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CONSTRUCTION OF INVISIBLE CONDUCTIVITY PERTURBATIONS FOR

THE POINT ELECTRODE MODEL IN ELECTRICAL IMPEDANCE

TOMOGRAPHY

LUCAS CHESNEL, NUUTTI HYVÖNEN, AND STRATOS STABOULIS

Abstract. We explain how to build invisible isotropic conductivity perturbations of the unit con-
ductivity in the framework of the point electrode model for two-dimensional electrical impedance
tomography. The theoretical approach, based on solving a fixed point problem, is constructive and
allows the implementation of an algorithm for approximating the invisible perturbations. The func-
tionality of the method is demonstrated via numerical examples.

1. Introduction

Electrical impedance tomography (EIT) is a noninvasive imaging technique with applications, e.g.,
in medical imaging, process tomography, and nondestructive testing of materials [6, 9, 36]. The aim of
EIT is to reconstruct the conductivity distribution inside the examined physical body D ⊂ R

d, d ≥ 2,
from boundary measurements of current and potential. From the purely theoretical standpoint, the
inverse problem of EIT, also known as the inverse conductivity problem, corresponds to determining
the strictly positive conductivity σ : D → R in the elliptic equation

(1) div(σ∇u) = 0 in D

from knowledge of the corresponding Neumann-to-Dirichlet (or Dirichlet-to-Neumann) map at the
object boundary ∂D. This formulation corresponds to the idealized continuum model (CM), which
is mathematically attractive in its simplicity but lacks a straightforward connection to practical EIT
measurements that are always performed with a finite number of contact electrodes. On the other
hand, it is widely acknowledged that the most accurate model for real-life EIT is the complete electrode
model (CEM), which takes into account electrode shapes and contact resistances at electrode-object
interfaces [10, 32].

Instead of the CM or the CEM, in this work we employ the point electrode model (PEM) that
treats the current-feeding electrodes of EIT as delta-like boundary current sources and models the
potential measurements as pointwise evaluations of the corresponding solution to (1) at the electrode
locations [13]. (To make such a model well defined, relative potential measurements need to be
considered due to the singularities induced by the localized current inputs; see Section 2 for the
details.) The PEM is a reasonably good model for practical EIT measurements — in particular,
superior to the CM (cf. [16]) — if the electrodes are small compared to the size of the imaged body:
The discrepancy between the PEM and the CEM is of the order O(h2), with h > 0 being the maximal
diameter of the electrodes [13]. In this work we develop a method, introduced by [4] in the context
of acoustic waveguides (see also [25] for the original idea), for building invisible perturbations of a
given reference conductivity for an arbitrary but fixed electrode configuration modeled by the PEM.

To put our work into perspective, let us briefly review the main results on the unique solvability of
the inverse conductivity problem, which was proposed to the mathematical community by Calderón
in [7]. For d ≥ 3, the global uniqueness for C 2-conductivities was proven in [34]; an extension of
this result to the case Lipschitz conductivities can be found in [11]. The first global uniqueness
proof in two spatial dimensions was given by [24] for C 2-conductivities; subsequently, [2] proved
uniqueness for general L∞-conductivities. All these articles assume the Cauchy data for (1) are
known on all of ∂D, but the partial data problem of having access only to some subset(s) of ∂D has
also been tackled by many mathematicians; see, e.g., [19, 20] and the references therein. From our
view point, the most important uniqueness results are presented in [17, 31] where it is shown that
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any two-dimensional conductivity that equals a known constant in some interior neighborhood of
∂D is uniquely determined by the PEM measurements with countably infinite number of electrodes.
This manuscript complements [17, 31] by constructively showing that for an arbitrary, but fixed and
finite, electrode configuration there exists a perturbation of the unit conductivity that is invisible for
the EIT measurements in the framework of the PEM. For completeness, it should also be mentioned
that recently the nonuniqueness of the inverse conductivity problem has been studied for finite
element method (FEM) discretizations with piecewise linear basis functions [22]. (Take note that we
restrict our attention exclusively to isotropic conductivities because it is well known that the inverse
conductivity problem is not uniquely solvable for anisotropic conductivities; see, e.g., [1, 33] and the
references therein.)

Our constructive proof for the existence of ‘invisible conductivities’ is based on introducing a
small perturbation of a given reference conductivity and applying a suitable fixed point iteration.
The general idea originates from [8, 25, 26, 27, 28, 29], where the authors develop a method for
constructing small regular and singular perturbations of a waveguide that preserve the multiplicity of
the point spectrum on a given interval of the continuous spectrum. Subsequently, the same approach
has been adapted in [4] (see also [5] for an application to a water wave problem) to demonstrate the
existence of regular perturbations of a waveguide allowing waves at given frequencies to pass through
without any distortion or with only a phase shift. Recently, in [3] the methodology has also been
used in inverse obstacle scattering to construct defects in a reference medium which are invisible
to a finite number of far field measurements. Although our technique is, in principle, applicable in
any spatial dimension d ≥ 2 and for an arbitrary smooth enough reference conductivity, a necessary
intermediate result about linear independence of certain auxiliary functions (cf. Lemma 3.2) is proved
here only for d = 2 and the unit reference conductivity, making the main theoretical result of this
work two-dimensional. We implement the constructive proof as a numerical algorithm that is capable
of producing conductivities that are indistinguishable from the unit conductivity for a given set of
point electrodes. We also numerically demonstrate that such conductivities are almost invisible for
small electrodes within the CEM as well.

