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Abstract

In this work we propose a technique to combine bottom-
up segmentation, coming in the form of SLIC superpixels,
with sliding window detectors, such as Deformable Part
Models (DPMs).

The merit of our approach lies in ‘cleaning up’ the low-
level HOG features by exploiting the spatial support of SLIC
superpixels; this can be understood as using segmentation
to split the feature variation into object-specific and back-
ground changes. Rather than committing to a single seg-
mentation we use a large pool of SLIC superpixels and
combine them in a scale-, position- and object-dependent
manner to build soft segmentation masks. The segmentation
masks can be computed fast enough to repeat this process
over every candidate window, during training and detec-
tion, for both the root and part filters of DPMs.

We use these masks to construct enhanced, background-
invariant features to train DPMs. We test our approach on
the PASCAL VOC 2007, outperforming the standard DPM
in 17 out of 20 classes, yielding an average increase of 1.7%
AP. Additionally, we demonstrate the robustness of this ap-
proach, extending it to dense SIFT descriptors for large dis-
placement optical flow.

1. Introduction
Sliding window classifiers are the method of choice for

object detection in the high-recall regime, as these ensure
that no objects ‘fall through the cracks’ of a segmenta-
tion front-end. However, even if a putative detection win-
dow is tightly surrounding the object, background struc-
tures can creep into the low-level features extracted from
the image, adversely increasing the variability of the input
signals. This is typically the case for highly deformable
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(a) Image & Hypothesis (b) Multi-scale SLIC superpixels

(c) Affinity to center (d) Soft segmentation mask

(e) HOG features (f) Figure-HOG

Figure 1. Method overview: We take as input a detection hypothe-
sis (bounding box) and image (a), and a set of SLIC superpixels at
different scales (b)—we show two scales. We pick the superpix-
els which contain the center of the bounding box and rank them
by how well they fit the box, using intersection over union; in (c)
we show their aggregated response. We use the highest-ranked
superpixels to build a soft segmentation mask (d), which is then
used to split Histograms of Gradients (HOG) features (e) into a
figure-HOG channel (f) and a background channel (the remain-
der). These are processed by a DPM-based classifier.

or non-convex objects (e.g. tables, cats, or dogs), that do
not naturally occupy a rectangular area, and therefore back-
ground structures often appear in the rectangular box con-
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taining them.
Our work proposes a simple and efficient method to ex-

ploit segmentation information for object detection. Our
main technical contribution consists in improving the per-
formance of low-level, gradient-based features such as His-
tograms of Gradients (HOG) [10] or SIFT [29], and is in-
spired by recent advances in appearance descriptors [38, 40]
and sliding-window detectors [32, 15]. As shown in Fig. 1,
we construct a foreground mask ‘on the fly’, namely for
each putative window position, and use it to split the HOG
features into foreground and background features. Rather
than constructing a binary foreground mask through some
discrete optimization procedure, as e.g. in [16], we do this
in a soft manner, building on the recent work of [40] on
constructing ‘segmentation-aware’ descriptors. Namely, as
in [40] we use a segmentation ‘hardness’ design parameter,
which we adapt per class with cross-validation.

Other than simplicity, a main advantage of our method is
its computational efficiency. In particular, we exploit SLIC
superpixels [1], which have a computational overhead of a
fraction of a second per image. We use intersection over
union to rank superpixels according to how well they match
every detection hypothesis. We then use a subset of these
segments to build soft masks measuring the affinity between
pixels (or HOG blocks) and the putative object position; this
is then used to split the image measurements into a fore-
ground and background channel. Unlike [15, 16], our ap-
proach extends naturally to both root and part filters, while
incurring a minimal additional computational cost. The seg-
mentation process outlined in Fig. 1 is fast enough to be
performed ‘on the fly’ for all object hypotheses in sliding
window detection.

