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Abstract. We consider the Poisson equation in a domain with a small hole of size δ. We present a
simple numerical method, based on an asymptotic analysis, which allows to approximate robustly
the far field of the solution as δ goes to zero without meshing the small hole. We prove the sta-
bility of the scheme and provide error estimates. We end the paper with numerical experiments
illustrating the efficiency of the technique.

Key words. Small hole, asymptotic analysis, singular perturbation, finite element method.

1 Introduction

In the present article, we consider ω,Ω ⊂ R
2 two bounded Lipschitz domains such that ω ⊂ Ω.

Define ωδ := {x ∈ R
2, x/δ ∈ ω} and Ωδ := Ω \ ωδ. Given a data f ∈ L2(Ω), we are interested in

devising a robust and accurate numerical method for approximating, for small values of δ, the far
field of the function satisfying

uδ ∈ H1
0(Ωδ) and − ∆uδ = f in Ωδ. (1)

In (1), H1
0(Ωδ) denotes the subspace of the elements of the Sobolev space H1(Ωδ) vanishing on ∂Ωδ.

On the other hand, we call far field of uδ the restriction of uδ to Ω \ Dr, where Dr := D(0, r) is
the disk with fixed arbitrary radius r > 0. Problem (1), or variants of it, arises as a simple but
relevant model in many applications ranging from electrical engineering [5, 37] to flow transport
around wells [14, 36]. This kind of problem also appears when considering wave scattering by small
impenetrable inclusions [13].

In order to solve numerically Problem (1), a crude but rather natural idea would consist in ne-
glecting the influence of the small inclusion on the total field uδ. Indeed (see for example [31]), as
δ → 0 the function uδ converges toward u0 the solution to the limit problem where the inclusion
has disappeared

u0 ∈ H1
0(Ω) and − ∆u0 = f in Ω. (2)

However, in the general case (more precisely, when u0(0) 6= 0), the convergence turns out to
be very slow: for any arbitrary radius r > 0 such that Dr ⊂ Ω, we have ‖uδ − u0‖H1(Ω\Dr) ≥

C | ln δ|−1‖f‖L2(Ω), for some constant C > 0 independent of δ. To give an idea | ln δ|−1 ≈ 0.0434
for δ = 10−10. Thus, neglecting the presence of the small inclusion is not satisfactory from a com-
putational point of view, and a reasonable numerical approach for (1) should reproduce accurately
the perturbation induced by the presence of the small inclusion ωδ.
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Most of the numerical approaches that could be considered for dealing with this problem suffer
from a numerical locking effect [2]: performances of standard strategies deteriorate as δ → 0. Ad-
mittedly, robust strategies already exist in the literature, like the multi-scale finite element method
coupled with some mesh refinement strategy [22], or the boundary element method (see e.g. [1]).
These techniques provide satisfying results in many cases, but they require careful and thorough
implementation efforts, and/or rely on strong assumptions such as homogeneity of the coefficients
of the equation under consideration. Other numerical strategies are based on an approximation
of uδ of the form "u0 + corrector", where both terms of this sum are computed separately (see
for example [18, 7]). These approaches may induce substantial additional computational cost in
a real life simulation. In many practical situations, small inclusions are not the main subject of
concern, and it would be desirable to devise a simple, general purpose and implementation friendly
method that would not rely on any kind of mesh refinement technique, while remaining robust as
δ → 0. This is the purpose of the present article to describe and analyse a method matching these
requirements, while relying on only one numerical resolution.

The outline of this article is the following. In Section 2, we summarize the main results con-
cerning the asymptotic expansion of uδ with respect to the size of the small hole. Section 3 is
dedicated to the construction of a model problem, based on the matched expansion of uδ, whose
solution has the same far field asymptotics as uδ, up to a remainder in O(δ1−ǫ),∀ǫ > 0. We prove
this in Section 4 (see Proposition 4.2) and also show that consistency of any Galerkin discretization
of this model problem is quasi-optimal and uniform with respect to δ. Finally, in Section 6, we
present and comment numerical results that confirm and illustrate our theoretical conclusions.

2 Asymptotic expansion of the solution

Asymptotic analysis for problems involving small inclusions can be found in many works. We refer
the reader to [12, 24, 25, 30, 29, 31, 33, 34, 35]. The asymptotic expansion for the particular
problem we are considering in this paper is described in detail in [31] and here, we just wish to
remind the main results provided by the method of matched expansions at order one. To proceed,
we need first to introduce two particular functions: the Green function G and the logarithmic
capacity potential P . These two functions are defined in normalized geometries by the following
equations



















−∆G = 0 in Ω \ {O}

G = 0 on ∂Ω

G(x) =
1

2π
ln(1/|x|) + O

|x|→0
(1)



















−∆P = 0 in Ξ := R
2 \ ω

P = 0 on ∂Ξ

P (ξ) =
1

2π
ln(1/|ξ|) + O

|ξ|→∞
(1).