It should be emphasized that the existence of invisible conductivity perturbations for a finite num-
ber of electrodes is not very surprising: The space of admissible conductivities is infinite dimensional
whereas EIT measurements with N + 1 electrodes include only N(N + 1)/2 degrees of freedom. Be
that as it may, we are not aware of any previous works providing examples on this nonuniqueness
that is of importance in practical EIT.

This text is organized as follows. Section 2 introduces the setting for our analysis and a represen-
tation of the relative PEM measurements with respect to a certain simple basis of electrode current
patterns. The general scheme for constructing invisible conductivity perturbations is presented in
Section 3 and, subsequently, Section 4 adds the missing theoretical piece in two dimensions. The
main result of the article is presented in Theorem 4.1. The algorithmic implementation of the con-
structive existence proof is considered in Section 5 and, finally, the numerical examples are presented
in Section 6.

2. Setting

Let D ⊂ R
d, d ≥ 2, be a simply connected and bounded domain with a C ∞-boundary. Introduce a

real valued reference conductivity σ0 ∈ C ∞(D) such that σ0 ≥ c > 0 in D. (Throughout this text
C, c > 0 denote generic constants that may change from one occurrence to the next.) Consider the
Neumann boundary value problem

(2) div(σ0∇u0) = 0 in D, ν · σ0∇u0 = f on ∂D

for a current density f in

(3) Hs
⋄(∂D) := {g ∈ Hs(∂D) | 〈g, 1〉∂D = 0},

with some s ∈ R. Here and in what follows, ν denotes the unit normal vector of ∂D orientated to
the exterior of D. We observe that the dual of Hs

⋄(∂D) is realized by

(4) H−s(∂D)/R := H−s(∂D)/span{1}, s ∈ R.

It follows from standard theory of elliptic boundary value problems that (2) has a unique solution

u0 ∈ Hs+3/2(D)/R, which is smooth away from ∂D due to the interior regularity for elliptic equations.
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In particular, for any compactly embedded domain Ω ⋐ D it holds that

(5) c‖u0‖H1(Ω)/R ≤ ‖u0‖Hs+3/2(D)/R ≤ C‖f‖Hs
⋄(∂D),

where c = c(s,Ω) and C = C(s) [23]. Let us next consider a perturbed conductivity

(6) σε := σ0 + εκ,

where κ ∈ L∞(D) is compactly supported in D and ε > 0 is such that σε ≥ c > 0 in D. The
corresponding perturbed Neumann boundary value problem

(7) div(σε∇uε) = 0 in D, ν · σε∇uε = f on ∂D,

with f ∈ Hs
⋄(∂D) for some s ∈ R, has a unique solution in (Hs+3/2(D) ∩ H1

loc(D))/R1 (cf., e.g.,
[23, 14]).

We note that the relative Neumann-to-Dirichlet map

Λε − Λ0 : f 7→ (uε − u0)|∂D, D
′
⋄(∂D) → D(∂D)/R

is well-defined. Here, the mean-free distributions D ′
⋄(∂D) and the quotient space of smooth boundary

potentials D(∂D)/R are defined in accordance with (3) and (4). This regularity result can be
deduced from standard elliptic theory (cf., e.g., [23, 14]) and follows from the fact that Λε and
Λ0 are pseudodifferential operators with the same symbol on ∂D because σε − σ0 vanishes in some
interior neighborhood of ∂D. One can also prove the following symmetry property for the relative
Neumann-to-Dirichlet map (see, e.g., [31, Theorem 2.1]).

Proposition 2.1. For all ϕ, ϕ′ ∈ D ′
⋄(∂D), we have

〈ϕ, (Λε − Λ0)ϕ′〉∂D = 〈ϕ′, (Λε − Λ0)ϕ〉∂D =

∫

D
(σ0 − σε)∇uε

ϕ · ∇u0
ϕ′ dx,

where uε
ϕ, u0

ϕ′ denote respectively the solutions of (7), (2) with f equal to ϕ, ϕ′.

Now, consider an observer who can impose currents between pairs of (small) electrodes located at
x0, . . . , xN ∈ ∂D and measure the resulting voltages for both conductivities σ0 and σε. According
to the PEM [13], this corresponds to knowing all elements in the matrix of relative measurements
M (σε) ∈ R

N×N defined via

(8) Mij(σε) = 〈δi − δ0, (Λ
ε − Λ0)(δj − δ0)〉∂D, i, j = 1, . . . , N,

where δn ∈ H−(d−1)/2−η(∂D), η > 0, stands for the Dirac delta distribution supported at xn. It
follows from Proposition 2.1 that M (σε) is symmetric and, furthermore,

(9) Mij(σε) =

∫

D
(σ0 − σε)∇uε

i · ∇u0
j dx,

where u0
n, u

ε
n ∈ (H−(d−4)/2−η(D) ∩ H1

loc(D))/R, η > 0, are the solutions of the Neumann problems

(10) div(σ0∇u0) = 0 in D, ν · σ0∇u0 = δn − δ0 on ∂D

and

(11) div(σε∇uε) = 0 in D, ν · σε∇uε = δn − δ0 on ∂D,

respectively. The goal of this work is to find σε 6≡ σ0 such that M (σε) vanishes.

