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Convergence and regularity of probability laws
by using an interpolation method

V0LAD BALLY*
LuciA CARAMELLINO'

Abstract

Fournier and Printems [Bernoulli, 2010] have recently established a methodology which allows
to prove the absolute continuity of the law of the solution of some stochastic equations with Holder
continuous coeflicients. This is of course out of reach by using already classical probabilistic methods
based on Malliavin calculus. By employing some Besov space techniques, Debussche and Romito
[Probab. Theory Related Fields, 2014] have substantially improved the result of Fournier and
Printems. In our paper we show that this kind of problem naturally fits in the framework of
interpolation spaces: we prove an interpolation inequality (see Proposition 2.5]) which allows to
state (and even to slightly improve) the above absolute continuity result. Moreover it turns out
that the above interpolation inequality has applications in a completely different framework: we
use it in order to estimate the error in total variance distance in some convergence theorems.

AMS: 46B70, 60HO7.

Keywords: Regularity of probability laws, Orlicz spaces, Hermite polynomials, interpolation
spaces, Malliavin calculus, integration by parts formulas.

1 Introduction

In this paper we prove an interpolation type inequality which leads to three main applications. First
we give a criteria for the regularity of the law u of a random variable. This was the first aim of the
integration by parts formulas constructed in the Malliavin calculus (in the Gaussian framework, and of
many other variants of this calculus, in a more general case). But our starting point was the paper of
N. Fournier and J. Printems [I8] who noticed that some regularity of the law may be obtained even if
no integration by parts formula holds for u itself: they just use a sequence u,, — p and assume that an
integration by parts formula of type [ f'du, = | fhpdu, holds for each yu,. If sup,, [ |hn|du, < oo we
are close to Malliavin calculus. But the interesting point is that one may obtain some regularity for u
even if sup,, [ |hy,|du, = oo - so we are out of the domain of application of Malliavin calculus. The key
point is that one establishes an equilibrium between the speed of convergence of u, —  and the blow
up [ |hy|dpy, T co. The approach of Fournier and Printems is based on Fourier transforms and more
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recently Debussche and Romito [I1] obtained a much more powerful version of this type of criteria
based on Besov space techniques. This methodology has been used in several recent papers (see [5],
[6], [7], [12], [10] and [I7]) in order to obtain the absolute continuity of the law of the solution of some
stochastic equations with weak regularity assumptions on the coefficients: as a typical example, one
proves that, under uniform ellipticity conditions, diffusion processes with Holder continuous coefficients
have absolute continuous law at any time ¢t > 0. In the present paper we use a different approach,
based on an interpolation argument and on Orlicz spaces, which allows one to go further and to treat,
for example, diffusion processes with log-Holder coefficients.

The second application concerns the regularity of the density with respect to a parameter. We
illustrate this direction by giving sufficient conditions in order that (z,y) — pi(z,y) is smooth with
respect to (x,y) where pi(z,y) is the density of the law of X;(z) which is a piecewise deterministic
Markov process starting from x.

The third application concerns estimates of the speed of convergence u, — p in total variation
distance, and under some stronger assumptions, the speed of convergence of the derivatives of the
densities of p, to the corresponding derivative of the density of u. Such results appear in a natural
way as soon as the suited interpolation framework is settled.

Let us give our main results. We work with the following weighted Sobolev norms on C*°(R%; R):

/
ey = 3 ([t @us@ra)” p>1,

0<|e|<k

where « is a multi index, || denotes its length and 9, is the corresponding derivative. In the case
m = 0 we have the standard Sobolev norm that we denote by || f||;. ,. We will also consider the weaker
norm

1 lpmas = 2 [ 1a)™ 10af (@) (14T |2| + In* | (2)])de,

0<|a|<k

with In*(z) = max{0,1n |z|}. Moreover, for two measures 1 and v we consider the distances

i) =sup | [odu— [oan]: Y ool <1},

0<|e| <k

For k = 0 this is the total variation distance and for k£ = 1 this is the Fortet Mourier distance.

Our key estimate is the following. Let m,q,k € N and p > 1 be given and let p, be the conjugate
of p. We consider a function ¢ € C972™(R?) and a sequence of functions ¢, € C972"(R%),n € N and
we denote p(dx) = ¢(x)dx and p,(dz) = ¢, (x)dx. We prove that there exists a universal constant C'
such that

0o . 3] 1
”¢Hq,p < C(Z 2 (q+k+d/p*)dk(uv :u'n) + Z W H¢7l|’q+2m,2m,p) (11)
n=0 n=0
and
3] . 3] 1
”(b”q,l-i- < C(Z n2 (q+k)dk(ﬂ7 :u‘n) + Z W “¢n“q+2m,2m,1+ > : (12)
n=0 n=0

This is Proposition 2.5 and the proof is based on a development in Hermite series and on a powerful
estimate for mixtures of Hermite kernels inspired from [27]. This inequality fits in the general theory



of interpolation spaces (we thank to D. Elworthy for a useful remark in this sense). Many interpolation
results between Sobolev spaces of positive and negative indexes are known but they are not relevant
from a probabilistic point of view: convergence in distribution is characterized by the Fortet Mourier
distance and this amounts to convergence in the dual of W1, So we are not concerned with Sobolev
spaces associated to LP norms but to L> norms. This is a limit case which is more delicate and we
have not found in the literature classical interpolation results which may be used in our framework.
Once we have ([LI) and (2] we obtain the following regularity criteria. Let u be a finite non
negative measure. Suppose that there exists a sequence of functions ¢,, € C9+?™(R%), n € N such that

k+d/p.
o LHE+d/pe

2m (1.3)

dk(u7/'1/n) X H(an?—i-2m,2m,p <C,
with p,(dz) = ¢p(x)dz. Then p(dz) = ¢(x)dz and ¢ € WP (the standard Sobolev space).
In terms of ||¢|| q.m.1+ the statement is the following: suppose that there exists m € N such that

m C
di (b fin) X ||¢n‘|§1/’3,2m71+ < (lnn)Tﬁm (1.4)

Then p is absolutely continuous with respect to the Lebesgue measure.

The statement of the corresponding results are Theorem A and Theorem respectively.
These are two significant particular cases of a more general result stated in terms of Orlicz norms in
Theorem The proof is, roughly speaking, as follows: let 7. be the Gaussian density of variance
e > 0and let pu® = g7 and ps, = py, *y-. Then pf(dz) = ¢°(z)dz and us(z) = ¢5(z)dz. Using (1)
for ¢° and ¢5,n € N one proves that sup, ||¢°|] ¢p < 0. And then one employs an argument of relative
compactness in WP in order to produce the density ¢ of p.

We give now the convergence result (see Theorem 2.IT]). Suppose that (3] holds for some a >

7q+k;d/p*. Then u(dz) = ¢(x)dz and, for every n € N,

q+k+d/p.

. 1
16 = Enllwas < Cdip ) with 0 =—A(1 v

). (1.5)
Roughly speaking this inequality is obtained by using (L) with u replaced by g — fi,.

In the statements of (L3]) we do not use di (s, f1n) and ||énll, 9, 21, directly, but some function A
having some nice properties such that A\(1/n) > ||¢n, But this is a technical point which
we leave out in this introduction.

The paper is organized as follows. In Section [2] we introduce the Orlicz spaces, we give the general
result and the criteria concerning the absolute continuity and the regularity of the density. We also
give in Section the convergence criteria mentioned above. In Section we translate the results
in terms of integration by parts formulae. In Section BI (respectively Section B.2)) we prove absolute
continuity for the law of the solution to a SDE (respectively to a SPDE) with log-Hélder continuous
coefficients. Moreover, in Section B3] we discuss an example concerning piecewise deterministic Markov
processes: we assume that the coefficients are smooth and we prove existence of the density of the
law of the solution together with regularity with respect to the initial condition. We also consider an
approximation scheme and we use (LI in order to estimate the error. Finally, we add some appendices
containing technical results: Appendix [Alis devoted to the proof of the main estimate (II) based on
a development in Hermite series; in Appendix [Bl we discuss the relation with interpolation spaces; in
Appendix [C] we give some auxiliary estimates concerning super kernels.

H 1+qg+2m,2m,p*



2 Criterion for the regularity of a probability law

2.1 Notations

We work on R? and we denote by M the set of the finite signed measures on R? with the Borel o algebra.
Moreover M,C M is the set of the measures which are absolutely continuous with respect to the
Lebesgue measure. For u € M, we denote by p, the density of u with respect to the Lebesgue measure.
And for a measure ;1 € M we denote by L, the space of the measurable functions f : R* — R such that
[1fIPd|pu| < oco. For f € L1 we denote f,u the measure (fu)(A) = [, fdu. For a bounded function
¢ : R4 — R we denote p qﬁ the measure deﬁned by [ fdux¢ = f fxodu= [ [ ¢(xz—y)f(y)dydu(z).
Then p1 % ¢ € Mg and ppo(x) = [ d(z — y)du(y).

We denote by a = (o, ...,ad) € N? a multi index and we put |a| = Z?:l a;. Here N={0,1,2, ...}
is the set of non negative integers and we put N, = N\ {0}. For a multi index « with |a| = k we
denote J, the corresponding derivative that is 97}...05¢ with the convention that 93! f = f if a; = 0.
In particular if « is the null multi index then 0, f = f.

We denote by || f|, = (/| f(x)]" dzx) VP p>1and |||, = supgega |f(z)|. Then LP = {f : 1£1l, <
oo} are the standard Lp spaces with respect to the Lebesgue measure.

2.2 Orlicz spaces

In the following we will work in Orlicz spaces, so we briefly recall the notations and the results we will
use, for which we refer to [20].

A function e : R — R is said to be a Young function if it is symmetric, strictly convex, non
negative and e(0) = 0. In the following we will consider Young functions having the two supplementary
properties:

i) there exists A > 0 such that e(2s) < le(s),

e(s) (2.1)

i7) s +— —— is non decreasing.
s
The property i) is known as the Ay condition or doubling condition (see [20]). Through the whole
paper we work with Young functions which satisfy ([2Z.I]). We set £ the space of these functions:
€ ={e : e is a Young function satisfying (2.1I])}. (2.2)

For e € £ and f : R? — R, we define the norm

Hf”e:inf{c>0:/e(%f(x))dxg1}. (2.3)

This is the so called Luxembourg norm which is equivalent to the Orlicz norm (see [20] p 227 Th
7.5.4). It is convenient for us to work with this norm (instead of the Orlicz norm). The space
={f :||flle < oo} is the Orlicz space.

Remark 2.1. Let wy(xz) = (1 + |z|)~". As a consequence of (Z1)) ii), for every e € & and I > d one
has u; € L€ and moreover,
Jualle < (e(1) fJuly) V1 < o0 (2.4

)
Indeed (Z1) i) implies that for t <1 one has e(t) < e(1)t. For ¢ > (e(1) |lwly) V 1 one has 1y (z) <

uy(x) <1 so that
/e(%ul(az))daz < eTl) /ul(az)daz = icl) lull; < 1.

4



For a > 0, we define e !(a) = sup{c: e(c) < a} and:

bo(r) = ﬁ and  fe(R) = e‘lL;R) - R(;Se(%), "R > 0. (2.5)

Remark 2.2. The function ¢e is the “fundamental function” of L® equipped with the Luxembourg
norm (see [9] Lemma 8.17 pg 276). In particular 2¢e(r) is decreasing (see [9] Corollary 5.2 pg 67).
It follows that Pe is increasing. For the sake of completeness we give here the argument. By (Z1), 1),
if a > 1 then e(ax) > ae(z) so that ax > e (ae(x)). Taking y = e(x) we obtain ae ' (y) > e ' (ay)

which gives ay ay
Be(ay) = Tay) oo l(y) Be(y)-

One defines the conjugate of e by
e.(s) =sup{st —e(t) : t € R}.

e, is a Young function as well, so the corresponding Luxembourg norm || f||,, is given by (23] with e
replaced by e,. And one has the following Hélder inequality:

‘/fg(fﬂ)dfﬂ

(see Theorem 7.2.1 page 215 in [20]; we stress that the factor 2 does not appear in that reference but
in the right hand side of the inequality in the statement of Theorem 7.2.1 in [20] one has the Orlicz
norm of g and by using the equivalence between the Orlicz and the Luxembourg norm we can replace
the Orlicz norm by 2|g||,.).