(3)

Classical techniques of separation of variables (see e.g. [28]) show that there exist constants G0, P0

that depend only on the domains Ω, ω such that G(x) − (2π)−1 ln |x|−1 −G0 = O(|x|) for |x| → 0,
and P (ξ) − (2π)−1 ln |ξ|−1 − P0 = O(|ξ|−1) for |ξ| → ∞. The asymptotic analysis of Problem (1)
also involves the gauge function (see [24])

λ(δ) :=
2π

ln δ + 2π(P0 −G0)
. (4)

Finally, the global approximation of uδ is defined as an interpolation between a far field and a near
field contribution as follows:

ûδ(x) := ψ(x/δ) vδ(x) + χ(x)Vδ(x/δ) − χ(x)ψ(x/δ)mδ(x) (5)

where vδ(x) := u0(x) + u0(0)λ(δ)G(x)

Vδ(ξ) := u0(0)λ(δ)P (ξ)

mδ(x) := u0(0)λ(δ)
( 1

2π
ln(δ/|x|) + P0

)

.

(6)
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In the expression above, the cut-off functions χ, ψ are two elements of C ∞(Ω) := {v|Ω | v ∈
C ∞(R2)} such that χ(x) = 1 for |x| ≤ r0/2, χ(x) = 0 for |x| ≥ r0 and ψ := 1 − χ. Here, r0 > 0 is
a given parameter such that Dr0

⊂ Ω. The following well-known result provides an error estimate
for ‖uδ − ûδ‖H1(Ωδ). For the proof, we refer the reader, for example, to Section 2.4.1 of [31].

Proposition 2.1.

Considering uδ defined by (1) and ûδ defined by (6), there exist constants C, δ0 > 0 independent
of δ such that

‖uδ − ûδ‖H1(Ωδ) ≤ C δ | ln δ| ‖f‖L2(Ω) ∀δ ∈ (0, δ0].

Note that, the constant C involved in the estimate above a priori depends on χ, ψ. Note also that,
in the definition of χ, ψ, the parameter r0 could be any positive number such that Dr0

⊂ Ω. In
particular, it can be chosen arbitrarily small. Looking at the explicit definition of ûδ given by (6),
this implies the following result.

Proposition 2.2.

Consider uδ, vδ defined by (1), (6). For any disk Dr ⊂ Ω with 0 < r ≤ r0, there exist constants
Cr, δ0 > 0 independent of δ such that

‖uδ − vδ ‖H1(Ω\Dr) ≤ Cr δ | ln δ| ‖f‖L2(Ω) ∀δ ∈ (0, δ0]. (7)

This last result shows that vδ = u0 +u0(0)λ(δ)G provides a reasonable approximation (for example
δ | ln δ| ≈ 2.3 10−9 for δ = 10−10) of uδ at any fixed distance from the small hole. Thus, the far
field of uδ appears as the superposition of the limit field u0 and a field “radiated” by a point source
located at the center of the hole.
Numerically, u0, G can be approximated by functions uh

0 , Gh using a standard finite element
method (here, h refers to some mesh size) and define vh

δ = uh
0 + uh

0(0)λ(δ)Gh. Then, (7) ensures
that vh

δ is a good approximation of the far field of uδ. This procedure is rather simple to implement
and it has been proven in [6] (see also [8, 18, 19, 7, 4, 9] for slightly different problems1) that it
gives good results. However, it requires to solve two problems which we would like to avoid because
it may be time consuming. Adapting this approach to the case of N inclusions would lead to N+1
numerical solves. Similarly, looking for an approximation of uδ as sharp as the first M terms of
its asymptotic expansion would lead to M numerical solves. From this perspective, for practical
computations, a method involving only one numerical solve would be much more interesting.
In the next section, we propose a model problem that can be discretized by means of any standard
Galerkin method (with classical finite elements for example) with quasi-optimal approximation
properties with respect to both h and δ. In addition, the numerical schemes obtained in this
manner do not deteriorate as δ → 0.

3 Construction of a model problem

The model problem we wish to propose is formulated in (12). The goal of the present section
is to explain how we obtain this problem. To avoid having to compute both u0 and G in the
decomposition vδ = u0 + u0(0)λ(δ)G, we will use the fact that the regular part of G belongs to
H1(Ω). Let us decompose G under the form

G = slog + G̃ with slog(x) :=
1

2π
χ(x) ln(1/|x|) and G̃ ∈ H1

0(Ω) ∩ C
0(Ω). (8)

This allows us to write vδ as vδ = wδ + u0(0)λ(δ) slog with wδ := u0 + u0(0)λ(δ)G̃. Let us express
the coefficient u0(0)λ(δ) by means of wδ. According to the definition of u0 and G it is clear that

1This technique is also very close to singular complement methods (or singular function methods) which are used
to compute efficiently the solution of elliptic partial differential equations in non smooth domains (see for example
[10, 17, 15, 16, 23])
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wδ belongs to H1
0(Ω) ∩ C 0(Ω), where C 0(Ω) refers to the space of continuous functions on Ω.