Remark 2.1. In the framework of the PEM, the relative EIT measurements corresponding to the
electrode locations x0, . . . , xN ∈ ∂D are, arguably, more intuitively described by the measurement map

(12) M(σε) : I 7→
[

(uε
I − u0

I)(xn)
]N

n=0
, R

N+1
⋄ → R

N+1/R ≃ R
N+1
⋄ ,

where R
N+1
⋄ denotes the mean-free subspace of R

N+1, and uε
I and uε

I are the solutions of (2) and
(7), respectively, for the boundary current density

f =
N
∑

n=0

Inδn ∈ H
−(d−1)/2−η
⋄ (∂D), η > 0.

In other words, M(σε)I ∈ R
N+1/R contains the relative potentials at the electrodes (uniquely defined

up to the ground level of potential) when the net currents I ∈ R
N+1
⋄ are driven through the boundary

1Here, H1
loc(D) stands for the space of distributions v ∈ D

′(D) verifying v|ω ∈ H1(ω) for all domains ω ⋐ D.
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points x0, . . . , xN ∈ ∂D. It is easy to see that the matrix M (σε) ∈ R
N×N is the representation of

M(σε) : RN+1
⋄ → R

N+1
⋄ with respect to the basis

en − e0, n = 1, . . . , N,

where en denotes the nth Cartesian basis vector of RN+1. In particular, M (σε) is the null matrix if
and only if M(σε) is the null operator, that is, if and only if σε cannot be distinguished from σ0 by
PEM measurements.

3. General scheme

Let Ω ⋐ D ⊂ R
d be a nonempty Lipschitz domain. We recall the decomposition σε = σ0 + εκ and

require that κ ∈ L∞(D) satisfies supp(κ) ⊂ Ω. Our leading idea, originating from [3, 4, 25], is to
consider a small enough ε > 0 so that we can compute an asymptotic expansion for M (σε). To this
end, let us first write

(13) uε
n = u0

n + εũε
n

where uε
n, u

0
n ∈ (H−(d−4)/2−η(D) ∩ H1

loc(D))/R are defined by (11) and (10), respectively. Plugging
(13) in (11), we see that ũε

n must satisfy the Neumann problem

(14) div(σε∇ũε
n) = −div(κ∇u0

n) in D, ν · σ0∇ũε = 0 on ∂D.

Since div(κ∇u0
n) defines a compactly supported source in H−1(D), by applying the Lax–Milgram

lemma to the variational formulation of (14), we see that (14) has a unique solution, i.e. ũε
n, in

H1(D)/R.2 Moreover, the Lax–Milgram lemma and (5) also imply that

(15) ‖ũε
n‖H1(D)/R ≤ C‖(σε)−1‖L∞(D)‖κ‖L∞(Ω)‖u

0
n‖H1(Ω)/R ≤ C‖(σε)−1‖L∞(D)‖κ‖L∞(Ω)

where the latter C > 0 depends on Ω.
Inserting (13) in (9), we deduce that

(16) Mij(σε) = −ε

∫

D
κ∇u0

i · ∇u0
j dx− ε2

∫

D
κ∇ũε

i · ∇u0
j dx.

The representation (16) demonstrates that M (σε) is of the order ε, which was to be expected as
M (σ0) is the null matrix and σε − σ0 = εκ. More interestingly, the first term in the asymptotic
expansion of M (σε) has a simple linear dependence on κ, which makes it relatively easy to find a
nontrivial κ such that M (σε) is of the order ε2. Unfortunately, the higher order terms in ε depend
less explicitly on κ. To cope with this difficulty, we will next introduce a suitable fixed point problem.

We redecompose κ in the form

(17) κ = κ0 +
N
∑

j=1

j
∑

i=1

τij κij

where τij ∈ R are free parameters. Moreover, κ0, κij ∈ L∞(D) are fixed functions that are supported

in Ω and assumed to satisfy the conditions

(18)

∫

D
κ0 ∇u0

i′ · ∇u0
j′ dx = 0 for 1 ≤ i′ ≤ j′ ≤ N

and

(19)

∫

D
κij ∇u0

i′ · ∇u0
j′ dx =

1 if (i, j) = (i′, j′) or (j, i) = (i′, j′),

0 else.

The construction of such κij will be considered in Lemma 3.2 and Section 4 below, but meanwhile
we just assume they exist. We remark that it seems reasonable to assume that the N(N + 1)/2 free
parameters τij in the perturbation κ are enough to cancel out the symmetric matrix M (σε) ∈ R

N×N

(cf. Proposition 2.1). Substituting (17) in (16) and using (18)–(19), we obtain the expansion

(20) M (σε) = −ε τ − ε2
M̃

ε(τ)

where

(21) M̃
ε
ij(τ) = M̃

ε
ji(τ) =

∫

D
κ∇ũε

i · ∇u0
j dx, 1 ≤ i ≤ j ≤ N,

2Note that ‖∇ · ‖L2(D) is equivalent to the standard quotient norm of H1(D)/R by the Poincaré inequality.

4



and τ ∈ R
N×N is the symmetric matrix defined by the parameters τij .

From (20) it is obvious that imposing M (σε) = 0 in the chosen setting is equivalent to solving the
following fixed point problem:

(22) Find τ ∈ SN such that τ = F ε(τ),

where SN denotes the space of symmetric N ×N matrices and F ε : SN → SN is defined by

(23) F ε(τ) = −ε M̃
ε(τ).