We will now define Sobolev norms and Sobolev spaces associated to an Young function e. Let
us denote by LlloC the space of measurable functions which are integrable on compact sets and by

<2[[fllellglle, - (2.6)

WIIZ’CI the space of measurable functions which are k times weakly differentiable and have locally

integrable derivatives. More precisely this means that f € VV;’Z’C1 if for every multi index o with
|a| < k one may find a function f, € L}, (determined dz almost surely) such that [ g(z)fa(z)dz =
(=Dl [ 9yg(x) f(x)dz for every g € C°(R%, R). In this case we denote d, f = f,. Notice that

L° C L}, (2.7)

In order to prove this we take R > 0 and we notice that for |z| < R one has (1 + R)%lug, i (2) > 1.
Then using ([2.6]) and 24)), for every f € L®

/ (@) de < (1+ R)*™ / win (2) | ()] de
Br Rd

< (14 R ugpll,, I1f1l, < oo
For f € I/V/Z’cl, we introduce the norms
fllie = D l0afle and [flyee= D l0aflu (2.8)
0<|a|<k 0<|e| <k



and we denote

Whe = {f € Wyl : | fllye < oo} and W™ = {f € Wil : || flly o0 < o0}

loc loc

For a multi index v we denote 27 = H?:l z]" and for two multi indexes «, v we denote f, ~ the function

fa,7($) = x’yaaf(x)‘

Then we consider the norms

”fHk,l,e = Z Z [fanlle and whbe = {f: ”fHk,l,e < oo} (2.9)

0<|a|<k 0<]y|<l

We stress that in || - || e the first index k is related to the order of the derivatives which are
involved while the second index [ is connected to the power of the polynomial multiplying the function
and its derivatives up to order k.

Finally we recall that if e satisfies the Ao condition (that is (2I) 7)) then L€ is reflexive (see
[20], Theorem 7.7.1, p 234). In particular, in this case, any bounded subset of L€ is weakly relatively
compact.

Let us propose two examples of Young functions, that represent the leading ones in our approach.

Example 1. If we take e,(z) = |z|",p > 1, then |flle, is the usual L? norm and the corresponding

Orlicz space is the standard LP space on R?. Clearly Be, (t) = t1/P+ with p, the conjugate of p.

Example 2. Set ejo,(t) = (1 + [t[) In(1 + |¢|). Since the norm from e,y is not explicit we replace
it by the following quantities:

T / (L4 [2))? 1£@)] (1 + I Jo] + In* | f(2)])de
Flopie = 3 10afl,0s

0<]a|<k

(2.10)

with In*(z) = max{0,In |x|}. We stress that | fIl,,14 is not a norm.
We will need the following:

Lemma 2.3. For each k € N and p > 0 there exists a constant C' depending on k,p only such that

1k prerog < CAV Ak p,1e)- (2.11)

Moreover be (1)
li Slog 2 7 < 9, 2.12
P e = (212

Proof. The inequality (Z.I1]) is an immediate consequence of the following simpler one:

191, < 2(1V [ 1@ (L4 07 (2 o). (2.13)

Let us prove it. We assume that f > 0 and we take ¢ > 2 and we write

/elog<%f(x)>d$ < /{f<c} elog(%f(l‘)>dl‘ + /{f>c} elog(%f(x)>dx = 1+J

6



Using the inequality In(1+y) < y we obtain I <2 [In(1+ %f) < %ff And if f > ¢ > 2 then %—1—1 <
2f < f. Then ejg(Lf(x)) < 2fIn f. It follows that J < %f{f>c}fln+f and finally [ejoq(1f)) <
%f{f>c}(1 + f)In" f. We conclude that for ¢ > 2 [ f(1+In" f) we have [ ejoz(2f) < 1 which by the
very definition means that Hf”elog <2[f(1+Intf).

Let us prove (ZIZ). We denote e(t) = 2¢In(2t) and we notice that for large t one has ejoz(t) < e(t).
It follows that

5elog (t) < e—l(t) .

Using the change of variable R = e(t) we obtain

lim ————— = lim et) _
R—oo e 1(R)InR  t=ootlne(t)

So for large R we have f, (R) < R/e”'(R) < 2InR. O

Remark 2.4. We recall that the LlogL space of Zygmund is the space of the functions f such that
[1f(@)|InT | f(z)|dx < oo (see [9]). Then Lees = L' N LiogL. The inequality (Z.13) already gives one
inclusion. The converse inclusion is a consequence of the following inequalities. Let €, > 0 be such

that t <2In(1+1t) for 0 <t <e, and let C, =2+ 1/In(1 +&4). Then

) U@l <cfl,,
(2.14)
i) (@@l < |, (02007 1],

In order to prove i) we denote g = HfH;lig |f| and we write

{g<es} {g>e+}
2

1
< In(l+g¢g +7/ gln(l+g¢g
/{gSE*} R TIEEEN Y PR LA

<c. [rgui+g =c. [ e =C.

In order to prove ii) we notice that [ gln™ g < [elg(g9) =1 so that

[t e <,

Then we write

/mmﬂﬂz/ mmﬂﬂ+/ It |
TESVTS! {1F1<1VI gy, )

=1+ J



If|f| > 1V Hf||elog thenIn™ |f] =In|f| = h{%%)—i—ln [ fllerg - S0, by using the previous inequality,

F< Wl + 101N, [ 191 11y, (14 Culnllfl,)

the last inequality being a consequence of i). And

€log :

T <0 Fly, [ 1112 €1y, 107 111

2.3 Main results

We consider the following distances between two measures p, v € M: for k € N, we set

() =sup {| [ oau— [ o] s 0 € (@, ol <1}, (2.15)

Notice that dy is the total variation distance and d; is the bounded variation distance (also called Fortet
Mourier distance) which is related to the convergence in law of probability measures. The distances
dp with k > 2 are less often used. We mention however that people working in approximation theory
(for diffusion process for example - see [30] or [24]) use such distances in an implicit way: indeed, they
study the speed of convergence of certain schemes but they are able to obtain their estimates for test
functions f € C* with k sufficiently large - so dj, comes on. We also recall that for k = 1,2, 3, dj, plays
an important role in the so-called Stein’s method for normal approximation (see e.g. [25]).

We fix now a Young function e € & (see (2.2)), and we recall the function fe (see (Z5) and Remark
respectively).

Let ¢,k € N and m € N,.. For © € M and for a sequence u, € My, n € N we define

[ee] [e.e]
1
7Tq7k’m’e(/J, (,Un)n) — Z 2n(q+k)ﬁe(2nd)dk(u7 lu’TL) + Z W ||p/an ||2m+q72m,e . (216)
n=0 n=0
Here and in the sequel we make the convention that ||py,[lg,, 4 om.e = 00 if Py, ¢ Wli?ﬂ’l. Moreover

we define
pq,k,m,e(ﬂ) = inf 7"'q,l'c,m,e(,ua (,un)n) (2'17)

the infimum being over all the sequences of measures u,,n € N which are absolutely continuous. It is
easy to check that pg x m.e is a norm on the space S; i e defined by

Sgeme = {1t € Mt pgrme(p) < oo} (2.18)

The following result gives the key estimate in our paper. We prove it in Appendix [Al

Proposition 2.5. Let ¢,k € N;m € N, and e € £. There exists a universal constant C (depending
on q,k,m,d and e) such that for every f € C?"+4(R%) one has

”f”q,e < Cpq,k,m,e(ﬂ) (219)

where p(dx) = f(x)dx.



We state now our main theorem:

Theorem 2.6. Let g,k € Nym € N, and let e € €.
i) Take ¢ = 0. Then
SO,k,m,e C L®

in the sense that if p € Sokme then p is absolutely continuous and the density p, belongs to LS.
Moreover there exists a universal constant C' such that

Pl e < Cpokme(tt)-

1) Take q > 1. Then
Sq,k,m,e c W  and HpuH%e < Cpq,k,m,e(,u), JIRS S‘Lkvmve'

Proof. We consider a function ¢ € Cp°(R?) such that 0 < ¢ < 1p, and [ ¢(x)dz = 1. For § € (0,1),
we define ¢5(x) = 6~ %¢(0~ z). For a measure p we define u * ¢5 by [ fdp* ¢s = | f* ¢psdp. Since
| f * qS(;Hkm < Hf”koo it follows that di(u * ¢5,v * ¢5) < di(u,v). We will also prove that

1F * Gsllamsg2me < 2™ 1 lomsg.2mee - (2:20)

Suppose for a moment that (220) holds. Then

7Tq,k,m,e(,u * Og, (,Un * ¢5)n) < 22m77q,k,m,e(ﬂ7 (NN)H) < 22mpq,k,m,e(ﬂ)'

Let ps € C°(R%, R) be the density of the measure u * ¢5. The above inequality and (ZI9) prove that

sup ”p5Hq,e < Cpq,k,m,e(ﬂ) < 0.
0<6<1

For each multi index a with |a| < ¢ the family d,ps,d € (0,1) is bounded in L€ which is a reflexive
space, so it is weakly relatively compact. Then we may find p, € L® C Llloc (see ([Z) for the
above inclusion) and a sequence d§, — 0 such that J.ps, — po weakly, for every multi index «
with 0 < |a| < ¢ (in the same time). Since [ gaps, = (—1)1 [ pdag, by passing to the limit we
obtain [ gp, = (—1)led [ POag s0 Oap = po € L° and this means that p € We. Since u * ¢5, — p
weakly, one has p(dz) = p(x)dz. And since [|0ap]lo < sup,en |0aps, lle < Cpgkm.e(it) it follows that
121, e < Cpgk,me(t). So the proof is completed.

q,e —

Let us check @20). For A > 0 we denote gy(z) = (1 + |z|) g(x). Notice that for § < 1
(groh@] < 1+ 1) [ loa )] ds(wdy
< [atlo— v+ gta - vl 65wy
< 2 (o= o) ol — )l 65ty = 2 loa | d5(a).