Moreover, observing that G̃ = G0 + Ĝ for some function Ĝ ∈ H1
0(Ω) ∩ C 0(Ω) vanishing at 0, we

find wδ(0) = u0(0)(1 + λ(δ)G0) and so u0(0)λ(δ) = wδ(0)λ(δ)/(1 + λ(δ)G0). Using Definition (4)
of λ(δ), we deduce that

vδ = wδ + bδ(wδ) slog with wδ := u0 + u0(0)λ(δ)G̃ and bδ(wδ) :=
2π wδ(0)

ln δ + 2πP0
. (9)

Let us emphasize that this expression for vδ is interesting because it involves only one unknown
function which belongs to the variational space H1

0(Ω). Now, we need to derive a problem char-
acterizing wδ. In the sense of distributions in Ω, there holds −∆wδ = −∆(u0 + u0(0)λ(δ) G̃) =
f − bδ(wδ) ∆G̃. Multiplying by w′ ∈ H1

0(Ω) and using Green’s formula, we find that wδ verifies

a(wδ, w
′) + bδ(wδ) blog(w′) =

∫

Ω
fw′ dx (10)

where a(wδ, w
′) :=

∫

Ω
∇wδ · ∇w′ dx

blog(w′) :=
∫

Ω
∆G̃ w′ dx

∆G̃(x) := (2π)−1
(

(∆χ)(x) ln |x| + 2∇χ(x) · ∇(ln |x|)
)

.

(11)

Note that χ is equal to one in a neighbourhood of 0 so that ∆G̃ indeed belongs to C ∞(Ω). As
a remark, let us observe that for test functions w′ such that 0 /∈ supp(w′), we have blog(w′) =
∫

Ω ∇slog · ∇w′ dx.

Of course (10) is not a valid variational formulation in H1(Ω) because the functional wδ 7→ wδ(0) is
not defined on this space. So it cannot be exploited directly for discretization and then numerical
computation. This is the motivation for considering a regularized counterpart of (10) where in
bδ(wδ), we replace wδ(0) by (2πδ)−1

∫

∂Dδ
wδ dσ, ∂Dδ denoting the circle centered at 0 and of radius

δ. Finally, this leads us to examine the following model problem,

Find w̃δ ∈ H1
0(Ω) such that

a(w̃δ, w
′) + b̃δ(w̃δ) blog(w′) =

∫

Ω
fw′ dx ∀w′ ∈ H1

0(Ω),
(12)

where a(·, ·), blog(·) are defined in (11) and where

b̃δ(w̃δ) :=
2π

ln δ + 2πP0

1
2πδ

∫

∂Dδ

w̃δ dσ. (13)

The variational formulation (12) perfectly makes sense for δ small enough and, in the next section,
we show that it admits a unique solution so that w̃δ is well defined. Since Problem (12) differs
from (10), its solution w̃δ is a priori different from wδ. However we are going to show that w̃δ and
wδ (defined by (9)) are close to each other, and that w̃δ + b̃δ(w̃δ) slog is a good approximation of
the far field of uδ.

Remark 3.1. We could have proposed a formulation where, in (10), the term wδ(0) is replaced by
(πδ2)−1

∫

Dδ
wδ dx. The analysis we will develop and the results we will obtain would have been the

same with this alternative choice.

Remark 3.2. It is worth noting that in (12), a simple perturbation of a usual formulation allows
to take into account the small hole. Therefore, with this approach, we can adapt classical codes at
little cost. In this respect, this technique shares similarities with the extended finite element method
(XFEM) [3, 20] and the generalized finite element method (GFEM) [21, 32].
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Remark 3.3. In this paper, we have chosen to investigate the problem of the small hole with
Dirichlet boundary condition in 2D only because in this case, the logarithmic term which appears
in the asymptotic expansion of uδ makes the zero order approximation clearly unsatisfactory (see
the discussion in the introduction). However, the present approach could allow to consider other
problems of singular perturbation. It could also be adapted to obtain higher orders of approximation.
In this case, new perturbation terms would have to be considered in the left hand side of (12).

4 Analysis and discretization of the model problem

We first prove that ãδ(·, ·) := a(·, ·) + b̃δ(·) blog(·), the bilinear form appearing in the left hand side
of (12), differs from a(·, ·) by a small perturbation. This will allow to show that w̃δ is a relevant
approximation of wδ.

Proposition 4.1.

There exists a constant C > 0 independent of δ such that

sup
ϕ∈H1

0
(Ω)\{0}

|b̃δ(ϕ)|
‖ϕ‖H1(Ω)

≤
C

√

| ln δ|
∀δ ∈ (0, 1). (14)

As a consequence, for δ small enough, ãδ(·, ·) is coercive and Problem (12) has a unique solution
w̃δ. Moreover, for any ε > 0, there exist constants Cε, δ0 > 0 independent of δ such that

‖w̃δ − wδ‖H1(Ω) ≤ Cε δ
1−ε ‖f‖L2(Ω) ∀δ ∈ (0, δ0], (15)

where wδ is the function defined in (9).

Proof: First, we prove (14). Consider the disk Dr0
introduced in the definition of χ that satisfies

Dr0
⊂ Ω. We have in particular supp(χ) ⊂ Dr0

. Take an arbitrary ζ ∈ C ∞(Ω) such that
supp(ζ) ⊂ Dr0

. Integration by parts and Cauchy-Buniakowski-Schwarz inequality show that

∣

∣

∣

1
2πδ

∫

∂Dδ

ζ dσ
∣

∣

∣ =
∣

∣

∣

1
2π

∫

Dr0
\Dδ

∇(ln |x|) · ∇ζ dx
∣

∣

∣ ≤

√

| ln(r0/δ)|
2π

‖ζ‖H1(Ω) . (16)