Lemma 3.1 below ensures that for any fixed parameter γ > 0 and a small enough ε > 0, the map F ε

has the invariant set

(24) Bγ := {τ ∈ SN
∣

∣ |τ | ≤ γ}

on which it is a contraction. In (24), | · | denotes an arbitrary norm of SN . In consequence, the
Banach fixed point theorem guarantees the existence of ε0 = ε0(γ) > 0 such that for all ε ∈ (0; ε0],
the fixed point problem (22) has a unique solution in Bγ , enabling the construction of σε for which
M (σε) = 0 via (17) and (6).

It is important to notice that the constructed κ defined by (17) verifies κ 6≡ 0 whenever κ0 6≡ 0
by virtue of the orthogonality conditions (18)–(19). In other words, if κ0 6≡ 0, then also σε 6≡ σ0 as
required. Moreover, for given σ0, κ0, κij and γ > 0, the upper bound ε0 > 0 can be tuned to ensure
that the perturbed conductivity corresponding to κ of (17) satisfies σε ≥ c > 0 for all ε ∈ [0; ε0] and
τ ∈ Bγ , which guarantees that all conductivities involved in the fixed point iteration are admissible.

In particular, we have proved the following result (modulo Lemma 3.1):

Proposition 3.1. Let Ω ⋐ D be a Lipschitz domain. Assume that there are functions κ0, κij ∈

L∞(D) supported in Ω satisfying (18)-(19). Then, there exists a conductivity σε ∈ L∞(D), with
σε ≥ c > 0, such that σε − σ0 6≡ 0, supp(σε − σ0) ⊂ Ω and

Mij(σε) = 〈δi − δ0, (Λ
ε − Λ0)(δj − δ0)〉∂D = 0

for all i, j = 1, . . . , N .

Remark 3.1. If κ0, κij supported in Ω and satisfying (18)-(19) exist, Proposition 3.1 indicates that
the conductivities σε and σ0 are indistinguishable by EIT measurements with electrodes at x0, . . . , xN

modeled by the PEM. In other words, the relative PEM measurement map M(σε) defined by (12)
satisfies

M(σε)I = 0

for all electrode current patterns I ∈ R
N+1
⋄ .

The following lemma shows that F ε is a contraction as required by the analysis preceding Propo-
sition 3.1.

Lemma 3.1. Let γ > 0 be a fixed parameter. Then, there exists ε0 > 0 such that for all ε ∈ (0; ε0],
the map F ε is a contraction on the invariant set Bγ defined by (24).

Proof. Assume γ > 0 is given. Let τ, τ ′ ∈ Bγ be arbitrary, κ, κ′ ∈ L∞(Ω) the corresponding
perturbations defined by (17), and ũε

n, ũ
ε
n

′ ∈ H1(D)/R the associated solutions to (14), with σε =
σ0 + εκ and σε = σ0 + εκ′, respectively. By subtracting the equations defining ũε

n and ũε
n

′ and
employing the short hand notation w = ũε

n − ũε
n

′, we have

(25) div
(

σε∇w
)

= −div
(

(κ− κ′)∇(u0
n + εũε

n
′)
)

in D, ν · σ0∇w = 0 on ∂D.

From (5), (15), (6) and (17) it easily follows that

‖u0
n + εũε

n
′‖H1(Ω)/R ≤ C

uniformly for all ε ∈ [0; ε0] if ε0 > 0 is chosen small enough. Subsequently, an application of the
Lax–Milgram lemma to (25) results in the estimate

‖ũε
n − ũε

n
′‖H1(Ω)/R ≤ C‖κ− κ′‖L∞(Ω)‖u

0
n + εũε

n
′‖H1(Ω)/R ≤ C‖κ− κ′‖L∞(Ω) ≤ C|τ − τ ′|

where all occurrences of C > 0 are independent of ε ∈ [0; ε0].
In particular,

∣

∣M̃
ε(τ) − M̃

ε(τ ′)
∣

∣ ≤ C|τ − τ ′|
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by virtue of (21), the Cauchy–Schwarz inequality, (5) and (15). The definition (23) then implies that

(26) |F ε(τ) − F ε(τ ′)| ≤ C ε |τ − τ ′| for all τ, τ ′ ∈ Bγ ,

where C > 0 is independent of ε ∈ [0; ε0]. Moreover, noting that |F ε(0)| ≤ C ε due to (21), (5) and
(15), we deduce from (26) that also

(27) |F ε(τ)| ≤ C ε

for all τ ∈ Bγ . Reducing ε0 if necessary, (26) and (27) finally show that the map F ε is a contraction
on the invariant set Bγ for all ε ∈ [0; ε0]. �

Let us denote by τ sol ∈ Bγ the unique solution of the problem (22). As a side product, the previous
proof ensures the existence of a constant C0 > 0 independent of ε ∈ (0; ε0] such that

(28) |τ sol| = |F ε(τ sol)| ≤ C0 ε for all ε ∈ (0; ε0].

Combined with (17), this tells us that κ is equal to κ0 at the first order.
At this stage, the remaining job consists in showing that there are functions κ0, κij supported in

Ω satisfying (18)–(19). The following lemma is a classical result on dual basis (see, e.g., [21, Lemma
4.14]); we present its proof here because it will be utilized in the algorithm of Section 5.

Lemma 3.2. There are functions κ0, κij ∈ L∞(D) supported in Ω and satisfying (18)–(19) if and
only if {∇u0

i · ∇u0
j}1≤i≤j≤N is a family of linearly independent functions on Ω.