We validate our approach by applying it to the standard
Deformable Part Models (DPM) paradigm [14]; keeping
all other modelling parameters identical, our segmentation-
based variant of HOG delivers consistent improvements
in detection performance on PASCAL VOC 2007. We
also apply our approach to dense SIFT matching for large-
displacement optical flow; there we attain results compara-
ble to those in our earlier work [40], but in a fraction of the
processing time used therein. The code for this paper will
be available in [39].

2. Prior Work on Segmentation & Recognition
In the previous decade several works extended segmenta-

tion techniques such as curve evolution [35, 41, 9, 8, 20] and
graph cuts [23, 25, 24] to combine model-based information
with region- and contour-based terms. However, with the
exception of the rigid model of [25], these works assume
that a shortlist of object ‘proposals’ is available beforehand,
and can thus help object detection only by pruning false
positives, rather than helping objects ‘pop up’.

A tighter coupling of segmentation and recognition is

pursued in semantic segmentation, where object-specific
appearance terms influence image labelling, e.g. [37, 17,
22], without necessarily relying on the outputs of an object
detection module. Even though the latest techniques [45, 6]
deliver compelling results, their impact on recognition per-
formance has only very recently been explored [15]. Fi-
nally, such techniques can be computationally demanding,
involving some form of discrete optimization for segmenta-
tion, or object-tailored cascades [45], meaning a substantial
overhead for multi-category detection.

Coming to using a segmentation front-end for detection,
originally [36, 30, 33] used multiple image segmentations to
obtain a rich set of object hypotheses in the context of learn-
ing. The current state-of-the-art techniques [42, 31] deliver
a compact, yet sufficient set of proposals at a rate of multiple
frames per second, thereby guiding the application of more
demanding classifiers, such as bag-of-words. A more re-
cent thread of works, relevant to the ‘objectness’ idea [2], is
that of learning to segment in an object-independent manner
[12, 7]. Still, these works can harm recall if object positions
are missed by the segmentation front-end.

Turning to sliding-window variants, which are more sim-
ilar in spirit to ours, Ramanan [34] applies local figure-
ground segmentations post-hoc to prune false positives in
pedestrian detection; this however is not taking segmenta-
tion into account when training a classifier.

In [44] a model which explicitly accounts for truncated
objects in both training and detection was shown to provide
increased performance in detection.

Gao et al. [16] consider forming a binary segmentation
mask per bounding box hypothesis using graph-cuts; they
accelerate detection using branch-and-bound, but this still
takes a couple of seconds for single root filters, while it
is not straightforward how to extend their method to part-
based models.

In [32] the Fisher criterion is used to create a per-patch
soft figure-ground segmentation, which is then summarized
through a HOG descriptor. By contrast we bring superpix-
els into play, and also learn to detect from segmentation-
sensitive HOG features.

Most recently, Fidler et al [15] combine semantic seg-
mentation results with DPM-based detection, by construct-
ing additional features that measure the overlap of a pu-
tative bounding box and the region assigned to an object
hypothesis by semantic segmentation. This yields substan-
tial improvements in performance, yet requires running first
the semantic segmentation algorithm of [6], which requires
multiple seconds per frame, on a 6-core machine, for fea-
ture extraction. Our approach yields more modest improve-
ments, but incurs a negligible additional computational cost.
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3. Method
We first briefly describe DPMs, and then turn to combin-

ing them with segmentation information coming in the form
of SLIC superpixels.

3.1. DPMs for object detection

Deformable Part Models [14] represent objects as a star-
shaped graphical model of parts, with the ‘root’ node at the
center corresponding to the entire object domain and the
‘leaf’ nodes indicating the deformable object parts. The
score for a specific arrangement of a root filter x0 and n part
filters x1, . . . , xn is given by:

S(x0, x1, . . . , xn)=

n∑
p=0

〈wp, G(xp)〉+
n∑
p=1

Dp(xp, x0), (1)

where G(xp) indicates the image-based features at position
xp, wp is the template for part p, 〈wp, G(xp)〉 is the score
obtained for placing part p in position xp, andDp(xp, x0) is
a quadratic function that measures the spatial compatibility
between the positions of part p and the root.

