 rpm with 
compensation of 7th harmonic of back-EMF. 
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Figure 12. Currents in the two fictitious 2-phase machines ‘MM’ and ‘SM’ without 

compensation of 7th harmonic of back-EMF. 
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Figure 13. Currents in the two fictitious 2-phase machines ‘MM’ and 
‘SM’ with compensation of 7th harmonic of back-EMF. 
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Figure 14. Experimental i1 current in phase n°1 at 1000 rpm with compensation of  7th 
harmonic of back-EMF and the repartition between MM and SM isq-ref = (29%)  imq-ref. 
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Figure 15. Experimental active currents in  MM and SM with 

compensation of  7th harmonic of back-EMF and Tes-ref = (29 %) Tms-ref. 
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Figure 16. Currents in the two fictitious 2-phase machines ‘MM’ and ‘SM’ with 

compensation of 7th harmonic of back-EMF. 
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Figure 17. Spectrum of  Figure 14  experimental current i1. 

 