Proof. ⋆ Assume there are functions κij verifying (19). If αij are real coefficients such that

N
∑

j=1

j
∑

i=1

αij ∇u0
i · ∇u0

j = 0 in Ω,

then multiplying by κi′j′ and integrating over D, we find that αi′j′ = 0. This allows to show that
αij = 0 for all 1 ≤ i ≤ j ≤ N and proves that the family {∇u0

i ·∇u0
j}1≤i≤j≤N is linearly independent.

⋆ Now, assume that {∇u0
i · ∇u0

j}1≤i≤j≤N is a family of linearly independent functions on Ω. To

simplify the notation, we introduce the auxiliary functions ψk ∈ L2
loc(D), k = 1, . . . ,K = N(N+1)/2,

such that
ψ1 = ∇u0

1 · ∇u0
1,

ψ2 = ∇u0
2 · ∇u0

1, ψ3 = ∇u0
2 · ∇u0

2,

ψ4 = ∇u0
3 · ∇u0

1, ψ5 = ∇u0
3 · ∇u0

2, . . . ,

as well as the symmetric matrix A ∈ R
K×K given elementwise by

Akk′ =

∫

Ω
ψk ψk′ dx, k, k′ = 1, . . . ,K.

If a = (α1, . . . , αK)⊤ ∈ kerA, defining v =
∑K

k=1 αk ψk, we find that
∫

Ω
v2 dx = a⊤

A a = 0.

We deduce that v = 0 in Ω, and thus α1 = · · · = αK = 0 because, by assumption, the family
{ψk}1≤k≤K is linearly independent. As a consequence, A is invertible.

Consider the functions κ̃1, . . . , κ̃K defined via

(29) κ̃k =
K
∑

k′=1

A
−1
kk′ ψk′ |Ω in Ω and κ̃k = 0 in D \ Ω.

In particular, κ̃k ∈ L∞(D) because ψk′ are smooth in a neighborhood of Ω. We have

∫

D
κ̃k ψl dx =

K
∑

k′=1

A
−1
kk′Ak′l =

1 if k = l,
0 else.

By renumbering κ̃k, this proves the existence of functions κij verifying the conditions (19). Finally,
we construct κ0 6≡ 0 that satisfies (18):

(30) κ0 = κ#
0 −

N
∑

j=1

j
∑

i=1

(
∫

D
κ#

0 κij dx

)

κij ,
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where κ#
0 is an arbitrary L∞-function such that supp(κ#

0 ) ⊂ Ω and κ#
0 /∈ span{κij}1≤i≤j≤N . �

4. Construction of invisible conductivities in two dimensions

In this section, we study the two-dimensional case with

σ0 ≡ 1.

In order to complement Proposition 3.1, our goal is to demonstrate that there exist functions
κ0, κij ∈ L∞(D) supported in a given Lipschitz domain Ω ⋐ D and satisfying (18)–(19). Ac-
cording to Lemma 3.2, this is equivalent to showing that {∇u0

i · ∇u0
j}1≤i≤j≤N is a family of linearly

independent functions on Ω. Before setting to work, we remind the reader that the definition of u0
n

can be found in (10) and that x0, . . . , xN are N + 1 distinct points located on ∂D and corresponding
to the positions of the electrodes.

4.1. The case of disk.

Proposition 4.1. Assume that σ0 ≡ 1 and let D ⊂ R
2 be the open unit disk. Then, {∇u0

i ·
∇u0

j}1≤i≤j≤N is a family of linearly independent functions on any nonempty Lipschitz domain Ω ⋐ D.

Proof. In this simple geometry, it is known that (see, e.g., [12])

(31) u0
n(x) = vn(x) − v0(x), x ∈ D, n = 1, . . . , N,

where vn is defined by

(32) vn(x) = −
1

π
ln |x− xn|, x ∈ D.

Let αij ∈ R be such that

(33)
N
∑

j=1

j
∑

i=1

αij ∇u0
i · ∇u0

j = 0 in Ω,

which can be written out explicitly:

(34)
N
∑

j=1

j
∑

i=1

αij

(

x− xi

|x− xi|2
−

x− x0

|x− x0|2

)

·

(

x− xj

|x− xj |2
−

x− x0

|x− x0|2

)

= 0 in Ω.

By analyticity, (34) holds in fact in all of R2 \E , where E := ∪N
n=0{xn}. Multiplying (34) by |x−xj |2

and letting x tend to xj , we see that αjj = 0 for all j = 1, . . . , N . Moreover, multiplying by |x−x0|2

and letting x go to x0, we obtain the relation

(35)
N
∑

j=2

j−1
∑

i=1

αij = 0.

Let us now introduce

(36) w :=
N
∑

j=2

j−1
∑

i=1

αij u
0
i u

0
j =

N
∑

j=2

j−1
∑

i=1

αij (vi vj − v0 (vi + vj)) in R
2 \ E ,

where the second equality is a consequence of (31) and (35). Using (33) and the fact that vn defined
in (32) is harmonic in R

2 \ {xn}, we find that ∆w = 0 in R
2 \ E . Observing that vn is a multiple of

the fundamental solution for the Laplacian centered at xn, a standard computation then yields

∆w = −2
N
∑

j=2

j−1
∑

i=1

αij

(

(vj(xi) − v0(xi)) δi + (vi(xj) − v0(xj)) δj − (vi(x0) + vj(x0)) δ0

)

in R
2.