Then, by @8) (g% d)alle < 2* sl * dslle < 216l Noalle = 2* lgalle. Using this inequality
(with A = 2m) for g = 0, f we obtain (Z.20). O



We consider now a special class of Orlicz norms which verify a supplementary condition: given

a,y > 0 we define
Eapy = {e : lim sup Be(B)

msup ot T < oo}. (2.21)

In this case we have:

Theorem 2.7. Let ¢,k € N m e N, and lete € . If2m >d, v >0 and 0 < o < 2mEatk yhen

d(2m—1)
Wathame ¢ S e C WO°
and there exists some constant C such that
1
C HpuH%e < Pgkme(n) <C ”pﬂ”q+172m7e’ (2:22)

2m+q+k

d(2m—1)"

Proof. The first inequality in (2.:22]) is proved in Theorem As for the second, we use Lemma
in Appendix [Cl Let f € WaTh2m™e and ps(dz) = f(z)dz. We have to prove that pg k. m.e(ftf) < o0.
We consider a super kernel ¢ (see (CI)) and we define f5 = f * ¢5. We take 6, = 27" with 6 to
be chosen in a moment and we choose n, such that for n > n, one has ﬂe(2”d) < 02MpY hecause
e € Eq. Using (C.3) with I = 2m, we obtain di(uf, pfs ) < Crg 1fll441.2m.e S3TFHL and using (CA)

2m—1
we obtain || fs, lo1g 2me < Com+q,2m |l y41.2m.e O e (
are fixed). Then we can write

In particular this is true for ejos and for e, with ijl <

the constant C' depends on k and ¢, which

Tq,k,m e(ﬂf :uf(sn)

k d
_ Z2n(q+ 2” )dk(ﬂf Nfén +Z 22nm ”f5 ”2m+q 2m,e
n=0

= qum 1 llg41,2m0 X

1
(g+k+da—0(g+k+1))
(1+Z2nq o n’y+22n2m 0(2m— 1)))

n>ny

Cq,k,m > 0 denoting a constant depending on g, k, m. In order to obtain the convergence of the above
series we need to choose # such that

q+ k+ da - 2m

qg+k+1 2m — 1

and this is possible under our restriction on a. O
We give now a criterion in order to check that p € S; i m.e-

Theorem 2.8. Letq,k € N;m € Ny and lete € &,,. We consider a non negative finite measure j1 and
we suppose that there exists a family of measures pus(dx) = fs(x)dz,d > 0 which verifies the following
assumptions. There exist C,r > 0 and a function Ay (5), 6 € (0,1), which is right-continuous and
non increasing such that

||f5H2m+q,2m,e < Aq,m(é) <C6.
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We consider some nn > 0 and k > 0 and we assume that

C
Al (8)d < . 2.23
q,m( ) k(:unué) = (111(1/5))“ ( )
If (2.23) holds with
q+ k+ ad
- = 2.24
n>—5-——: #&=0 (2.24)
then
RS Sq,k,m,e c Wee,
The same conclusion holds if
k d
n:% and k>14v4n. (2.25)

Proof. Let g > 0. We define
22mn

Let 0 < 0 < 2m/r where r is the one in the growth condition on Ay ,. Since 6" Ay (0) < C, we have

2mn

2
—0 0
Am(27) < €02 < 2

which means that §,, < 27", Since e € Ea,y We have
ﬂ-q:kvmye(lu7 (Iu(sn)n)

(o] o0
<C Z 2n(¢1+k+ad)n’7dk(#’ pus,) 4+ C Z 9—2mn | /5., H2m+q72m7e .
n=1 n=1
Since Ag, is right continuous, Ay m(0n) = 92mny —(1+c0) o

o0

1
Z W)\%m((sn) < Q.

n=1
By recalling that In(1/6,) > COn and by using (2.23]), we obtain

n(g+k+ad),,y < on(gt+k+ad) CnY
2 n dk‘(#?ﬂén) >~ 2 )\g,m((sn)(ln(l/én))n (226)
<C x 2n(q+k+ad—2mn)nﬁ/—l—n(l—l—so)—n'

If g+ k+ad < 2nm the series with the general term given in ([2.26]) is convergent. If ¢+ k+ad = 2nmn
we need that kK > 1+~ + n(1 4 &p) in order to obtain the convergence of the series. If Kk > 1+ ~v+n
then we may choose g¢ sufficiently small in order to have v+ n(1 +&p) — k > 1 and we are done. [

There are two important examples: e = e, that we discuss in a special subsection below and
e = ejo; which we discuss now. We recall that ejs € £ with o =0 and v =1 and || f5/5,,, 2m Clog <

C1V | fsllom.2m.14+ Where || f5llo,, op 14 is defined in ([2.I0). Then as a particular case of the previous
theorem we obtain:

11



Theorem 2.9. We consider a non negative finite measure i and we suppose that there exists a family
of measures ps(dr) = fs(x)dx,d > 0 which verifies the following assumptions. There exist m € N,
C,r,e >0 and a function M\, (0), 6 € (0,1), which is right-continuous and non increasing such that

Hf6||2m72m71+ S Am,((s) S Co~" and

1
A2 (8)d QN CU—
(0)da (1, ps) < —

(2.27)

Then pu(dx) = f(x)dx with f € L®es.

2.4 The L? criterion

In the case of the LP norms, that is e = e,, our result fits in the general theory of the interpolation
spaces and we may give a more precise characterization of the space Sk m.e, = Sqrmp- We come
back to the standard notation and we denote |-||,, instead of [|-||, , WP instead of W and so on.
In Appendix Bl we prove that in this case the space Sy k. m p is related to the following interpolation
space. Let X = WE where W™ is the dual of Wk (notice that one may look to u € M as to an
element of W/ and then dy(u,v) = || — V| jyree). We also take Y = Wat2m2m2 and for € (0, 1)
we denote by (X,Y), the real interpolation SpE;CG of order v between X and Y (see Appendix [B] for
notations). Then we have

q+k+d/p«
v=—

Sekamp = (X,Y)y  with o

So Theorem 2.7 reads
Watl.2m.p C (Wf,oo’ Wq+2m,2m,p)7 C Wep,

We go now further and we notice that if ([2:24)) holds then the convergence of the series in (2.20])
is very fast. This allows us to obtain some more regularity.

Theorem 2.10. Let ¢,k € Nym € Ny, p > 1 and set

k+d/p,
n>Q+ +/p'

5 (2.28)

We consider a non negative finite measure p and a family of finite non negative measures ps(dx) =
fs(x)dz,0 > 0.

A. We assume that there exist C,r > 0 and a right-continuous and non increasing function Ay m(0),
9 €(0,1), such that
Hf6H2m+q,2m,p < Aq,m(é) < co "

and moreover, with n given in (228),
Ag;m (0)di (11, pis) < C. (2.29)

Then p(dx) = f(x)dx with f € WP,
B. We assume that (Z22Z9) holds with q + 1 instead of q, that is

Ag+1,m(8)"dk (1, ps) < C.

12



We denote
2mn—(q+k+d/p*)/\ i

. 2.30
2mn 1+7n ( )

Sﬁ(q7 k) m7p) =

Then for every multi index o with || = q and every s < s,(q, k, m,p) we have Onf € B¥P where B*P?
1s the Besov space of index s.

Proof. A. The fact that [2:29) implies p(dz) = f(z)dx with f € W%P is an immediate consequence
of Theorem 2.8

B. We prove the regularity property: g := 0o f € B? for |a| = ¢ and s < s,(q, k,m). In order to
do it we will use Lemma [B.1] so we have to check (B.4]).

Step 1. We begin with the point ¢) in (B.4)) so we have to estimate ||g * 0;¢¢|| ... The reasoning is
analogous with the one in the proof of Theorem 2.8 but we will use the first inequality in (2.22]) with
q replaced by ¢ + 1 and k replaced by k — 1. So we define 6, = inf{§ > 0: \j11,,(0) < n~222""} and
we have 6, < 27" for § < 2m/r. We obtain

g * aiﬁbsup = [10:0a(f * ¢5)||p <|If = ¢s||q+1,p < Pgt1k—1,mp(H * e)

< Z on(atk /P gy (* e, pis, * )

n=1
[e.e]
-2
+ Z 27 mn Hfén * ¢€||2m+q+1,2m,p .
n=1
By the choice of §,,

i22nm

Hfén * ¢€H2m+q+l,2m7p é ‘|f67l‘|2m+q+l,2m7p é )‘q+1,m(5n) S n2

5o the second series is convergent. We estimate now the first sum. Since || * ¢clly oo < e [ fllx_1 00
one has dy_1(p * de, ps, * ¢=) < e tdp(p, s, ). Then, using (Z29) (with ¢ = 1 instead of ¢) and the
choice of 9,, we obtain

2n(q+k+d/p*)dk—1(ﬂ * Qe pls, * ) < (q+1+d/p*)dk (: p1s,,)

C’
6
C
< - (q+1+d/p*))\q_:_71 m(5 )
C’

< on(q-+1+4d/p.—2mmn)
o €

We fix now € > 0, we take some n. € N (to be chosen in the sequel) and we write

Z 2n(q+k+d/P*)dk_1(lu * e, [15, * Oe)

n=1

Ne 00
<0 gnlatktalp) | ¢ S p2ngnlathd/pe—m).
n=1 € n=ncs+1

We take a > 0 and we upper bound the above series by

one(a+k+d/ps) 4 g2ns(q+k+d/p*+a—2nm) '
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In order to optimize we take n. such that 227" = % With this choice we obtain

_ gqtk+d/pxta

one(at+k+d/pita) < o1 2mn

We conclude that

qg+k+d/px+a

Hg * 8Z¢EHp S CE_ 2mn

which means (B) i) holds for s < 1 — LEtd/p.

2m

Step 2. We check now (B4) ii) so we have to estimate ||g * (bé”p with ¢t (z) = z'¢.(x). We take
u € (0,1) (to be chosen in a moment) and we define

One =1nf{d > 0: Ag1,m(0) < n292mn s_(l_“)},
Then we proceed as in the previous step:

Haz(g * qbf:)Hp épq-}-l,k—l,m,p(,u * QSZE)

o0
<> @A g (s oL s, * 0L

n=1

00
+ Z 2_2mn Hf‘snﬁ * Qﬁé”2m+q+1,2m,p '

n=1

It is easy to check that for every h € LP one has Hh * gbﬁ_Hp <e Hth so that, by our choice of §, . we
obtain

2mn
. 1
Hf‘snﬁ * (bZEH2m+q+1,2m,p <e€ Hf‘snﬁ 2m-+q+1,2m,p Sex n2 XE ( U)
It follows that the second sum is upper bounded by Ce".
Since H8jh * QS@HOO < C||h||,, it follows that
c Cn’ 1w

dj—1(p %@L, s, . * &%) < Cd(, s, ) < 7

q+1,m (5”76) B 22mni

Since 2mn > q + k + d/p, the first sum is convergent also and is upper bounded by Ce”(=%)  We
conclude that '
10:(g * g)||, < C"1) + Ce.

In order to optimize we take u = % O
2.5 Convergence criteria in WP and W%®s
For a function f, we denote p¢(dx) = f(x)dx.
Theorem 2.11. Let n: Ry — Ry be a non decreasing function and a > 1 be such that
lim n(n) =+oc0 and nn+1) <an(n), for everyn € N. (2.31)
n—o0

Let m,k,q € N be fixed. Let f,, n € N, be a sequence of functions and p € M.
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i) Let p > 1. If there exists a > % such that

o 1
an”q+2m,2m,p < T,l/ (n) and dk(/%,ufn) < W7 (232)

then p(dx) = f(z)dx for some f € WTP. Moreover, there exists a constant C' depending on a,a such
that for every n € N

- , 1 q+Fk+d/p.
— fn <Ccn~t th 0=—N(1———"—"—). 2.33
15 = Fullyy < Co?n) with 9=~ (1~ TGP (23)
i1) If there exists o > % such that
o 1
1Fallgsamzme S17%m) and - dilonpig,) < S (2:34)

then p(dx) = f(x)dx for some f € W®os. Moreover, there exists a constant C depending on a,
such that for every n € N

1f = Fallger,, < C~"%(n) + (logy n(m)n~ 5 (n) = en(0). (2.35)
And if ep(a) <1 then
Z [(Oaf = Dafn)(@)] (1 4+ 07 (Do f — Oafu) ()| dz < 2C.e (). (2.36)

0<l|e|<q
Proof. i) Step 1. For r € N, we define
n, = min{n : n(n) >2*"} and r, =min{r € N:n, >n}.

Then we have )
an(n) <29 < Cn(n). (2.37)

Since {r € N : n, > n} is a discrete set, its minimum r,, belongs to this set, so n,, > n. Then
n(n) < n(ng,) < an(ng, —1) < a2*™. On the other hand, since r, — 1 ¢ {r € N: n, > n} one has
n > n,, 1 and then n(n) > n(n,, 1) > 200a=Dm = 0=120mm with C' = 2™, So, ([Z37) holds.