3.2. Superpixel-grounded DPMs

Our contribution lies in modifying the local features
G(x) used in the first term of Eq. 1 so as to exploit seg-
mentation information. In particular, inspired by the recent
success of integrating segmentation and image descriptors
[38, 40], we apply a similar approach to feature extraction
for object recognition. For this, as illustrated in Fig. 1, we
efficiently compute a large pool of image segments which
are then combined to build segmentation masks for any
putative object hypothesis. These foreground and back-
ground masks allow us to decouple the effects of back-
ground changes from class-specific appearance variability.

Our segment hypotheses are obtained using SLIC super-
pixels [1] with the implementation of [43] in a fraction of a
second. We extract superpixels over 7 scales, ranging from
200-250 to < 10 superpixels per image, and for five differ-
ent regularisation values (we will make our code available,
and therefore omit exact parameter values). This provides
us with a large pool of candidate segments of different size,
valid both for objects that can take up the whole image and
also for small image parts.

For every candidate detection hypothesis we only con-
sider superpixels which contain the center of the hypothe-
sis’ bounding box. We then use the intersection over union
as a matching metric to select the top k = 15 matching su-
perpixels out of these. Averaging these provides us with an
affinity measure that ranges in [0, 1], indicating how likely
it is that two pixels or blocks belong to the same region.

Indexing HOG blocks (or ‘cells’) by i, we denote this
affinity measure with f [i], where i ranges over the filter size
(e.g. i ∈ [1, 6]× [1, 6] for a 6× 6 part filter).

We use this affinity to build segmentation masks over
the window using a sigmoid function parameterized by a
‘segmentation hardness’ parameter λ:

M [i] = 1− 1

1 + exp
(
− 10

1−λ (f [i]− λ)
) . (2)

This expression ensures that for f [i] = 1 we will have
M [i] ≈ 1 regardless of λ, so λ ∈ [0, 1) can be determined
in a per-category manner through cross-validation. Fig. 2
shows how this approach works over multiple scales and ob-
ject categories, along with some failure cases. More results
are provided in Fig. 7.

Image & Hypothesis Affinity to center Soft segmentation mask

Figure 2. Examples of soft masks over different scales and object
categories. Note that even when the center of the window hypoth-
esis does not contain the object, as is the case for row 2, ranking
the superpixels by how well they match the window can help us
recover. This can still be problematic over extreme examples such
as those on rows 4 and 5, where the rider correctly detected in
row 4 occludes the middle part of the horse, breaking the object in
two. We deal with these scenarios by keeping the original HOG
features. Note that we use pixel data for illustration purposes, but
for DPMs our masks are computed over HOG blocks.

We use these soft masks as weights over the HOG fea-
tures, to pick those that share an affinity with the cen-
ter of the candidate window: G+[i] = M [i] · G[i]. As
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the background can be informative for some object cate-
gories, we also consider the complementary set of features,
G−[i] = (1 −M [i]) · G[i]. Our extended feature array is
the concatenation of (i) the original features (ii) the figure-
ground channels and (iii) the mask itself:

Gseg[i] =
[
G[i], G+[i], G−[i],M [i]

]
. (3)

This feature array can be applied directly to standard
DPMs—the cost of computing and scoring the superpix-
els and building the masks is small compared to the actual
cost of the convolution. Our implementation extends the
fast convolution with SSE instructions of [14], and will be
released as open source, while we also consider exploiting
recent advances on fast DPM detection [18, 19].