Motivated by this expression, we introduce another auxiliary function, namely

(37) w̃ =
N
∑

j=2

j−1
∑

i=1

αij

(

(vj(xi) − v0(xi)) vi + (vi(xj) − v0(xj)) vj − (vi(x0) + vj(x0)) v0

)

,

which obviously satisfies ∆w̃ = ∆w in R
2. Since vn belongs to C ∞(R2 \ {xn}), it is clear that

w − w̃ ∈ H1−η
loc (R2) for all η > 0. Furthermore, at infinity, it holds that w − w̃ = o(|x|). This allows

to prove that w − w̃ is a tempered distribution (see, e.g., [15, Chapter VII]) on R
2.
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A classical extension of the Liouville theorem for harmonic functions ([35, Chapter 3, Proposition
4.6]) indicates that the only harmonic tempered distributions in R

d are the harmonic polynomials; in
particular, any harmonic tempered distribution that behaves as o(|x|) at infinity is a constant. This
implies that w− w̃ = C in R

2 for some C ∈ R. On the other hand, reordering the terms in (36) and
(37), we obtain the representation

w − w̃ = vN

N−1
∑

i=1

αiN

(

(vi − vi(xN )) − (v0 − v0(xN ))
)

+ ŵN

where ŵN is a function that is analytic in a neighborhood of xN . We conclude that

vN

N−1
∑

i=1

αiN

(

(vi − vi(xN )) − (v0 − v0(xN ))
)

must also be analytic about xN . Because vN admits a logarithmic singularity at xN , this is possible
if and only if

(38)
N−1
∑

i=1

αiN ((vi − vi(xN )) − (v0 − v0(xN ))) = 0

in a neighborhood of xN . By analytic continuation, (38) must hold on all of R
2 \ E . Due to the

singular behavior of the function vi at xi, this means that αiN = 0 for all i = 1, . . . , N − 1.
Studying the behavior of w − w̃ successively at xN−1, . . . , x2, one shows analogously that αij = 0

for all 1 ≤ i < j ≤ N − 2. As the diagonal elements αjj , j = 1, . . . , N , were deduced to vanish
already at the beginning of the proof, this shows that {∇u0

i · ∇u0
j}1≤i≤j≤N is a family of linearly

independent functions on Ω. �

4.2. General case in two dimensions. With the help of conformal mappings, Proposition 4.1 can
be generalized to the case of arbitrary smooth two-dimensional domains.

Proposition 4.2. Assume that σ0 ≡ 1. Let D ⊂ R
2 be a simply connected and bounded domain

with a C ∞-boundary. Then, {∇u0
i · ∇u0

j}1≤i≤j≤N is a family of linearly independent functions on
any nonempty Lipschitz domain Ω ⋐ D.

Proof. Denote the open unit disk by B ⊂ R
2 and let Φ : D → B be a conformal map of D onto B.

As ∂D is smooth, Φ also defines a smooth diffeomorphism of ∂D onto ∂B [30]. Let û0
n ∈ H1−η(B)/R,

η > 0, be the unique solution of

∆û0
n = 0 in B, ν · ∇û0

n = δ̂n − δ̂0 on ∂B,

where δ̂i ∈ H−1/2−η(∂B), i = 0, . . . , N , denotes the Dirac delta distribution supported at Φ(xn) ∈ ∂B.
According to [12, Proof of Theorem 3.2], it holds that

(39) u0
n = û0

n ◦ Φ in D

for all n = 1, . . . , N .
Let αij ∈ R be such that

N
∑

j=1

j
∑

i=1

αij ∇u0
i · ∇u0

j = 0 in Ω.

Due to the harmonicity of u0
n, n = 1, . . . , N , in D, we obtain

∆
(

N
∑

j=1

j
∑

i=1

αij
(

û0
i û

0
j

)

◦ Φ
)

= ∆
(

N
∑

j=1

j
∑

i=1

αij u
0
i u

0
j

)

= 0 in Ω.

Since a composition with the conformal map Φ−1 retains harmonicity, it holds that

2
N
∑

j=1

j
∑

i=1

αij ∇û0
i · ∇û0

j = ∆
(

N
∑

j=1

j
∑

i=1

αij û
0
i û

0
j

)

= 0 in Φ(Ω).

Because the family {∇û0
i ·∇û0

j}1≤i≤j≤N is linearly independent on Φ(Ω) by Proposition 4.1, it follows
that αij = 0 for all 1 ≤ i ≤ j ≤ N and the proof is complete. �
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Combining Proposition 3.1, Lemma 3.2 and Proposition 4.2, we obtain the main result of this
article.

Theorem 4.1. Assume that σ0 ≡ 1. Let D ⊂ R
2 be a simply connected and bounded domain with

a C ∞-boundary. For any compactly embedded Lipschitz domain Ω ⋐ D, there exists a conductivity
σε ∈ L∞(D), with σε ≥ c > 0, such that σε − σ0 6≡ 0, supp(σε − σ0) ⊂ Ω and

Mi,j(σε) = 〈δi − δ0, (Λ
ε − Λ0)(δj − δ0)〉∂D = 0

for all i, j = 1, . . . , N . In other words,

M(σε)I = 0 for all I ∈ R
N+1
⋄ ,

where M(σε) : RN+1
⋄ → R

N+1/R is the relative PEM measurement map from (12) corresponding to
the electrode locations x0, . . . , xN ∈ ∂D.