Step 2. We fix n € N and for r € N we define
gr=0ifr<r,and g, = fp, — fnifr>nry
and v(dr) = p(dr) — fo(z)dz, v (dr) = g,(z)dz. Using 2I9) (recall that 3o, = t1/P=) we get

00 00
pq,k,m,p(V) < Z 2T(q+k+d/p*)dk(l/a VT’) + Z 2—2mr ”gr”q+2m,2m,p = Sl + S2‘

r=1 r=1

We estimate Sy. For r < r,, we have v, = 0 so that dg(v,v,.) = di,(v,0) = dg(p, ps,) <n~'(n). And
for r > r,, we have
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di(v,vy) = di(p, pig,,,) < o) < Srma
So, we obtain
C
< 9rnlg+k+d/ps),—1
Sl — T, (n) + 2rnma(1— (Q‘f’];‘::/l’*)

and using (2.37),

gtk+d/p
—(1—LEEEC Py

S1<Cn (n).

We estimate now Sy. We have g, = 0 for r < r,, and for r > r,,

1 1
”gT’Hq—i-2m,2m,p < anr-”q—i-2m,2m,p + ”anq—i-2m,2m,p < T](HT) /e + n(n) /a‘
But n(n,) < an(n, —1) < a2%"™ so that
”gT’Hq—i-2m,2m,p < al/azrm + T,(n)l/a‘
It follows that

Sy < al/a Z g—rm +n(n)1/a Z 9—2rm < 0(2—rnm +n(n)1/a2—2rnm)

T>Tp r>7p

and using (Z37) we get
Sy < Cy(n)~Ve,

Then, we obtain
— _(1_ akk+d/px
Pasemp() < C V() + 7~ am ) (n))
and Theorem allows one to conclude.

1) We take n, and r, as in Step 1 above, giving (2.37)), and we take g,, v, v, as in Step 2 above.
Then, by using (ZI9]) we get

o) o0
k d _
Pq.k,m,eioq (V) < Z griat )Belog (2T )dk(Vy vr) + Z g~ ”gT’Hq+2m,2m,e10g :

r=1 r=1

By @2II) and 2I2), we can write

(o] o0
Paq.k,m,eloq (v)<C Z 2r(q+k)rdk(V7 vr) + Z 272V ng”q+2m,2m,1+

r=1 r=1

=: 51+ 5s.

Concerning Sy, for r < r,, we have di(v,v,) = dg(v,0) = dg(p, pug,) < n~'(n) and for r > r,, we have
dp(v,v) < LN Q S So, we obtain

) < 7

rn(g+k), —1 Tn
S < C<Tn2 n " (n)+ 72“%&(1_%)).
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Using (2.37),

atk

k
S1 < Cryy~ =52 (n) < C(logy n(n)) == ) (n).

As for Sy, we proceed as in Step 2 above and we obtain Sy < C’n(n)_l/a. Then,

_ _(1— atktd/px
and the statement again follows from Theorem So ([2338)) is proved. In order to check (2:30]) we
use (ZI4) (notice that, since ||f — f"”q,elog < eéen(a) <1, we have In' || f — f"”q,elog =0). O

2.6 Random variables and integration by parts

In this section we work in the framework of random variables. For a random variable F' we denote
by pr the law of F' and if up is absolutely continuous we denote by pp its density. We will use
Theorem [ZT0l for p1p so we will look for a family of random variables Fs,§ > 0 such that pp, satisfy
the hypothesis of this theorem. Sometimes it is easy to construct such a family with explicit densities
pr; and then one may check (229) directly (this is the case in the examples in Section Bl and B.2)).
But sometimes one does not know pr; and then it is useful to use the integration by parts machinery
in order to prove (229) - this is the case in the example given is Section or the application to a
kind of generalization of the Hérmander condition to general Wiener functionals developed in [4].

We briefly recall the abstract definition of integration by parts formulae and we give some useful
properties (coming essentially from [I]). We consider two random variables F' = (F, ..., F;) and G.
Given a multi index o = (ay,...,a) € {1,...,d}* and for p > 1 we say that IP, ,(F,G) holds if we
may find a random variable H,(F;G) € LP such that for every f € Cg°(R?) one has

E(0af(F)G) = E(f(F)Ho(F; G)). (2.38)

The weight H,(F';G) is not uniquely determined: the one with the lowest variance is E(H,(F;G) |
o(F)). This quantity is uniquely determined. So we denote

0a(F.G) = E(Ho(F; G) | o(F)). (2.39)

For m € N and p > 1 we denote by R, , the class of random variables F in R? such that 1P, ,(F, 1)
holds for every multi index o with || < m. We define

Top(F) = |Fl, + > l6a(F 1), (2.40)
|a| <m
Notice that by Holder’s inequality [[E(Hqa(F51) [ o(F))|, < [Ha(F;1)[|,. It follows that for every
choice of the weights H, (F';1) one has
Tonp(F) < |F|l, + D [IHa(F5 1), (2.41)
|a|<m

Theorem 2.12. Letm,l € Nandp > d. If F' € Ry,41, then the law of F' is absolutely continuous and
the density pr belongs to C™(R®). Moreover, suppose that F € Rin+1,2(d+1)- There exists a universal
constant C' (depending on d,l and m only) such that for every multi index o with |a] < 'm

2_ _
Bapr(@)| < CT{ ) (F) T aasny (F) (L4 [ Fll) (L + f2)) 7" (2.42)
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In particular, for every q > 1,k € N there exists a universal constant C (depending on d,m,k,p and
q) such that

2__
198l kog < CT i1y (F) Tt sty (VA I F ). (2.43)

Proof. The proof is an immediate consequence of the results in [I]. In order to see this we have to give
the relation between the notation used in that paper and the notation used here: we work with the
probability measure pp(dz) = P(F € dz) and in [I] we use the notation 94" g(z) = E(Hu(F;g(F)) |
F =ux).

The fact that F' € Ry+1,, implies that F' ~ pp(z)dz with pr € C™(RY) is proved in [I] Proposition
9. We consider now a function ¢ € C’lfo(Rd) such that 15, <1 <1p,.In [I] Theorem 8 we have given
the following representation formula:

d
Oapr(@) = S E@,Qa(F — €)0(0 (Fi(F - 2)) 15, (F - 2)

1=1

where B, denotes the ball centered at 0 with radius 7, Qg is the Poisson kernel on R? and, if @ =
(a1, ...,a), then («a,i) = (aq, ..., ag, ). Using Holder’s inequality we obtain (with p, the conjugate of
p)

*

d
0apr ()] < 10:Qa(F = 2)|, |60 (F; ¢(F — 2))1p,(F — )
i=1
We take p = d + 1 so that p, = (d+1)/d < 2. In [I] Theorem 5 we proved that

2_
10:Qu(F — )|, < CT{, 0, (F).

Moreover we have the following computational rule (Lemma 9 in [1])

0:(F, fg(F)) = f(F)0:(F,g(F)) + (90: f)(F).
Since ¥ € Cp°(RY) we may use the above formula in order to get
10y (F5 9 (F — 2))1p, (F — 2|
< |[0any (F; 0 (F = 2)) |, VR(F — 2 <2)
< CyTjajs1,29. (F) VE(IF — 2] < 2).
For |z| > 4

1 ok
P(|F — o] <2) <P(|F| 2 5 al ) <7
X

so the proof of ([242)) is completed. O

E(|FI)

We are now ready to rewrite Theorem [2.10
Theorem 2.13. Let k,g e N, m € N,, p > 1 and let

k N
n>q+ +d/p 7
2m
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p« denoting the conjugate of p. Let I, F5,0 > 0, be random variables and let pur, pr;, 6 > 0, denote
the associated laws.

A. Suppose that Fs € Ropyqi1,2(d+1), 0 > 0 are uniformly bounded in L2+l and that there
exist C' >0 and 6 > 0 such that

Tomqr1,aa+n) (Fs) < Co~ 0@ty (2.44)

di (o, pupy) < COPME@mratl), (2.45)

Then pr(dz) = pp(z)dx with pp € WP,

B. Suppose that Fs € Ropqgt2,20d+1), 0 > 0, and (2.74) holds with q + 1 instead of q.Then for
every multi index o with || = q and every s < sy(q, k,m,p) we have Oapr € B*P where B*? is the
Besov space of index s and s,(q, k,m,p) is given in (2.30).

Proof. A. Let n,l € N and p > 1 be fixed. By using 2.44) and (2.43) we obtain [|pg,ll,,400mp <

C§—04*@mtatl) So as a consequence of (ZAH) we obtain 1PFs 3 g.2m p Qs pry) < C. And we
apply Theorem A. Similarly, B follows by applying Theorem B. O
3 Examples

3.1 Path dependent SDE’s
In this section we look to the SDE

dX; = oj(t, X)dW} + b(t, X)dt (3.1)
j=1
where W = (W', ...,W") is a standard Brownian motion and

g, b: C(Ry:RY = C(R;RY), j=1,..,n.

For a function ¢ € C(R4;R%), we use the notation o;(t, ) = 0j(¢)(t) and b(t, ) = b(e)(t). If o,
and b satisfy some Lipschitz continuity property with respect to the sup-norm on C(R,;R%) then
this equation has a unique solution. But we do not want to make such an hypothesis here so we just
consider an adapted process X;,t > 0 which verifies the above equation.

We set Agi(w) 1= supg<y<t [wy — ws]

Theorem 3.1. Let b and 0j, j = 1,...,n, be bounded. Suppose that there exists ,C > 0 such that
1 —(2+¢)
(t,w) — o(s, <C’<l <7 L Yi=1,., 3.2
73(t,0) = (s 0] < (I (5—0)) j n (3.2)
and that there exists A, > 0 such that
oo*(t,w) > A« Vt > 0,w € C(Ry;RY). (3.3)

Then for every T > 0 the law of Xt is absolutely continuous with respect to the Lebesque measure and
the density belongs to L®s,
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Remark 3.2. We note that in the particular case of standard SDE’s we have o(t,w) = oj(wy) and
a sufficient condition in order that (33) holds is |o;(z) — o;(y)| < C(ln(m—im))_(%s). This is weaker
than Holder continuity.

Proof. During the proof, we set \* > 0 a constant such that \* > oo™ (¢, w).
For > 0 we construct

X =Xp_s+ Y oj(T 6, X)(Wi - Wi_y).
j=1
We will use Theorem so we check the hypotheses there.
Step 1. We write X1 — X% = zyzl Ig + Js with

. T , T
I = / (0;(t,X) —o;(T = 6,X))dW} and Js= / b(t, W)dt.
T—6 T—6
Since b is bounded, we have
E(|Js]) < C6. (3.4)

Let ag = /6 In3 and A5 = {A7_sr(X) < G5} We write E(|[g|2) = K5 + Ls with
T 2
Ky = / Bl oy (1. X) = (T = 6. X) )

T
Ly — / E(La, loj(t, X) — 05(T — 6, X)|2)dt.
-4

=2
By using the Bernstein’s inequality we obtain P(A§) < Cexp(— g%). And since o; is bounded, for any
small § we get
-
Ks < COP(Af) < Céexp(—Zg%) < Co3.

Moreover using ([3.2)) and again for § small enough,

Co o)

< <
Ls < (In % )22+8) = (In 1)22+9)

(notice that In(3)/In &= — 2 >0 for § — 0). We conclude that
as

Co

712 <

so that, if p is the law of X7 and pug is the law of X% then for every § small,

(751/2
)
di(p, ps) < E(| X7 — X7|) < (In Dyze-

Step 2. Given a positive definite matrix a, we denote

B 1 1,
’Ya,a(y)—(27T5)d/2(deta)l/2exp< 55 (@ y,y>>~
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With 5 denoting the law of X4, we have us(dy) = ps(y)dy where

Ps(¥) = E(Vs,0,_sx)(y — X1—s)) with ay(X) = o0 (t, X).