As a consequence, for any ϕ ∈ C ∞
0 (Ω), considering χϕ instead of ζ in (16) and using (13), we see

that there exist constants C,C ′ > 0 (whose values may change from one occurrence to another)
independent of δ such that |b̃δ(ϕ)| = |b̃δ(χϕ)| ≤ C| ln δ|−1/2 ‖χϕ‖H1(Ω) ≤ C ′| ln δ|−1/2 ‖ϕ‖H1(Ω).
Since C ∞

0 (Ω) is dense into H1
0(Ω), this shows (14). We deduce that for all ϕ ∈ H1

0(Ω), we have

|ãδ(ϕ,ϕ)| = |a(ϕ,ϕ) + b̃δ(ϕ) blog(ϕ)| ≥ C (1 − C ′ | ln δ|−1/2)‖ϕ‖2
H1(Ω). (17)

This guarantees that for δ small enough, Problem (12) has a unique solution w̃δ. To establish the
second part of the statement, we use (17) and write, for δ small enough,

‖wδ − w̃δ‖2
H1(Ω) ≤ C |ãδ(wδ − w̃δ, wδ − w̃δ)| ≤ C |bδ(wδ) − b̃δ(wδ)| |blog(wδ − w̃δ)|. (18)

Let us focus on

|bδ(wδ) − b̃δ(wδ)| =
∣

∣

∣

2π
ln δ + 2π P0

∣

∣

∣

∣

∣

∣wδ(0) −
1

2πδ

∫

∂Dδ

wδ dσ
∣

∣

∣. (19)

From (9), we know that there holds wδ = u0 + u0(0)λ(δ)G̃ with G̃ = G0 + Ĝ, Ĝ ∈ C ∞(Ω). For
β ∈ R, we define the weighted norm

‖ϕ‖V1
β

(Ω) := ( ‖ |x|β∇ϕ‖2
L2(Ω) + ‖ |x|β−1ϕ‖2

L2(Ω) )1/2, (20)
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and let V1
β(Ω) refer to the completion of C ∞(Ω \ {O}) := {v|Ω | v ∈ C ∞(R2), v = 0 in a neigh-

bourhood of 0 } with respect to this norm. We refer the reader to [26] for more details on weighted
Sobolev spaces. On the other hand, classical Kondratiev analysis (see [27, Chap.6]) allows to prove
the decomposition u0 = u0(0) + ũ0, where ũ0 ∈ H1(Ω) ∩ V1

−1+ε(Ω) for all ε > 0, with the estimate

|u0(0)| + ‖ũ0‖V1
−1+ε(Ω) ≤ Cε ‖f‖L2(Ω). (21)

This implies wδ = wδ(0) + (ũ0 + u0(0)λ(δ)Ĝ). Conducting a calculus analogue to (16), replacing
formally ζ(x) by |x|−1+εũ0(x), we find that |

∫

∂Dδ
ũ0 dσ| ≤ C δ2−ε ‖f‖L2(Ω). Writing a Taylor

expansion of Ĝ at x = 0 and using (21), we obtain |u0(0)λ(δ)
∫

∂Dδ
Ĝ dσ| ≤ C δ2 ‖f‖L2(Ω). We

deduce
∣

∣

∣wδ(0) −
1

2πδ

∫

∂Dδ

wδ dσ
∣

∣

∣ ≤ C δ1−ε ‖f‖L2(Ω). (22)

Plugging this estimate in (19) leads to |bδ(wδ) − b̃δ(wδ)| ≤ C δ1−ε ‖f‖L2(Ω). Combining this in-
equality with (18), we obtain (15) as a direct consequence. �

We have just proved that w̃δ is close to wδ. From the relation linking wδ to vδ, we deduce that
w̃δ + b̃δ(w̃δ) slog is a good approximation of the far field of uδ.

Proposition 4.2.

For any disk Dr ⊂ Ω with 0 < r ≤ r0 and for any ε > 0, there exist constants C, δ0 > 0 depending
on r, ε but not on δ such that

‖uδ − (w̃δ + b̃δ(w̃δ) slog)‖H1(Ω\Dr) ≤ C δ1−ε ‖f‖L2(Ω) ∀δ ∈ (0, δ0]. (23)

Proof: Remembering that vδ = wδ + bδ(wδ) (see (9)), where vδ, wδ are defined in (6), (9), and
using the triangular inequality, we can write

‖uδ − (w̃δ + b̃δ(w̃δ) slog)‖H1(Ω\Dr)

≤ ‖uδ − vδ‖H1(Ω\Dr) + ‖wδ − w̃δ‖H1(Ω\Dr) + |bδ(wδ) − b̃δ(w̃δ)| ‖slog‖H1(Ω\Dr).
(24)

In the previous proof, we have established that |bδ(wδ) − b̃δ(wδ)| ≤ C δ1−ε ‖f‖L2(Ω) for some
constant C > 0 independent of δ. Combining this with (14), we find

|bδ(wδ) − b̃δ(w̃δ)| ≤ |bδ(wδ) − b̃δ(wδ)| + |b̃δ(wδ) − b̃δ(w̃δ)|

≤ C (δ1−ε ‖f‖L2(Ω) + ‖wδ − w̃δ‖H1(Ω)),
(25)

for some constant C > 0 independent of δ. Plugging (25) in (24) and using (7), (15), we finally
obtain (23). �

Remark 4.1.