Remark 4.1. In [17, 31] it has been shown that M (σε) = 0 if and only if σε = σ0(≡ 1) when the
number of electrodes is countably infinite in two dimensions. Here, we have demonstrated that one
can constructively find σε 6≡ σ0 such that M (σε) = 0 in case the number of electrodes is finite.

5. Algorithmic implementation

For a given Lipschitz domain Ω such that Ω ⊂ D, functions κ0, κij satisfying (18)–(19) can be
constructed by following the line of reasoning in the second part of the proof of Lemma 3.2, assuming

the potentials u0
n verifying (10) are available. Notice that the bounded function κ#

0 with supp(κ#
0 ) ⊂

Ω appearing in (30) can be chosen arbitrarily as long as it does not belong to span{κij}1≤i≤j≤N . As

a consequence, finding κ#
0 is almost trivial and allows a lot of freedom.

We denote by τk, κk, uε,k
n , ũε,k

n the realizations of τ , κ, uε
n, ũε

n at iteration k ≥ 0 of the algorithm;
the aforementioned entities are introduced in (21), (17), (11), (13), respectively. Moreover, we set
σε,k = σ0 + εκk. Using formulas (21) and (23), we recursively define

τk+1
ij = −ε

∫

D
κk ∇ũε,k

i · ∇u0
j dx, k ≥ 0, 1 ≤ i ≤ j ≤ N.

Since εũε,k
n = uε,k

n − u0
n by (13), we obtain

(40) τk+1
ij = τk

ij −

∫

D
κk ∇uε,k

i · ∇u0
j dx, k ≥ 0, 1 ≤ i ≤ j ≤ N,

due to (18) and (19). In particular, remark that |τk+1
ij − τk

ij | ≤ η implies Mij(σε,k) ≤ ε η for any

η > 0 by virtue of (9). To sum up, our algorithm for computing invisible conductivity perturbations
is as follows:

Algorithm 1. Assume that the potentials u0
n, n = 1, . . . , N , are available. Construct {κij}1≤i≤j≤N ,

choose κ#
0 /∈ span{κij}1≤i≤j≤N and compute κ0. Select ε > 0 and τ0 ∈ SN . Run the fixed point itera-

tion (40) until the desired stopping criterion is met. Construct the invisible conductivity perturbation
via (17). If divergent behavior is observed, decrease ε.

6. Numerical experiments

In this section, we implement Algorithm 1 by resorting to finite element (FE) approximations of
the PEM. We are interested in validating the convergence of the fixed point iteration (40) and visual-

izing the output conductivity σε (cf. (6)) for different subdomains Ω, ‘initial guesses’ κ#
0 and (point)

electrode configurations. It turns out that especially the choice of κ#
0 has a considerable effect on the

output, which means that Algorithm 1 can straightforwardly be used to construct several invisible
conductivity perturbations for a given measurement configuration and Ω. The degree of indistin-
guishability of the produced σε compared to the background conductivity σ0 is also tested in the
framework of the more realistic CEM: According to our simulations, the relative CEM measurements
corresponding to smallish electrodes and the constructed conductivities fall below any reasonable
measurement noise level.

We only consider the homogeneous reference conductivity σ0 ≡ 1 and choose D ⊂ R
2 to be the

unit disk, meaning that the functions u0
n satisfying (11) are explicitly given by (31). Due to the

Riemann mapping theorem, this geometric simplification does not severely reduce the generality of
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Figure 1. Top row: Outputs σε of Algorithm 1 with different values of the per-
turbation size parameter ε > 0. The point-like electrodes are located at the polar
angles θ = 1◦, 91◦, 181◦, 271◦. Bottom left: The discrepancy (41) between consecutive
iterates of Algorithm 1. Bottom right: A surface plot of σε corresponding to ε = 6.0.

our (two-dimensional) numerical experiments: In any smooth simply connected domain D ⊂ R
2 the

potentials u0
n employed in the construction of κij can be computed using (39) as long as a conformal

mapping sending D onto the unit disk is available.
The functions uε,k

n needed when running Algorithm 1 are computed at each iteration as follows:
First, we (numerically) solve (14) with σε = σε,k = 1+εκk and κ = κk to obtain ũε,k

n . We remind the
reader that ũε,k

n belongs to H1(D)/R so it can be approximated using standard FE methods. Then,
we set uε,k

n = u0
n + εũε,k

n . When computing ũε,k
n , we employ piecewise quadratic polynomial FE basis

(Lagrange P2); the number of triangular elements is around 20 000 in all tests. The conductivity
perturbation ‘shape functions’ κij are evaluated (and interpolated) on the FE mesh with the help of
(29) and (31). Without exception, we use the stopping rule

(41)
N
∑

i=1

N
∑

j=1

|τk+1
ij − τk

ij | < 10−8
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1.07

0.985

0.991

0.997

1.003

1.009

1.015

0.9970

0.9982

0.9994

1.0006

1.0018

1.0030

Figure 2. Outputs of Algorithm 1 for N = 5, 7, 9, 11 (recall that N + 1 is the
number of electrodes). The point-like electrodes are located at the polar angles θj =

1◦ + j
N+1360◦, j = 0, 1, . . . , N . The values of ε used in the computations are 14, 12,

8 and 8, respectively.
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ε κ#
0 (x, y) Eε

CEM(I)
(a) 4.0 x+ y + 1 1.4 × 10−4

(b) 2.0 exp(−(x+ 0.5)2 − y2) 1.1 × 10−3

(c) 0.25 1 2.3 × 10−4

(d) 6.0 1 1.1 × 10−4

(e) 0.5 −y 8.4 × 10−4

(f) 2.0 x 8.8 × 10−4

Table 1.