Let a denote a multi index |o| = ¢, k € N and § < 1. By using (3.3 we have

_ — Xr_s|\q
0aps(y)| < C6 q/2E<<1 + “’517/2”‘) Vsar—s(x) (Y = XT_5))
— X7_s|\¢
< 05_‘1/2E<<1 + %7/565 Vo1 (y — XT—&))- (3.6)

We use the fact that 0 < z +— (1 + x)qe_gc2 is bounded. This gives
[Oaps(y)| < C~(THO2,

so that, for small values of ¢,

In* |9aps(y)| < 0(1 + m%) <C m%. (3.7)

Let m € N. Using (3.0) and (31 we obtain

19apslgm,14+ = /(1 + [y)*™ 18aps(y)] (1 + " |y + In* [Daps(y)])dy

1 — X7 q
< C6~ 9% 1n 5E< /(1 + [yt (1 + u) Ysarr(y — XT—(S)dy>

§1/2

1
= C(S_q/2 In SE(/(l + ‘XT_J + (51/22’)2m+q+1"}/1’)\*1(2)d2§)
<592 L

1)

We conclude that )
Hp5||2m,2m71+ = Z ||aap6‘|2m,l+ <C5 " In 5 (3.8)
0<|ar|<2m

Step 3. We are now ready to check (2.27)): the exists dyp < 1 such that for § < §p one has

m 1/2
1/2m _1y2 (. 1\ V2 g
sl i ps) < €372 (n2) ™ x (n T2
B c_ C
(e T (Inl)2remtes?

the last inequality holding true as soon as % < e/2. So ([Z27)) holds and the conclusion follows from
Theorem O
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3.2 Stochastic heat equation

In this section we investigate the regularity of the law of the solution to the stochastic heat equation
introduced by Walsh in [33]. Formally this equation is

ou(t,z) = u(t,z) + o(u(t,z))W(t,z) + blu(t, z)) (3.9)

where W denotes a white noise on Ry x [0,1]. We consider Neumann boundary conditions that is
0,u(t,0) = 0yu(t,1) = 0 and the initial condition is u(0,z) = ug(z). The rigorous formulation to this
equation is given by the mild form constructed as follows. Let G¢(z,y) be the fundamental solution
to the deterministic heat equation dyv(t,z) = 0?v(t, z) with Neumann boundary conditions. Then u
satisfies

1 . .
a) = ) Gelswmotoyts = 17 Gttt )V ) (3.10)
t rl
+/0 /0 Gi—s(z,y)b(u(s,y))dyds

where dW (s, y) is the It6 integral introduced by Walsh. The function G¢(x,y) is explicitly known (see
[33] or [8]) but here we will use just few properties that we list below (see the appendix in [§] for the
proof). More precisely, for 0 < ¢ < t we have

t 1
/ / G} y(x,y)dyds < Ce'/? (3.11)
t—e JO

Moreover, for 0 < z1 < ... < x4 < 1 there exists a constant C' depending on min;—; 4(x; — x;—1) such

that
t 1/ d 2
Cell? > Ifilnfl/ / <Z ﬁiGt—s(xi,y)> dyds > Cclel 2, (3.12)
= t—e 0 i=1

This is an easy consequence of the inequalities (A2) and (A3) from [§].

In [28] one gives sufficient conditions in order to obtain the absolute continuity of the law of u(t, x)
for (t,z) € (0,00) x [0,1] and in [§], under appropriate hypotheses, one obtains a C'°° density for
the law of the vector (u(t,x1),...,u(t,zq)) with (t,2;) € (0,00) x {o # 0},i = 1,...,d. The aim of
this section is to obtain the same type of results but under much weaker regularity hypothesis on
the coefficients. One may first discuss the absolute continuity of the law and further, under more
regularity hypothesis on the coefficients, one may discuss the regularity of the density. Here, in order
to avoid technicalities, we restrict ourselves to the absolute continuity property. We assume global
ellipticity that is

o(x) >c; >0 for every x € [0, 1]. (3.13)

A local ellipticity condition may also be used but again, this gives more technical complications that
we want to avoid. This is somehow a benchmark for the efficiency of the method developed in the
previous sections.

We assume the following regularity hypothesis: o,b are measurable and bounded functions and
there exists h > 0 such that

jo(z) — o (y)| < ]z —y||"*, for every x,y € [0,1]. (3.14)
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This hypothesis is not sufficient in order to ensure existence and uniqueness for the solution to (310
(one needs o and b to be globally Lipschitz continuous in order to obtain it) - so in the following
we will just consider a random field u(t,x), (¢,2) € (0,00) x [0,1] which is adapted to the filtration
generated by W (see Walsh [33] for precise definitions) and which solves ([B10).

Proposition 3.3. Suppose that (313) and (3.14) hold. Then for every 0 < z; < ... < xq < 1 and
T > 0, the law of the random vector U = (u(T,x1),...u(T,xq)) is absolutely continuous with respect to
the Lebesgue measure.

Proof. Given 0 < & < T we decompose
U(T,l‘) ZUE(T733) +I€(T7$) +J€(T7$) (315)
with
1
ue (T, ) =/ Gi(z,y)uo(y)dy
0
T /1
+ / / Gr_s(z,y)o(u(s A (T —¢€),y))dW (s,y)
o Jo
T—e 1
+/ / Gr—s(x,y)b(u(s, y))dyds,
0 0

T 1
L) = [ [ Groemotulsm) = otus A (T = 2. 9)aW (s.0)

T 1
1) = [ [ oo buts.p)dyds.
T—e JO
Step 1. We prove that
E|I.(T,2)* + E|J.(T, z)|* < C [Ing| 23 £1/2, (3.16)

Let u be the law of U = (u(T,x1),...,u(T,2z4)) and let and p. be the law of U, = (u (T, 1), ...,
ue (T, z4)). Using the above estimate one easily obtains

dy (1, pe) < C |lne| =@ 174, (3.17)

Using the isometry property

T

1
E|L(T,z)* = / /O G2, (&, y)E(o (us,y) — o(u(s A (T — €),9)))2)dyds.

T—e
We consider the set Ac,(s,y) = {|u(s,y) —u(s A (T —¢),y)] < n} and we split the above term as
E|I(T,z)|* = A., + B, with
T 1
Acy = /T /0 G7_(z,y)E(o(u(s,y) — o(u(s A (T =€), 9)))* 1., (s.4))dyds
—€

T 1
Boy= [ [ Ghu(oElotuts,) — otuls (T = 2. 0)Lag ).
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Using (314
T 1
Aoy < Clan| 260 [ [1GE (a,)dyds < € gl 2240 217
T— 0

the last inequality being a consequence of ([BI1]). Moreover, coming back to (BI0]), we have

P(AS,(s,y)) < —EIU(S y) —u(s A (T —e),y)

1/2
SC/ / G?_,(y,z dzdr<C€2
T—e n

Cel/? / /1 Ce
Be,p < —— G%_ (z,y)dyds < —

we obtain

so that

Taking n = /16

E|I(T,z)|* < C(|lng| 23 4 /N2 < O |Ine| 2@+ 172,

We estimate now

T 1
waﬂ%//%me%ME
T—e JO
so (B.I6]) is proved.

Step 2. Conditionally to Fr_. the random vector Us = (uc(T,x1), ..., us(T,x4)) is Gaussian of
covariance matrix

T 1
Ei7j(Ua) - /T— /0 GT—s(xia y)GT—s(‘T]W y)02(u(3 A (T - 5)7 y))dyd87

for i,7 =1,...,d. By (312)
COVE 2 S(U:) 2
where C' is a constant which depends on the upper bounds of o and on ¢,.

We use now the criterion given in Theorem . Let py. be the density of the law of U.. Condi-
tionally to Fp_. this is a Gaussian density and the same reasoning as in the proof of ([B.8]) gives

_ 1
”pUs H2m,2m,1+ S C(E 1/4)2m In g
So ([2.21) reads
1/2 B
1pu. I 1 di (1, ) < Ce™ Y4 (1 = )1/2m X [Ing| TN g1/4
- C 1 1
= (ln %)2+h—1/2m - (ln )2+1/2m
the last inequality being true as soon as h > % 0O
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3.3 Piecewise deterministic Markov Processes

In this section we deal with a jump type stochastic differential equation which has already been
considered in [B]: it is an example of piecewise deterministic Markov processes. We consider a Poisson
point process p with state space (E,B(E)), where E = R? x R,. We refer to [2I] for the notations.
We denote by N the counting measure associated to p, that is N([0,t) x A) = #{0 < s < t;ps € A}
for t > 0 and A € B(FE). We assume that the associated intensity measure is given by N (dt,dz,du) =
dt x dzx 1) o0y (u)du where (z,u) € E = R?xR,.. We are interested in the solution to the d dimensional
stochastic equation

t t
X, =2z +/ / (2, Xs— ) uer(z,x, 3V (ds, dz, du) + / 9(Xs)ds. (3.18)
0o JE 0

The coefficients ¢, g,y are smooth functions (see the hypothesis (H;),i = 0,1,2 below). We remark
that the infinitesimal generator of the Markov process X; is given by

Li(a) = g(e)Vola) + [ (0 +efz.2)) = vl ()i
See [15] for the proof of existence and uniqueness of the solution to ([BI8]). We will deal with two
problems related to this equation.

First we give sufficient conditions in order that P(Xy(z) € dy) = pi(x,y)dy where X;(z) is the
solution to (BI8]) which starts from x, so Xo(z) = x. And we prove that, if the coefficients of the
equation are smooth, then (x,y) — pi(x,y) is smooth. Notice that the methodology from [15], [I1],
[10] and [17] seems difficult to implement in order to prove the regularity with respect to the initial
condition x. So this is the main point here.

The second result concerns convergence. In [5] it is constructed an approximation scheme which
allows one to compute E(f(X;(z)) using a Monte Carlo method. And it is proved that the convergence
takes place in total variation distance. We use here the method developed in our paper in order to
prove that the density functions and their derivatives converge as well and to estimate the error.

In [5] one gives a Malliavin type approach to the equation ([BI8]) which we recall and which we
will heavily use here. We describe first the approximation procedure. We consider a non-negative
and smooth function ¢ : RY — Ry such that ¢(z) = 0 for |2| > 1 and [p.¢(z)dz = 1. And for
M € N we denote &y = ¢ * 1p,, with Byy = {z € R? : |z < M}. Then &)y € C° and we have
1gy 1 < @y < 1g,,.,,. We denote by XM the solution of the equation

t t
xM :m—i—/ /c(z,Xé‘{)l{u<y(z7XM)}®M(2)N(ds,dz,du) +/ g(XM)ds. (3.19)
o JE o 0
In the following we will assume that |y(z,z)] < 7 for some constant 7. Let Njys(ds,dz,du) :=

1By, (2) X 1jg,29)(u) N (ds, dz, du). Since {u < Y(z, XM} € {u < 27} and @y (2) =0 for |z| > M +1,
we may replace N by Ny in the above equation and consequently XV is solution to the equation

t t
XtM:a:—k/ /cM(z,X;‘{)l{uﬂ(z,XM)}NM(ds,dz,du)—|—/ g(XM)ds,
0o JE o 0

with  epr(z,2) = Ppr(2)e(z, ).
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Since the intensity measure N a is finite we may represent the random measure Ny, by a compound
Poisson process. Let Ay = 27 x u(Byo1) =t 'E(Ny(t, E)) (with p the Lebesgue measure) and let
JM a Poisson process of parameter \j;. We denote by Téw .k € N the jump times of JM. We also
consider two sequences of independent random variables (Z;)ren in R? and (U )xey in Ry which are
independent of JM and such that

1 1
)1BM+1(Z)dZ and Ukwﬁl[o,gﬂ(u)du.

i pep———
(Bt

To simplify the notation, we omit the dependence on M for the variables (7). Then equation (3.19)
may be written as
JM ‘
XM =03 el XI5, 0020 X20) + /0 (X M)ds. (3.20)
k=1

Now XM is an explicit functional of the Zj,k € N but, because of the indicator function, this
functional is not differentiable. In order to overcome this difficulty, following [5], we consider an
alternative representation of the law of X. Let 2}, € R? such that |2},| = M + 3. We define