Working as in the previous proof, one can obtain a slightly more general result where the norm
‖ · ‖H1(Ω\Dr) in the right hand side of (23) is replaced by the norm ‖ · ‖V1

β
(Ω) (see (20)) with β > 0.

Remark 4.2.

Making the additional assumption that the source term f verifies ‖ |x|−βf‖L2(Ω) < +∞ for some
β > 0, and revisiting Estimate (22), we find that (15) can be improved in ‖w̃δ − wδ‖H1(Ω) ≤

C δ ‖ |x|−βf‖L2(Ω), ∀δ ∈ (0, δ0]. In this case, (23) becomes ‖uδ − (w̃δ + b̃δ(w̃δ) slog)‖H1(Ω\Dr) ≤

C δ | ln δ| ‖ |x|−βf‖L2(Ω), ∀δ ∈ (0, δ0].

To conclude, assume that we want to solve Formulation (12) by means of a Galerkin approach
associated with a family of discrete subspaces (Vh)h>0 (in the numerical experiments, h will refer

6



to the mesh size). We assume that there holds Vh ⊂ H1
0(Ω) for all h > 0 . The natural discrete

variational formulation associated with (12) writes

Find w̃h
δ ∈ Vh such that

a(w̃h
δ , ϕ

h) + b̃δ(w̃h
δ ) blog(ϕh) =

∫

Ω
fϕh dx ∀ϕh ∈ Vh.

(26)

The coercivity of ãδ(·, ·) = a(·, ·) + b̃δ(·) blog(·) proven in Proposition 4.1 shows straightforwardly,
by Cea’s lemma, the result of quasi-optimal convergence

‖w̃δ − w̃h
δ ‖H1(Ω) ≤ C inf

ϕh∈Vh
‖w̃δ − ϕh‖H1(Ω). (27)

Combining this with Estimate (23) proves that w̃h
δ + b̃δ(w̃h

δ ) slog is a reasonable approximation
of the far field expansion of uδ. The following proposition is one of the two main results (with
Proposition 5.1 hereafter) of the present article. It establishes quasi-optimal convergence of the
numerical method (26) both in δ and h.

Proposition 4.3.

Consider a finite dimensional space Vh ⊂ H1
0(Ω). For any disk Dr ⊂ Ω with 0 < r ≤ r0 and for

any ε > 0, there exists a constant C > 0 depending on r, ε but not on δ and h such that, for δ
small enough,

‖uδ − (w̃h
δ + b̃δ(w̃h

δ ) slog)‖H1(Ω\Dr)

≤ C (δ1−ε + | ln δ|−1 inf
ϕh∈Vh

‖G̃− ϕh‖H1(Ω)) ‖f‖L2(Ω) + C inf
ϕh∈Vh

‖u0 − ϕh‖H1(Ω).
(28)

Proof: The continuity estimate of b̃δ (see (14)) implies that there exists a constant C > 0 inde-
pendent of δ such that ‖uδ − (w̃h

δ + b̃δ(w̃h
δ )slog)‖H1(Ω\Dr) ≤ C ‖uδ − (w̃δ + b̃δ(w̃δ)slog)‖H1(Ω\Dr)

+C ‖w̃δ − w̃h
δ ‖H1(Ω). Proposition 4.2 already yields that ‖uδ − (w̃δ + b̃δ(w̃δ) slog)‖H1(Ω\Dr) ≤

C δ1−ε ‖f‖L2(Ω) for any ε > 0, so we only need to focus on the second term of the previous
inequality. Since we have wδ = u0 + u0(0)λ(δ)G̃, (27) allows us to write

‖w̃δ − w̃h
δ ‖H1(Ω)

≤ C ‖wδ − w̃δ‖H1(Ω) + C infϕh∈Vh ‖wδ − ϕh‖H1(Ω)

≤ C ‖wδ − w̃δ‖H1(Ω) + C infϕh∈Vh ‖u0 − ϕh‖H1(Ω) + C |u0(0)λ(δ)| infϕh∈Vh ‖G̃− ϕh‖H1(Ω)

≤ C (δ1−ε + | ln δ|−1 infϕh∈Vh ‖G̃− ϕh‖H1(Ω)) ‖f‖L2(Ω) + C infϕh∈Vh ‖u0 − ϕh‖H1(Ω).

This finishes the proof. �

To illustrate what kind of result the above proposition implies, assume for example that Vh is
the space of P1-Lagrange finite element functions constructed on a quasi-uniform regular triangu-
lation of the domain Ω. In this situation, according to (28), for any ε > 0 there exists a constant
C > 0 independent of δ and h, such that ‖uδ − (w̃h

δ + b̃δ(w̃h
δ ) slog)‖H1(Ω\Dr) ≤ C (δ1−ε +h) ‖f‖L2(Ω).

We also emphasize that the result of quasi-optimal convergence for (26) with a constant inde-
pendent of δ discards any numerical locking effect. In other words, this assert the robustness of
(26) as δ → 0.

5 Practical implementation of the perturbation

From the point of view of practical implementation, a natural idea consists in computing the
perturbation term b̃δ(·) by means of the crude quadrature formula

∫

∂Dδ
ϕhdσ ≃ 2πδϕh(0) for any

7



ϕh ∈ Vh, which boils down to actually considering bδ(·) instead of b̃δ(·). In this section we examine
the validity of such a substitution. We introduce the discrete formulation

Find wh
δ ∈ Vh such that

a(wh
δ , ϕ

h) + bδ(wh
δ ) blog(ϕh) =

∫

Ω
fϕh dx ∀ϕh ∈ Vh.