Figure 3. (a)–(f): Perturbed conductivities produced by Algorithm 1 for the shown
electrode configurations. Bottom left: A surface plot of the conductivity (a). Table 1:

The parameters ε and κ#
0 for (a)–(c) together with the respective relative CEM dis-

crepancies Eε
CEM(I) defined by (42). The CEM potentials are simulated with the

‘trigonometric current basis’, the universal electrode width π/32 and contact resis-
tances of magnitude 0.01 [9, 32].

for Algorithm 1, that is, the difference between consecutive iterates in the scheme (40) is monitored.
The choice of the threshold value 10−8 in (41) is a slight overkill since for practical EIT the noise level
in relative measurements is typically over 1% [9], and (41) corresponds to a considerably smaller error
for all (relative) PEM data we have simulated. As the starting value for the iteration (40), we choose
the null matrix τ0 = 0 in all experiments. The numerical results are presented in Figures 1–4.

Figure 1 illustrates a first convergence test for Algorithm 1, investigating the effect of the choice
for the free parameter ε. There are four electrodes and a concentric disk of radius 1/2 serves as the

inclusion Ω. The parameter κ#
0 is set to κ#

0 ≡ 1. The convergence rate of the algorithm decreases
as a function of ε, but the fixed point scheme remains convergent for all ε in the interval (0, 6] (and
beyond).

Figure 2 illustrates that increasing the number of electrodes has a significant impact on the output
conductivity σε of Algorithm 1. In particular, the spatial frequency of the angular oscillations in σε

seems to be directly linked to the number of electrodes. Moreover, at least with the chosen simple
inclusion shape, the deviations of σε from the unit background become less significant as the number
of electrodes increases even if ε stays the same.
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Figure 4. An example of CEM potentials corresponding to σε of Figure 3(a);
see [32]. Left: The Dirichlet boundary value of the absolute CEM interior potential
(black line), the absolute electrode voltages (black squares), the Dirichlet boundary
value of the relative CEM interior potential (red dashed line) and the relative electrode
potentials (red squares). The electrode-wise net input currents are also displayed (blue
circles). The electrode width and contact resistances are as in Figure 3. Right: The
relative CEM interior potential. Equipotential lines and electric field arrows are dis-
played.

The inclusion shape and the choice of the initial perturbation κ#
0 have considerable effects on the

output of the algorithm as shown in Figure 3. A large Ω lying close to ∂D typically yields significant
deviations from the unit background in σε, even with a relatively high number of electrodes. More-

over, asymmetries in κ#
0 lead to an asymmetric σε even in a geometrically symmetric setting. The

indistinguishability of the output conductivities in Figure 3 from the unit background is evaluated
using FE approximations of the CEM [32, 37] with about 10 000 quadratic triangular elements, a
fixed electrode width of π/32 and an underlying contact resistance parameter equal to 0.01 on all
electrodes. As a measure of the relative discrepancy for simulated (noiseless) CEM voltages, we
employ

(42) Eε
CEM(I) =

∣

∣Uε(I) − U0(I)
∣

∣

∣

∣U0(I)
∣

∣

.

Here, Uε(I),U0(I) ∈ R
N(N+1) consist of the (stacked) CEM electrode potentials corresponding to

the ‘trigonometric current basis’ I = {I(j)}1≤j≤N ⊂ R
N+1
⋄ [9] and σε, σ0, respectively; cf., e.g., [18].

In practice, the relative noise level in EIT measurements is significantly above 0.1% (cf. [9]). Hence,
Table 1 indicates that all conductivities shown in Figure 3 are practically indistinguishable from
the unit background in the framework of the CEM with smallish electrodes at the depicted loca-
tions (cf. [13]).

Finally, Figure 4 illustrates a single simulated relative CEM potential for the conductivity σε in
Figure 3(a) — to be precise, both the interior electric potential and the electrode potentials are
considered (cf. [32]). The electrode widths and contact resistances are the same as in Figure 4. It
is noteworthy that both the Dirichlet boundary value of the relative interior electric potential and
the relative electrode potentials do vanish according to a visual inspection, but the same does not
hold for the relative electric potential in the interior of D.

Remark 6.1. It is possible that the technique developed in this article could also be adapted to
construct invisible conductivities directly for the CEM. However, instead of the functions u0

n defined
by (10), one would need to work with potentials corresponding to unit net currents between electrodes
of finite size modeled by the CEM (cf. [32]). This would make proving the convergence of the fixed
point iteration as well as implementing the numerical algorithm more technical.
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7. Concluding remarks

We have introduced a fixed point scheme for computing invisible conductivity perturbations (of the
two-dimensional unit conductivity) for a given electrode configuration in the framework of the PEM
for EIT. Our numerical experiments demonstrate that the constructed conductivities are practically
indistinguishable from the background also if the measurements are modeled by the more realistic
CEM. In particular, take note that the conductivities shown in Figures 1–4 are as good solutions
as the unit conductivity to the reconstruction problem of EIT with the considered sets of electrodes
if no prior information on the behavior of the conductivity is available.
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