3.3. Segmentation mask ‘Alpha-blending’

The assumptions behind our segmentation method may
not hold for certain categories—for instance for bicycles the
center of a bounding box often does not belong to the object,
bottles may contain transparencies or specularities, and peo-
ple or man-made objects like vehicles are often composed
of diverse components which are hard to segment together,
as illustrated in the last examples of Fig. 7. As suggested
by Table 1, using segmentation features for such categories
may result in a performance drop.

We address this problem with a strategy similar to that
of ‘alpha-blending’ for images. Namely, given a design pa-
rameter α ∈ [0, 1], we define new masks Mα as:

Mα[i] = (1− α)1[i] + αM [i], (4)

where 1[i] indicates the unit function, and apply these over
the feature array G as before. For α = 1 (or 100%) we
have our full-blown segmentation-sensitive features, while
for α tending towards 0, the foreground-HOG channel G+

becomes equal to the HOG features G, while G− tends to
0; for intermediate values of α we work with features that
blend between these two extremes.

For both λ and α we use cross-validation to separately
fix the right parameter values per object category.

3.4. Superpixel-grounded descriptors

Having described our method on using superpixels to
decompose HOG features into foreground and background
channels, we now describe how we can use similar ideas to
address the problem we had originally considered in [40].

There we introduced a methodology to build soft seg-
mentation masks for dense SIFT and SID [21] descriptors
based on the soft segmentations of [26]. These soft seg-
mentations served as low-dimensional embeddings e(x) for
every pixel x, which we used in turn to measure the affinity
between a pair of pixels, i, j in terms of ‖e(xi) − e(xj)‖2.

In particular, around a point xi we built segmentation masks
according to:

wi = exp (−λ‖e(xi)− e(xj)‖2) (5)

where λ is a ‘hardness’ design parameter analogous to the
one used in this paper. The last step amounted to ‘gating’
the SIFT features with these soft segmentation masks, and
is again analogous to what we have been doing so far on the
HOG channel.

When it comes to using SLIC superpixels to compute
the soft affinity masks for descriptors certain things change
with respect to object detection: our goal is still to separate
foreground and background, but we cannot rely on having
a single ‘bounding box’ per pixel (as was the case for de-
tection). In other words, we want to treat all pixels equally,
rather than adapt our masks for those pixels that may con-
tain whole objects.

To do this we adjust the technique of Sec. 3.2 by (i) us-
ing SLIC superpixels that are approximately the same size
or larger (at least 50%) than the image patch, ensuring that
the mask borders are at the same scale as the image patch,
and (ii) by using all the superpixels that contain the current
pixel, rather than using intersection-over-union for super-
pixel ranking.

Qualitative results of this method are shown in Fig. 3,
while a quantitative evaluation follows in the next section.

(a) SIFT (b) SSIFT (c) Soft mask

Figure 3. SIFT (a) and segmentation-aware SIFT (b). The response
of the background pixels is greatly attenuated. (c) shows the soft
segmentation mask computed from SLIC superpixels, and its mag-
nitude at the SIFT grid coordinates, which are the weights applied
over the descriptor bins.

4. Results
We present two experiments: the DPM-based object de-

tector introduced in the previous section, and an extension
of the work presented in [40] to enhance SIFT descriptors
with segmentation masks.

4.1. Object detection on the PASCAL VOC

We evaluate the performance of our approach on the
PASCAL VOC 2007, with standard DPM as a baseline, us-
ing the evaluation kit provided by [13]. For our approach
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we use five different values for λ ∈ [0.3, 0.4, 0.5, 0.6, 0.7],
where λ determines of the ‘hardness’ of the segmenta-
tion, and pick the best value for each object category with
two-fold cross-validation. As explained in Sec. 3.2, we
can apply ‘alpha-blending’ to determine how much of the
soft segmentation mask is desirable over different object
categories—in particular, after we determine λ we follow
the same procedure for ‘alpha-blending’, with α values
100% (i.e. no blending), 75%, 50%, and 25%. Our ap-
proach outperforms standard DPM on 17 out of 20 classes,
for an average improvement of 1.7% AP (1.3% without
‘alpha-blending’). We report the results in terms of average
precision (AP) in Table 1, and the precision-recall curves in
Fig. 4. We display the per-class increase in performance
over DPM in Fig. 5. Fig. 7 shows some examples of the
soft masks generated by our filters on the PASCAL VOC.
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Figure 5. Increase in performance (AP in %) between our
segmentation-sensitive DPM, with ‘alpha-blending’, and standard
DPM, for every class.