(29)

assuming that Vh ⊂ C 0(Ω) (this implies in particular that (29) has indeed a sense) is a Lagrange
finite element space constructed on a quasi-uniform regular triangulation of the domain Ω. Let us
prove that Problem (29) yields to a good approximation of the far field of uδ.

Proposition 5.1.

For any given h > 0, for δ > 0 small enough, Problem (29) has a unique solution wh
δ . Moreover,

if f ∈ H2(Ω) and if Ω is smooth, then for any disk Dr ⊂ Ω with 0 < r ≤ r0 and for any ε > 0,
there exists a constant C > 0 depending on r, ε but not on δ and h such that, for δ small enough,

‖uδ − (wh
δ + bδ(wh

δ ) slog)‖H1(Ω\Dr)

≤ C (δ| ln δ| + γ(δ, h) + | ln δ|−1 inf
ϕh∈Vh

‖G̃− ϕh‖H1(Ω)) ‖f‖H2(Ω) + C inf
ϕh∈Vh

‖u0 − ϕh‖H1(Ω).
(30)

In (30), the constant γ(δ, h) can be chosen such that γ(δ, h) = (δ+h2| ln h|)/(1−(1+| ln h|)1/2/| ln δ|).

Remark 5.1. Observe that for any given h > 0, there holds |γ(δ, h)| ≤ C (δ+h2| ln h|) for δ small
enough. Actually, in the proof, we will see that the condition | ln h|1/2/| ln δ| = O(1) is sufficient
to guarantee well-posedness for Problem (29). Note that this assumption is in accordance with the
situation we want to consider, namely an obstacle small compare to the mesh size (δ << h).

Remark 5.2. The additional smoothness assumption on the source term is needed for technical
reasons (see the proof of Lemma 5.1). The authors do not know if it can be weakened.

Proof: We first recall the discrete Sobolev inequality (see [11, Lemma 4.9.2])

‖ϕh‖L∞(Ω) ≤ C (1 + | ln h|)1/2) ‖ϕh‖H1(Ω) ∀ϕh ∈ Vh. (31)

Here and in the sequel of this proof, C > 0 denotes a constant independent of δ, h which may
change from one occurrence to another. Since bδ(ϕh) = 2π ϕh(0)/(ln δ + 2πP0), we deduce from
(31) that, for δ small enough, for all ϕh ∈ Vh, we have

|a(ϕh, ϕh) + bδ(ϕh) blog(ϕh)| ≥ C α(δ, h) ‖ϕh‖2
H1(Ω), (32)

where α(δ, h) := 1 − β(δ, h) and β(δ, h) := (1 + | ln h|)1/2/| ln δ|. It is clear that for a given h,
β(δ, h) tends to zero as δ goes to zero. Therefore, Estimate (32) shows that a(·, ·) + bδ(·) blog(·) is
coercive for δ small enough. In this case, from the Lax-Milgram theorem, we infer that Problem
(29) has a unique solution. Now, we wish to establish (30). Thanks to the triangular inequality,
we can write

‖uδ − (wh
δ + bδ(wh

δ ) slog)‖H1(Ω\Dr) ≤ ‖uδ − (w̃h
δ + b̃δ(w̃h

δ ) slog)‖H1(Ω\Dr)

+‖wh
δ − w̃h

δ ‖H1(Ω\Dr) + |bδ(wh
δ ) − b̃δ(w̃h

δ )| ‖slog‖H1(Ω\Dr).
(33)

The first term of the right hand side of (33) has already been studied in Proposition 4.3. To handle
the last term, we use (31) to obtain

|bδ(wh
δ ) − b̃δ(w̃h

δ )| ≤ |bδ(wh
δ ) − bδ(w̃h

δ )| + |bδ(w̃h
δ ) − b̃δ(w̃h

δ )|

≤ C β(δ, h) ‖wh
δ − w̃h

δ ‖H1(Ω) + |bδ(w̃h
δ ) − b̃δ(w̃h

δ )|.
(34)
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Let us estimate the quantity ‖wh
δ − w̃h

δ ‖H1(Ω) which appears both in (33) and (34). The coercivity
inequality (32) and the definition of Problems (26), (29) provide

C α(δ, h) ‖wh
δ − w̃h

δ ‖2
H1(Ω) ≤ |a(wh

δ − w̃h
δ , w

h
δ − w̃h

δ ) + bδ(wh
δ − w̃h

δ ) blog(wh
δ − w̃h

δ )|

≤ |bδ(w̃h
δ ) − b̃δ(w̃h

δ )| |blog(w̃h
δ − w̃h

δ )|.