. 1 :
qu(z,2) = (2 — 23)0m(x) + mlghjﬂ(z)’y(z,x), with
) | (3.21)
0 xr) = 7/ 1— —~(z,2))dz.
M () 1w(Bar+1) {z<M+1}< 277( ))

We recall that ¢ is a non-negative and smooth function with [ ¢ = 1 and which is null outside the
unit ball. Moreover since, 0 < v(z,2) < 7% one has 1 > 0y,(x) > 1/2. By construction the function
qur satisfies [ qar(z,z)dz = 1. Hence we can easily check (see [5] for the proof) that

E(f(X%) | XJJ‘,;{ =x)= /Rd flz+em(z,2)qm (2, 2)dz. (3.22)

From the relation ([B:22]) we construct a process (Yi‘/l ), equal in law to (XM), in the following way.
We denote by W¥(z) the solution of Wy(z) = x + fg g(Vs(z))ds. We assume that the times Ty, k € N
are fixed and we consider a sequence (zj)ren With zi € R?. Then we define x;,t > 0 by 9 = z and, if
xT, is given, then

vy = Yeq (o) T <t <Tpy,
Tl = T + enr(zk41, ngH).
We remark that for Ty, <t < T}, 1,2 is a function of 21, ..., z;. Notice also that z; solves the equation

M
Jt

Ty =x+ Z cM(zk,aleg) + /0 g(zs)ds. (3.23)

k=1

We consider now a sequence of random variables (Z),k € N* and we denote Gy = o(Tp,p €

N)Vo(Zy,p <k)and Yﬁv‘[ =x4(Z4, ...,7JtM). We assume that the law of Z;,; conditionally on Gy, is
given by

= - = —M
P(Zyy1 €dz | Gr) = QM(SUT];H(ZM v Z1), 2)dz = qu (X -, 2)dz.
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Clearly Yiw satisfies the equation

M
Jt

t
X! = ot Y en@u X+ [ g% s (3.24)
k=1 0

And by ([3.22) the law of Yiw coincides with the law of X}. So now on we work with Yi\/[ which is a

smooth functional of Zj, k € N. But one more difficulty remains: if 77 > ¢ then Yﬁv‘[ is deterministic,
so this functional is not non-degenerated. In order to contouring this last difficulty we add a small
noise. We define

FM2) =X (2) + V/TUu x A, 0<t<T,

where 73/‘[ () is the solution to (3.24]) which starts from z, A is a standard normal random variable
which is independent of T}, and Z, k € N and

Upy = Z/B A(2)dz (3.25)

c
M—-1

with 7 and ¢ from ([B:20) and ([3:28) below. The approximation scheme for X;(z) is given by FM ().
Let us give our hypotheses.

(Hy) We assume that 7,¢ and c¢ are infinitely differentiable functions in both variables z and z.
Moreover we assume that ¢ and its derivatives are bounded.

(H1) There exist 5 > v, such that
7 >5(z,2) >y>0, VreR? (3.26)

and, for every [ € N there exists 7, and %), ; such that for |a| + [ <1

0200w 2)| <7 |0209 A (e, 2)| < T (3.27)
(Hj) Setting, for 0 < a < b and r > 0,
a iy b
Q(Z) - 1 4 ‘Z’rv C(Z) - 1 4 ’2‘7’7

we assume that, for every z,z,¢ € R,

vac x (I + Vmc)_l(z,:E)H + le(z, )| +

9Bo2c(z, :p)\ < 2(2) (3.28)

d
> (0, c(z,2),6)? > A=) €. (3.29)
7=1

Remark 3.4. The above hypotheses represent a particular case of the hypotheses from [H], correspond-
ing to Example 1,ii) page 634 in that paper. More general hypotheses may be considered (see [5]) but
our aim s just to give an example in order to illustrate our method, so we restrict ourself to this case.
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The basic estimate in our approach is the following:

Theorem 3.5. Suppose that Hypotheses (H;),i = 0,1,2 hold. Consider a function ¢ € Cboo(]Rd) such
that 1g, < ¢ < 1p,. Then for every t,R > 0,q € N and every multi indezxes o, 8 with |o| + |B] < q,

one has

sup [ORE(D76) (FM (@) (F (@) - y)] < Cllgllaod ™. (3:30)
|z|<R,Jy|<R

Here C is a constant which depends on t, R,q but not on M. In particular the density pM (x,y) of the
law of FM(z) verifies

sup
|z[<R,|y|[<R

Ggagpf/‘[(x, y)‘ < oplard), (3.31)

The above theorem is an extension of estimate (42) in Proposition 4 page 640 in [5] and the proof
is similar, except for one point: here we consider derivatives 9% also (while in [5] 85 only appears).
So we just sketch the proof and focus on this supplementary difficulty.

We use an integration by parts formula based on Zj,k € N, and on Zy = A which is constructed
as follows (we follow [5]). Here J = JM and T} are fixed, so they appear as constants. A simple
functional is a random variable of the form F = f(Zg, Z1,...,Z ;) where f is a smooth function. We
use the weights 7, = ®3/(Z), k € Ny, 7o = 1 and the Malliavin derivative is defined as

Dy ;= wkaﬂ .
For a multi index o = (a1, ..., ) With o = (k;, j;) one defines the iterated derivative
Dy = Day... Doy,
Then one defines the Sobolev norms:

\FIZ2=[FP+ > [D.F, 17|, = E(FE)P.
1<]a|<q

For F = (F', ..., F%) the Malliavin covariance matrix is given by

J d
ot = (DF',DF?) =Y N Dy F' x Dy .
k=0 [=1

We introduce now the operator L. Notice that the law of Z = (Zg, Z1,..., Z) is absolutely
continuous and has the density

L

P20, 21, .., 27) = N(20) | | am (21, (2, 21, -0y 21—1) 5 25) (3.32)

=
Il

1

where N is the density of the standard normal law (so of A), qas is defined in (B2I) and z7, (z, 21, ...,
zk—1) is the solution of ([B:23])) which starts from x. Then we define

J d

LF =" DyjDypjF + Dy jF x Dyjnpsa(Zy).
k=0 j=1
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The basic duality relation is the following: for two simple functionals F, G
E(FLG) =E(GLF) =E((DF, DG)).

Having these objects at hand one proves the following integration by parts formula. Let F =
(F',...,F?) and G be simple functionals and let 8 = (51, ..., 3,) € {1,...,d}9 be multi index of length
q. Then for every ¢ € C>®(RY)

E(9s¢(F)G) = E(¢(F)Hp(F, G)) (3.33)

where Hg(F,G) is a random variable which verifies

3q—1 (6d+1)q
1H3(F.Gl, < C||(detor) [~ (PN DO+ LN ) 1G] - (3.34)

This result is proved in Theorem 2 and Theorem 3 in [5]. Before going on we need the following
estimates.

Lemma 3.6. For every multi index = (1, ..., 54) € {1,...,d}? and every p, R,T > 1

sup E( . (x)"’) <C (3.35)
l¢|<R  t<T l
and
sup |(0) lan,w(7)H < CcM-. (3.36)
|z|<R ba

Proof. The proof of (330 is analogous to the proof of Lemma 7 and Lemma 9 in [5] so we leave it
out. Let us prove (B.30). Notice first that

J
85 Inpjz(20,21,.... 27 Zaﬁ In g (zr, (2, 21, o 2Zk—1), 2k)-
k=1

On the set {gar > 0} we have

amﬁ lon(ngk ($7 21y eeey Zk—1)7 Zk) = 1BM+1(Z]€)65 1n7($Tk ($7 By ey zk—l)v zk)

+ 1Bc ( k)af lnHMﬁ(ka (a;, Z1, ...,Zk_l).

We will use the following easy inequality: for any function f € Cll) and every simple functional F' in R?
one has |f(F)|; < C/fll; o [F]; where || f]|; .. = sup, max|q|<; [0%f(x)|. Notice that for every multi

index « one has 1

——— P (x, 2)dz
2Yu(Bup+1) /BMH (%)

and moreover Oy~ () > 1/2. It follows that ||Infar, |, .. < C%,;/7. One also has ‘

ageMﬁ(x) =

0% In H <7
z WY, o = V18l

so finally || Ingas(-, 2)|l1,00 < C with C a constant which depends on 7,7%;,7,,;. Then, using the above
remark we obtain

85 lon(asz(x,71, ...,7k_1),7k)‘l < C |F74k/[(x)|l .
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Consequently

JM
P npy.(Z, ”"7‘]5%)‘1 < C’Z ‘F%($>‘l < JM Sli[t) |Fs]\4($)‘l
k= 5=

Since (E(|JM|?))'/2 = C M? this, together with (335, gives

85 111])]796(71, ,7#\4)”[ < CMd.
7p

We are now ready to proceed to the

Proor oF THEOREM [B.5] In order to avoid notational complications we just look to a particular
case (the general case is obviously similar). We assume that we are in the one dimensional case d = 1
and |a| = |B| = 1. Then we look to

OSE((0° ) (FM () (FM () — ) = 0:B(¢/ (F () (FM (2) — v))).

Let v(du) be the standard normal law and z = (z1, ..., z;). Then, with § = \/TUy; and J = JM, we
have

0. E(¢' (F ()0 (FM () — )
= (‘LCE/V(du) / ¢ (du + x4 (2, 2))(6u + 24 (2, 2) — y))pse(2)dz
= L+L+13

with
1 =% [ vldw) [ 6"0une.2)0m(e, 00+ a(0,2) — )poa(ds
I, = E/V(du) / ¢ (0u + xy(x, 2)) (du + 24(2, 2) — y))Opi (2, 2)pyo(2)dz
Is = E/V(du) / ¢ (Ou + xy(, 2))p(0u + x4 (2, 2) — Y))Oupyw(2)dz.

We stress that z(z, 2) is defined as the solution of the equation ([:23)) and so it depends on T}, k < JM.
This is why E appears in the previous expressions. Let us treat I;. Using the integration by parts

formula (B3.33))

L = E(¢"(FM(2)0, FM (2)y (FM (z) — y))
E M

(G(F (2)) Ha(FM (2), 00 FM ()0 (B () — ).

We use now some results from [5]: according to Lemma 13 from we have
ILEM ()], < OM; (3.37)

according to Lemma 9 we have
[FM ()], < C; (3.38)
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Lemma 16 gives
E((det O'Ftl\/l(x))_p) S C (339)

(notice that in Lemma 16 one asks that 2dp/t < 6 with 6 defined in Hypothesis 3.2, iii) pg 630 in
[5]; but as said in Example 1, ii) from the above paper, under our hypothesis we have § = 0o so our
inequality holds for every ¢ > 0). Moreover, taking a look to the proofs of the above results, one can
see that the estimates ([3.37)),([33]]),([339) are uniform with respect to x € Bg. Then, using (3.34))

11| < CllgllocM?

and the estimate is uniform with respect to z,y € Bg. A similar reasoning gives the same inequality
for Is.

We come now to I3. We write 0;pj,(2) = 0pInpja(2) X pyo(2) so that

Iy = E@(FEM(@)0EM(2) - y)0slnpa(Z,.... Z1))
= E((¢(F (@) Hi(FM (2), »(FM (x) — 9)0p npyo(Z1, ... Z ).

Using (834) and (3.30) we obtain
13| < CllgllocM>.

We will use the following approximation result:

Lemma 3.7. Let (Hsy) holds with v > d. For every Lipschitz continuous function f with Lipschitz
constant less or equal to one, one has

[E(f(FM(2)) — E(f (Xi(2))] < CM~=D. (3.40)
where C' is a constant which is independent of M.

Proof. We have
(E(f(F%M(x)) - E(f(Yi”(a:))( < /TUn E(A|) < CM— =4/

in which we have used (Hs2) in order to estimate Uy in (3.27]).