4.2. Large displacement SIFT-flow

We use SIFT-flow [28] to compute large displacement
optical flow estimates with enhanced dense SIFT descrip-
tors (DSIFT). To evaluate descriptor performance we use
31 image pairs with ground truth object segmentation anno-
tations from the Berkeley Motion Dataset [5], all of which
feature multi-layered motion. Our metric is the Dice over-
lap coefficient [11] between the ground truth mask for the
first frame and the ground truth for the k-th frame warped
over the first frame with the flow estimates. The results
are shown in Fig. 6, for different sizes of the descriptor
bin—we include only the best λ for every case. There are
ground truth annotations every ten frames, and the results
are accumulated—e.g. the first bin contains every pair, and
second bin contains every frame pair separated by 20 or

more frames, and so on. We report experimental results us-
ing both the exponential of Eq. 5 and the sigmoid of Eq. 2
to build the masks.

Our approach shows better performance than SIFT, and
closely matches that of [40]. However, our SLIC-based
masks are faster to compute. Furthermore, when using su-
perpixel segmentations the affinity between pixels can be
computed through binary membership operations, rather
than euclidean distances in Eq. 5; this results in yet another
acceleration. As before, we refrain from providing all the
details and will make the code available instead [39].

5. Conclusions
We have presented a simple technique to combine

bottom-up segmentation with object detection, using SLIC
superpixels computed at different scales to build soft seg-
mentation masks. This process is fast enough that we can
compute it for every hypothesis of a multi-scale sliding-
window detector. We apply it to DPM, using the segmenta-
tion masks to ‘clean up’ the HOG features, for both the root
and part filters. We evaluate it on the PASCAL VOC and
demonstrate consistent improvements. We also extend the
same design principle to build background-invariant SIFT
descriptors, removing the features which share little affin-
ity with the center of the descriptor, and thus making them
more robust against background motion and occlusions—
again, this process is fast enough that we can use it to com-
pute dense descriptors, i.e. for every pixel in the image.

Regarding future work, an obvious extension would be
to try to pick the right λ for every object instance, instead
of object category—it is unclear how to do this. A possi-
ble criticism of our method is that it takes as a reference the
center of a bounding box, which may not actually contain
the object—we could consider the statistics of the superpix-
els to design a richer model. We also intend to consider
alternatives to SLIC superpixels [26, 3, 27, 7], which may
provide us with increased performance at a computational
cost.
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Figure 4. Precision/Recall curves on the PASCAL VOC 2007, for (1) the standard DPM (blue), (2) segmentation-aware DPM with cross-
validated λ (magenta), and (3) segmentation-aware, alpha-blended DPM (red). For the latter, we cross-validate α for the cross-validated λ
only. Note that (2) and (3) are the same filter if α = 100%.
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Figure 6. Overlap with the ground truth annotations of [4], for DSIFT (blue), and DSIFT with the soft segmentation masks of [40] (purple)
and our SLIC-based masks (magenta and red, for masks built with Eqs. 2 and 5, respectively), at different scales.
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Figure 7. Top row: input image. Middle row: detection hypothesis, with the segmentation mask generated by our filters overlaid on top—
only the root filter is shown. Bottom row: masks computed at a pixel level—the actual filter response is in HOG blocks (row 2). Note that
our approach can fail when the center of the bounding box has a different appearance (cat2, bus), or the object is hard to segment (bicycle).
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