Observing that blog is bounded on H1(Ω), we deduce that

‖wh
δ − w̃h

δ ‖H1(Ω) ≤ C α(δ, h)−1 |bδ(w̃h
δ ) − b̃δ(w̃h

δ )|. (35)

Plugging (35) in (33) and (34), we conclude that it is sufficient to control |bδ(w̃h
δ ) − b̃δ(w̃h

δ )| to
prove (30). We have

|bδ(w̃h
δ ) − b̃δ(w̃h

δ )| ≤ |bδ(w̃δ − w̃h
δ ) − b̃δ(w̃δ − w̃h

δ )| + |bδ(w̃δ) − b̃δ(w̃δ)|. (36)

Then, by definition of bδ, b̃δ, we find, for δ small enough,

|bδ(w̃δ − w̃h
δ ) − b̃δ(w̃δ − w̃h

δ )| =
∣

∣

∣

2π
ln δ + 2πP0

1
2πδ

∫

∂Dδ

(w̃δ − w̃h
δ )(0) − (w̃δ − w̃h

δ ) dσ
∣

∣

∣

≤ C ‖w̃δ − w̃h
δ ‖L∞(Ω)

(37)

Lemma 5.1 hereafter guarantees that if w̃δ ∈ W2,∞(Ω) := {v ∈ L∞(Ω) | ∂αv ∈ L∞(Ω), |α| ≤ 2}2,
then (w̃h

δ ) uniformly converges to w̃δ as h tends to zero, with the estimate

‖w̃δ − w̃h
δ ‖L∞(Ω) ≤ C h2| ln h| ‖w̃δ‖W2,∞(Ω). (38)

To ensure such a regularity for w̃δ, let us assume that the source term f verifies f ∈ H2(Ω). Using
(12) and (13), we see that in the sense of distributions in Ω, there holds

−∆w̃δ = fδ with fδ := f − b̃δ(w̃δ)∆G̃.

Thus, if f ∈ H2(Ω), then the theory of elliptic regularity asserts that w̃δ ∈ H4(Ω). Besides,
Proposition 4.1 and Estimate (17) imply

‖w̃δ‖H1(Ω) ≤ C ‖f‖L2(Ω). (39)

We emphasize that in (39), the constant C > 0 is independent of δ. As a consequence, from
Proposition 4.1 and (39), we get ‖fδ‖H2(Ω) ≤ C ‖f‖H2(Ω). In this case, from the Sobolev imbedding
theorem, we deduce that w̃δ ∈ C2(Ω) with

‖w̃δ‖W2,∞(Ω) ≤ C ‖w̃δ‖H4(Ω) ≤ C ‖fδ‖H2(Ω) ≤ C ‖f‖H2(Ω). (40)

Collecting (37), (38) and (40), we find

|bδ(w̃δ − w̃h
δ ) − b̃δ(w̃δ − w̃h

δ )| ≤ C h2| ln h| ‖f‖H2(Ω). (41)

On the other hand, concerning the second term of the right hand side of (36), writing the Taylor
expansion of w̃δ at x = 0 and coming back to the definition of bδ, b̃δ yields

|bδ(w̃δ) − b̃δ(w̃δ)| ≤ C δ ‖f‖H2(Ω). (42)

Plugging (41) and (42) into (36) leads to

|bδ(w̃h
δ ) − b̃δ(w̃h

δ )| ≤ C (δ + h2| ln h|) ‖f‖H2(Ω). (43)

Finally, combining (33), (34), (35), (43) and using Remark 4.2 allows to obtain (30). �

In order to complete the previous analysis, now we state a result of uniform approximation of
w̃δ by w̃h

δ whose proof can be obtained working exactly as in [39].

2In this definition, we use the classical multi-index notation.

9



Lemma 5.1. Assume that the solution of Problem (12) verifies w̃δ ∈ W2,∞(Ω). Then, for δ small
enough, we have the estimate

‖w̃δ − w̃h
δ ‖L∞(Ω) ≤ C h2| ln h| ‖w̃δ‖W2,∞(Ω),

where C > 0 is independent of δ, h.

6 Numerical experiments

Now, let us present the results of the numerical tests that we conducted in order to validate our
theoretical conclusions. First, we detail the parameters used for the experiments. Let Ω (resp.
ωδ) be the disk centered at 0 of radius 1 (resp. δ). Remember that we denote Ωδ = Ω \ ωδ. We
consider the problem of finding uδ ∈ H1

0(Ωδ) such that

− ∆uδ = 0 in Ωδ and uδ = g on ∂Ω, uδ = 0 on ∂ωδ. (44)

Admittedly (44) is not exactly of the same form as (1). However the analysis developed in the
previous sections can be adapted in a straightforward manner to deal with (44) and the results are
the same. For such a configuration, the exact solution uδ is given by

uδ(x) = 1 − ln |x|/ ln δ for g = 1

uδ(x) =
(δ/|x|)−n − (δ/|x|)n

δ−n − δn
sin(nθ) for g = sin(nθ), n ∈ {1, 2, . . . }.

Note that, with ωδ = Dδ, we have ω = ω1 = D1 so that the logarithmic capacity potential P
defined by (3) verifies P (ξ) = (2π)−1 ln |ξ|−1. As a consequence, the parameter P0 appearing in
the definition of bδ(·) (see (9)) satisfies P0 = 0. For the computation of this parameter in other
geometries, we refer the reader to [38]. Let us consider Ωh a polygonal approximation of the
domain Ω. Introduce (T h)h a shape regular family of triangulations of Ωh. Here, h denotes the
average mesh size. Define the family of finite element spaces

Vh
κ :=

{

ϕ ∈ H1
0(Ωh) such that ϕ|τ ∈ Pκ(τ) for all τ ∈ T h

}

,

where Pκ(τ) is the space of polynomials of degree at most κ ∈ {1, 2, 3} on the triangle τ . We will
denote wh

δ1, wh
δ2 and wh

δ3 the numerical solutions of (29) obtained respectively with Vh
1 , Vh

2 and Vh
3 .