Since the law of Yﬁv‘[ (z) and XM (z) coincide, we use Lemma 4 from [5] and (Hz). So, we obtain

[E(f(FM (x)) — B(f(Xi(2))] < CM~U=YD 4+ |B(f(XM (x)) — B(f(X(2))]
<CcM~r=9,
We are now able to present our main result.
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Theorem 3.8. Assume Hypotheses (H;), i = 0,1,2, hold. Let ¢ € N and p > 1 be such that
d+2d(q+ 14 d/p.) < r, where r is the constant in (Hy). Then, for every x € R? and t > 0 the
law of X¢(x) is absolutely continuous with respect to the Lebesgue measure. We denote by pi(x,y) the
density. Moreover, for every R > 0, (x,y) — pi(x,y) belongs to W9P(Br x Bg) and there exists a
constant C (depending on R) such that, for every M € N and € > 0

c
Hpt —pz{,MHWq,p(BRxBR) = Mr—d—2d(q+1+d/ps)—e

Remark 3.9. If r > 3d + 2d? then Sobolev embedding theorem ensures that (z,y) — pi(z,y) is a
continuous function. Moreover for every xo € R* one may find yo € R® such that ps(zg,10) > 0
(because pi(xo,y) is a probability density, so may not be identically null) and consequently one may
find § > 0 such that

inf inf  p(z,y) > 0.
ly—yo| <6 |z—x0| <8 H(z,9)

This property is crucial in order to use Nummelin’s splitting method in order to prove convergence to
equilibrium, see e.g. [22] , [34)] and [35].

Proof. We will use Theorem [2.I7] for the following measures. Given R > 0 we denote by Ug(z) a
smooth function which verifies 15, < W < 1p,, , and we define

fr(@,y) = V(@) Ve(y)p) (z,y) and  fr(z,y) = Vr(x)Ve(y)p(2,y).

We note that
M
It = Pt lwar(BrxBr) < IfR = fRMIIWar(@RdxRA)-
We will use Theorem [2.17] to estimate the term in the above r.h.s. Let

MR,M(dx7 dy) = fR,M($7 y)d$dy and /LR(dﬂZ‘, dy) = fR(x7 y)dxdy

For a Lipschitz continuous function with Lipschitz constant < 1, one has

‘ / gdpr — / gzt

| / W () (Blg(r, X)) W r(Xil)) — Blg(or, X (1) Wa (XM (2)) ) do
< oM~

in which we have used (40). Then, di (g, p}) < CM~0=9. By @31) we also have

”fR,M H2m+q72m,p < CMd(2m+q+d)

Now, we fix m and we apply Theorem 2.11]¢) with

r—d

@ =olm) = i am  d)

and n(M) = M™%, So, we obtain that up is absolutely continuous and if fr denotes its density, we
also get

1+ d/p.
A1- u>,

1 . 1
I fr— fR,M”Wq,p(RdXRd) < Ci_d)g with 6= — -

M(r «

32



r—d

57 We obtain

Since lim,, ma(m) =

q+1-+d/ps

(r—d)(1-— o

)= r—d—2d(g+1+d/ps)

and

=d(g+2m+d) — o
So, taking m sufficiently large we obtain, for each £ > 0

C
HfR - fR,MHWq,p(RdXRd) < Mr—d—2d(g+1+d/p.)—¢

O

Corollary 3.10. Suppose that r > 3d+2d?* and set k = |(r—3d—2d?)/2d]. Then for every R > 0 and
every € > 0 there exists a constant Cre > 1 such that for every multi indexes o, B with |a| + |B| < k

CRE
Mr—d—2d(g+1+d/ps)—€

sup 0200 pi(x,y) — 920 ) (=, y)(
le|<R.jy|<R

Proof. We take p > 1 very close to 1 (so that p, is very large) and

B

Then Sobolev embedding theorem says that for |a| + |8] < k

sup
|z|<R,|y|<R

0207 (@,9)| < Cr I lwan B )

and we are done. O

A Hermite expansions and density estimates
The aim of this section is to give the proof of Proposition We recall that for p € M and
tn(x) = fr(z)dz,n € N,

71-llkme 122 ,un n ZZn q+k 2nd dk(:u /Ln +Z 22nm ||an2m+q72me
n=0

Our proposal for this section is to prove the following

Proposition A.1. Let ¢,k € N;m € N, and e € €. There exists a universal constant C (depending
on q,k,m,d and e) such that for every f, f, € C*"*t4(R%) n € N, one has

Hque = Cﬂ-q,kme(,ua (,un)n) (Al)

where p(x) = f(x)dx and p,(x) = fr(x)dx
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The proof of Proposition [A.1] will follow from the next results and properties of Hermite polyno-
mials, so we postpone it at the end of this section.

We begin with a review of some basic properties of Hermite polynomials and functions. The
Hermite polynomials on R are defined by

n 24" _p

H,(t) =(—1)"e il n=0,1,..

They are orthogonal with respect to e~ dt. We denote the L? normalized Hermite functions by
ha(t) = (2"n)/m) ™2 Hy (t)e ™/

and we have

/ B () B (£)dt = (27n)y/) 71 / Hy(t)Hp (£)e™ P dt = 6y .
R R

The Hermite functions form an orthonormal basis in L?(R). For a multi index o = (a, ..., ag) € N?
we define the d-dimensional Hermite function

d
Ho(x) = Hhai(mi), x = (21, .0, 2q).
i=1

The d-dimensional Hermite functions form an orthonormal basis in L?(R¢). This corresponds to the
chaos decomposition in dimension d (but the notation we gave above is slightly different from the
one used in probability; see [26], [29] and [23], where Hermite polynomials are used. One may come
back by a renormalization). The Hermite functions are the eigenvectors of the Hermite operator
D=-A+ |:1:|2, A denoting the Laplace operator, and one has

DH, = 2la| +d)Hs with  |a| = a1 + ... + ag. (A.2)
We denote W,, = Span{H,, : |a| = n} and we have L?(R%) = @2 ,W,,.

For a function ® : RY x R — R and a function f : R — R we use the notation

o f(x) = /Rd ®(z,y)f(y)dy.

We denote by .J,, the orthogonal projection on W, and we have

Jov(z) = Hpov(x) with Hy(z,y) = Z Ho(x)Ho(y). (A.3)

|a|=n

Moreover, we consider a function a : Ry — R whose support is included in [%, 4] and we define

o] . qntl_g .
Hi(w,y) = Zaq—n)ﬁj(w,y) - > a(i—nﬁj(fc,y), v,y €RY,
=0 e

the last equality being a consequence of the support property of the function a.

The following estimate is a crucial point in our approach. It has been proved in [14], [I3] and
then in [27]. We refer to Corollary 2.3, inequality (2.17), in [27] (we thank to G. Kerkyacharian who
signaled us this paper).
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Theorem A.2. Let a: Ry — Ry be a non negative C*° function with the support included in [%,4].

We denote |jal|, = Zé:o SUP;>q |a(i)(t)‘. For every multi index o and every k € N there exists a
constant Cy, (depending on k,c, d) such that for every n € N and every z,y € R?

on(|al+d)

(1427 |z —y[)*

olel .
S a(y)

< Crllall, (A.4)

Following the ideas in [27] we consider a function a : R — Ry of class Cp° with the support
included in [$,4] and such that a(t) + a(4t) = 1 for t € [1,1]. We may construct a in the following
way: we take a function a : [0,1] — Ry with a(t) = 0 for ¢t < £ and a(1) = 1. We may choose a such
that a(l)(%) =a®(1-) = 0 for every I € N. Then we define a(t) = 1 — a(%) for t € [1,4] and a(t) =0
for t > 4. This is the function we will use in the following. Notice that a has the property:

§;4£>:1 Vi > 1. (A.5)

n=0

In order to check the above equality we fix n; such that 4™~1 <t < 4™ and we notice that a( =) =0
if n ¢ {ny —1,ni}. So >0° ya(4) = a(4s) +a(s) = 1 with s = t/4™ € [1,1]. In the following we fix a
function a and the constants in our estimates will depend on ||a||; for some fixed [. Using this function
we obtain the following representation formula:

Proposition A.3. For every f € L*(R%)
[ee]
f=Y Hiof
n=0

the series being convergent in L*(R?).

Proof. We fix N and we denote
4N 4N+1

SN_ZHan, Sy=>H;of and Ry= Y (ﬁjof)a<4NL+1>.

n=1 j=1 j=4aN+1

Let j < 4V¥+1 For n = N+2 one has a(£) = 0. So using (A.E]) we obtain >N a(i) =300 a(k) -
(4N+1) =1 —a(g7)- And for j < 4" one has a(g¢5) = 0. It follows that

N oo ) N 4N+1
= LY a(f)mer- ZIZO o(5r) 0
—1 = n=1 j
- T en ()
=0 n=1
S Her- Y (o Na(qr) = S = R
j=0 J=4N+1

4N+1

One has Sy — f in L? and |R% ||, < |lallo D j—aN i1 | H; <>fH2 — 0 so the proof is completed. O
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We will need the following lemma concerning properties of the Luxembourg norms.

Lemma A.4. Let p > 0 be a measurable function. Then for every measurable function f one has

o flle < llolly 1 flle - (A.6)

Proof. Let ¢ = m | f||, with m = ||p|; = [ p(x — y)dy. Since e is convex we obtain

[e(torn@)ar= [e( [A2 ™ py)ay) s
g/da:/w xe(%f(y))dy

=/eQ§Eﬂwy@31

and this means that ||p * f||, < ¢ = |lpll; [|flle- O
Lemma A.5. Lete € € and p,, ,(2) = (142" |2|) 7P, with p > d. There exists a constant C,, depending

on p and d such that
1

Hpn,pHe é e_l(CLan)‘ (A?)
P

In particular, for p = d+ 1 there exists a constant C depending on d and on the doubling constant of
e such that (with ¢e defined in (2.3))

C —n n 1
Hpn,d-i-lHe < m =C2 dﬁe(Z d) = Ogbe(w) (AS)

Proof. Let ¢ > 0. By passing in polar coordinates and by using the change of variable s = 2™r, we

obtain
1 B > a1 1
/Rde<2'°”’p(z)>dz - Ad/o " e<c 8 (1+2"T)P>dr

o0 1 1
nd d—1
= 2 Ad/o S e(—c X 7(1 S)p)ds

where Ay is the surface of the unit sphere in R?. Using the property (Z)) ii) we upper bound the

above term by
1 & 1 1
2_”de(—>Ad/ sl — = ds= Cp2_”de<—>.
C 0 C

(14 s)P
In order to prove that ||p,pll, < ¢ we have to check that [y, e(2p,p(2))dz < 1. In view of the above
inequalities it suffices that e(1) < 2"4/C), that is ¢ > 1/e~1(2"4/C,,). O

Proposition A.6. Let e € £ and e, be the conjugate of e. Set o as a multi index.

i) There exists a universal constant C (depending on o, d and e) such that

a)  0aHs o fll, < Cllallgpy x 2|1 £le
b)  [|oaH o £l < Cllallasy x 2711 8e(27) || £

€
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1) Let m € N,. There exists a universal constant C' (depending on o, m,d and e) such that

2
[0 0], < S0ty e (A10)
i1i) Let k € N. There exists a universal constant C' (depending on a,k,d and e) such that
[H5 0 0a(f = 9, < Cllallgey x 21HE 52" dy (a5, 1g) (A.11)
Proof. i) By using (A4]) with k =d+ 1 we get
[0z 0 f(2)] < C270D Jla] 41, / prasi(z = )£ (v)] dy. (A12)
Since e is symmetric, i.e. e(|x|) = e(z), one has ||f|le = ||| f]||e- Moreover, if 0 < f(z) < g(z) then

IIflle < |lglle- Using these properties in addition to (A.12) and ([A.6]), we obtain

[0 HE o f]|, 110aHe o ], < C2°0 D Y]l lonass = £l

20D gl omaclly 1A -

Using (A8) with e(z) = || we obtain ||p, a1, < C/2". So we conclude that

IN

0275 0 £l < Cllallgsr 2111l
o0 a) is proved. Again by (A12)

10,H o f(2)] < C lall ., 270+ / puasn(@ —y) | £(y)] dy

< Clall g1 27D Nlppasallo £

€y’

the second inequality being a consequence of the Holder inequality (2.6). Using (A.8), b) is proved as
well.

ii) We define the functions a,(t) = a(t)t™"™. Since a(t) = 0 for ¢ < 1+ and for t > 4 we have
lamllgr1 < Cmd llall 441 - Moreover DH; o v = (2§ + d)H; o v so we obtain

- 1

HjOU: 2j(D—d)7'_[j<>U.