The cut-off function χ appearing in the definition of blog(·) (see (11)) is chosen in C ∞(Ω) (except
for the simulation of Figure 6) with χ(|x|) = 1 for |x| ≤ 0.25 and χ(|x|) = 0 for |x| ≥ 0.5. The
errors are expressed in the norms ‖·‖L2(Ω\Dρ) and ‖·‖H1(Ω\Dρ) with ρ = 0.15. For the computations,
we use the FreeFem++3 software while we display the results with Matlab4.

On Figures 1, 2, 3 and 4, we represent the behaviour of ‖uδ − uh
0‖L2(Ω\Dρ), ‖uδ − uh

0‖H1(Ω\Dρ),
‖uδ −wh

δ1 − bδ(wh
δ1)slog‖L2(Ω\Dρ), ‖uδ −wh

δ1 − bδ(wh
δ1)slog‖H1(Ω\Dρ) with respect to the mesh size in

logarithmic scale. Figures 1, 2, 3 and 4 correspond respectively to δ = 10−1, δ = 10−2, δ = 10−4

and δ = 10−10. Here, uh
0 is the standard P1 approximation of u0, the 0 order approximation of

uδ defined by (2). Moreover, wh
δ1 is the solution of (29) with Vh = Vh

1 (again P1 approximation).
We take g = 1. As predicted at the end of Section 2, we observe that the approximation of uδ

by uh
0 does not provide satisfactory results (even for δ = 10−10). This is due to the error in the

model, of order | ln δ|−1, which decays very slowly as δ tends to zero. Conversely, wh
δ1 + bδ(wh

δ1)slog

appears as a good approximation of uδ and the rates of convergence are as expected. Moreover,
the curves for δ = 10−10 confirm the absence of any locking phenomenon for this numerical scheme.

3
FreeFem++, http://www.freefem.org/ff++/.

4
Matlab, http://www.mathworks.se/.
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On Figures 5, 6, we display the behaviour of ‖uδ − wh
δ1 − bδ(wh

δ1)slog‖H1(Ω\Dρ), ‖uδ − wh
δ2 −

bδ(wh
δ2)slog‖H1(Ω\Dρ), ‖uδ −wh

δ3 − bδ(wh
δ3)slog‖H1(Ω\Dρ) with respect to the mesh size in logarithmic

scale. For the experiments of Figure 5, the cut-off function χ appearing in the definition of blog(·)
(see (11)) is chosen equal to χexp, an element of C ∞(Ω) built with the exponential function. For
the simulations of Figure 6, we take χ equal to χpol ∈ C 3(Ω) \ C 4(Ω), a piecewise polynomial
function of degree 7. We take g = 1 and δ = 10−10. We notice that with χ = χexp, we ob-
tain optimal rates of convergence. This is not the case for P3 approximation when we choose
χ = χpol ∈ C 3(Ω) \ C 4(Ω). However, we also remark that for the mesh sizes h considered here,
the error is smaller when χ is a polynomial function (χ = χpol) than when χ is built with the
exponential function (χ = χexp).

On Figure 7, we observe the behaviour of ‖uδ − wh
δ2 − bδ(wh

δ2)slog‖H1(Ω\Dρ) with respect to
the mesh size in logarithmic scale and for different values of δ. Here, wh

δ2 is the solution of (29)
with Vh = Vh

2 . We take g = 1 + sin(θ). We see some thresholds in the convergence with respect
to h: according to the value of δ, the error stops decreasing at some h0. This corresponds again
to the error of the model. Estimates (7) indicates that this error behaves like δ | ln δ|. This is
better than the error of the 0 order model (in | ln δ|−1 ), but when δ is not so small, it is natural
that it appears. These thresholds are absent in the curves of Figure 1 because of the value of the
source term. A natural approach to decrease the error consists in considering a model of higher
order. Then, working as in Section 3, one can derive a model problem which does not suffer from
numerical locking effect and whose solution yields a better approximation of uδ. We emphasize
that at any order, this technique requires only one numerical resolution, and remains robust as
δ → 0.
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Figure 1: Convergence w.r.t. the mesh size – δ = 10−1, g = 1.
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Figure 2: Convergence w.r.t. the mesh size – δ = 10−2, g = 1.
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Figure 3: Convergence w.r.t. the mesh size – δ = 10−4, g = 1.
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Figure 4: Convergence w.r.t. the mesh size – δ = 10−10, g = 1.
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Figure 5: Convergence w.r.t. the mesh size for several orders of approximation – δ = 10−10, g = 1.
The cut-off function χ appearing in the definition of blog(·) (see (11)) is chosen in C ∞(Ω).
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Figure 6: Convergence w.r.t. the mesh size for several orders of approximation – δ = 10−10, g = 1.
The cut-off function χ appearing in the definition of blog(·) (see (11)) is chosen in C 3(Ω) \ C 4(Ω).
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Figure 7: Convergence w.r.t. the mesh size for several values of δ – g = 1 + sin(θ).
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