We denote Ly, o = (D — d)"™0, and we notice that

Lo = Z Z cﬁﬁxﬁ&/,

181<2m |y|<2m+|a]

where cg ., are universal constants. It follows that there exists some universal constant C' such that

| Lonaflle < C 1 lams ol 2me (A.13)
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We take now v € L® and we write

<v,7-_l§1<>(3af)> = <ﬂg<>v,af Za( > 7-[ <>v8f>
7=0
= Za<4_n) 2;)m (D —d)"H;jov,00f)
7j=1
1 _
= 2_m 4nmzam )<Hj<>U,Lm,af>
= 21n><4nim<7‘[am<>'0 Lmaf>

By using the decomposition in Proposition [A.3] we write Ly, of = >°72, 7-_1? O Ly o f. For |j —n| > 2,
by the support property of a, one has a(%n)a(%) = 0 for every k € N. One also has (Haov, Hgo Lo f)
= 0 if [af # |B|. Then a straightforward decomposition gives (Hy™ o v, H} © Ly of) = 0. So using
Hoélder’s inequality

1 n+1 ~ ~
x@—mj_zn:lKH?Lmov,H?oLmafﬂ
n+1
< gm X 4nm > [#Haou],

j=n—1

(v, Hp 0 (0af))|

IN
|

H o Linafl, -

€x

Using point i) a) with « equal to the void index, we obtain |[H%m <>vHe* <
C x Cp g llall g4 [|v]le, - Moreover, we have

[#5 © Linafl, < Cllalges 1Zmaflle < Cllallgsr 1flamsjal2m.e

the last inequality being a consequence of (A13]). We obtain

- Clal
‘<U7,Hn < (8af)>‘ < Wd—i_l ”UHe* Hf”2m+|a\,2m,e

and, since L® is reflexive, (AI0) is proved.

ii1) We write
(v, Hy o Oalf —9)))| = [(HRov,0a(f —9))| = [(BaHpov. [ —9))]
= ‘/8a7:[fl<>vduf—/8a7:lz<>vdug .

We use the definition of dj, and (AX9) b) and we obtain

‘/8a7:[fl<>vduf - /E?a?:lflovdug
< #5000 (55 1g) < C llall g 271D 8o (27 ol dr(gs 1)

which implies (A.11]). O

< 19725 00l o i, 1)
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We are now ready for the
PROOF OF PROPOSITION [A]l Let o with |a| < ¢. Using Proposition

Oof =Y Hiodaf =D Hio0alf — fu) + Y Hit o Oafn

n=1 n=1 n=1

and using (A.11]) and (A.10)

10aflle < D NHE00a(f = fu)llo + D |Ha © Oatall,
n=1

n=1

> n(|o T > 1
< ) 2052 Y di(pg p4) + C Y gz | fallame o) 2me
n=1

n=1

so (A is proved.

B Interpolation spaces

In this section we prove that, in the case of the L” norms, (that is e = e,) the space Sgrm.e, is an

interpolation space between Wk (the dual of W*°) and W%2™P_ A similar interpretation holds for
elog but this case is more exotic and we do not enter into details here.

To begin we recall the framework of interpolation spaces. We are given two Banach spaces (X, [|-|| y)
and (Y, ||-|ly) with X C Y (with continuous embedding). We denote £(X, X) the space of the linear
bounded operators from X into itself and we denote by || L]| x.x the operator norm. A Banach space
(W, ||ly) such that X C W C Y is called an interpolation space for X and Y if L(X, X)NL(Y,Y) C
L(W,W). Let v € (0,1). If there exists a constant C such that ||Lllyy < CL[x x HLH%,_}:’ for
every L € L(X,X) N L(Y,Y) then W is an interpolation space of order . And if one may take
C =1 then W is an exact interpolation space of order . There are several methods for constructing
interpolation spaces. We focus here on the so called K-method. For y € Y and t > 0 one defines
K(y,t) = infrex (ly — lly +1 ally) and

R dt
ol = [ R@OT. (XY), =y eVl < )

Then one proves that (X,Y"), is an exact interpolation space of order . One may also use the following
discrete variant of the above norm. Let v > 0. For y € Y and for a sequence x,, € X,n € N we define

[e.9]

" 1
Ty (Y, (Tn)n) = 22 VHy—fanerz—n [EI5% (B.1)

n=1
and
P (y) = inf my (y, (2n)n)

with the infimum taken over all the sequences x,, € X,n € N. Then a standard result in interpolation
theory (the proof is elementary) says that there exists a constant C' > 0 such that

1
a vl <o () < Clyll, (B2)
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so that
Sy(X,Y) = {y: pXV(y) < o0} = (X,Y),

Take now ¢,k € Nym € N, and p > 1 and set Y = Wf’oo and X = W%?™P Then with the notation

from (2I7) and (2.I8])

. q+k+d/ps
P kmie, (1) = p:i(’y(,u) and Sy kme, = Sy(X,Y), with v = T/ (B.3)

m)

Notice that in the definition of S, e, One does not use 7 (y, (xn),) but W% (y, (xy)pn) defined by

[e.e]

1
nym)(ya (Tn)n) = Z griathtd/p.) ly — 2nlly + 92mn lznllx
n=1
N 1
= Z22mwy ly — znlly + 92mn nll x
n=1

with v = %. The fact that one uses 22™" instead of 2" has no impact except that it changes

the constants in (B.2)). So the spaces are the same.

We turn now to a different point. For p > 1 and 0 < s < 1 we denote by B*P the Besov space
and by || f|/gs» the Besov norm (see Triebel [32] for definitions and notations). Our aim is to give
a criterion which guarantees that a function f belongs to B*P. We will use the classical equality
(WLp [P), = BP,

Lemma B.1. Let p > 1 and 0 < s’ < s < 1. Consider a function ¢ € C* such that fRd o(x)dx =1
and let ¢s(x) = 6%(15(%) and ¢5(x) = x'¢s(z). We assume that f € LP verifies the following hypothesis:
for everyi=1,....,d

i) lim sup 61 7° {|0; (f * ¢6)Hp <0
—0

g . _ : (B.4)
1) limsup d—* H@Z-(f * ng)Hp < o0.
6—0

Then f € BS? for every s' < s.

Proof. Let f € C'. We use a Taylor expansion of order one and we obtain

F(@) — f*6ela) = / (F(2) — Fz — 4))ée(v)dy

- /0 Lax / (V1 — M), y) be(y)dy = /0 ) / (Vi —2),2 50 (2) 5

1 dz K[! P dA
= [ o[- a0005 =3 [au e

It follows that

d 1 1
R N S
br-sea, <3 [ ool % sae [ <o
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We also have || f * ¢e|lyip < C(14 || f]l)e™%) so that

K(f7‘€) < ”f_ f*¢a|’p+€Hf*¢a|’W1,p < Ceé°.

We conclude that for s’ < s we have

1 1 _s
/ ! K(f, )—<C E—,%<oo
0

e 0o €% ¢

so f € (WhP,LP)y = B O

C Swuper kernels

A super kernel ¢ : R? — R is a function which belongs to the Schwartz space S (infinitely differentiable
functions which decrease in a polynomial way to infinity), [ ¢(z)dz = 1, and such that for every non
null multi index o = (aq, ..., ag) € N? one has

d
/y%(y)dy =0y =]]u (C.1)
=1

See [19] Section 3, Remark 1 for the construction of a super kernel. The corresponding ¢s, § € (0,1),
is defined by

650) = 536(%)-

For a function f we denote fs = f x ¢5. We will work with the norms [|f||,. o, [l and [/ f]|
defined in (2.8)) and in (2Z9). And we have

q,l.e

Lemma C.1. Let k,q € N. There ezists a universal constant Cy, 4 (depending on k + q) such that for
every f € W% one has

1f = follyroe < Crgllfllg 07", (C.2)

Proof. Since Cp° C W1l is dense, we may suppose without loss of generality that f € Cye. Using
Taylor expansion of order q + k

@) — fse) = / (@) — )5z —v)
= /I(w,y)%(m—y)dw/R(rc,y)%(fc—y)dy

with

q+k— 1

I(z,y) = Z Za‘“ - )%,

=1 " o=

= “fx — 2\ (x — )\,
R(z,y) = Tt |q+k/8 + Ay —x))(z — y) N TN
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Using (C)) we obtain [ I(z,y)¢s(z — y)dy = 0 and by a change of variable we get

/R(x’y)(ﬁé(a7 —y)dy = 1 Z /1 /dz%(z)ao‘f(:n + Az2)z AP\
(Rt o

We consider now g € W+ and we write

/ (F(2) — fs(2))g(z)dz

1 ' k+q @ 1e%
(a+h) §+k/0 AT dA/dZ%(Z)z /6 fx + A\2)g(a)da.

Let us denote f,(z) = f(x+a). We have (0% f)(x+a) = (0% f,)(x). Let a with |a| = Zle a; =q+k.
We split a into two multi indexes 3 and v such that |3| = &, |y| = ¢ and 9’97 = 9 (this may be done
in several ways but any one of them is good for us). Then using integration by parts

‘/ 0“f(x+ Az)g(x)dx

_ ‘ [P0 @i

< [107 @)l 0960 do < gl [ 107 5l0)] d
=gl 107 @) o < Nl 151,

For a multi index with |a| = ¢ + k we have

/ 165(2)] 22| d= < 6 / 16(2)] |27+ d

so the proof is completed. O

Remark C.2. It is clear from the above proof that if ¢+ k is fized then we do not need to work with a
“super” kernel ¢ verifying (C1) for every o but only with a kernel ¢ 4y, of order q+k, that is verifying
(C.1) for || < g+ k. The reason to use super kernels (and not a kernel of a given fized order) is just
to avoid to precise each time which is the order of the kernel we need. And this simplifies the already
heavy notations.

Lemma C.3. i) Let k,q € N,l > d and e € £. There exists a universal constant Cy, 4 (depending on
q + k) such that for every f € W% one has

1f = Fsllype < Crg 111,00 07+ (C.3)

ii) Let | > d,n,q € N, with n > q, and e € €. There exists a universal constant Cy, (depending on
l,q,d) such that

1 £5llse < Clglfllgred™ 9. (C.4)
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Proof. i) Let v with |y| < g. We write 07 f(z) = w(z)v, () with w(z) = (1 + |z|)~" and v, (z) =
(1+ |2)!o7 f(z). Using Hélder inequality

Uylle < Cllw

qu,l,e‘

€x €

/ 07 f(2)|dx < Clluy

By Remark 211 [Ju|,, < oo. This gives [|f||,; < C | f]l,;e and (C3) follows from (C.2).
ii) Let a be a multi index with || = n and let 3,7 be a splitting of o with |8| = ¢ and |y| = n—q.
Using the triangle inequality, for every y we have 1+ |z| < (1 + |y|)(1 + |z — y|). Then

u(@) = (1+ [2)! |0 fo(@)] = (1 + Jo)! |07 f 07 3s(2)
< [+ jal) o 1w 70e ~ )l dy < @ 5(2)
with
aly) = L+ 1) |01 ()], Bl) = L+ [2D)! 107 6s(2)]
Using (A.6) we obtain

C C
lulle < llox Blle < 11Blly lelle < 5=g lledle = 5= fa.lle-
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